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Abstract

For a set F of graphs, an instance of the F-free Graph Sand-

wich Problem is a pair (G1, G2) consisting of two graphs G1 and

G2 with the same vertex set such that G1 is a subgraph of G2,

and the task is to decide whether there exists an F-free graph G

containing G1 and contained in G2. Dantas et al. (2011, 2015) com-

pletely classify the complexity of the {F}-free Graph Sandwich

Problem when F is a four-vertex subgraph. In this paper we study

the complexity status of several two forbidden four-vertex subgraphs

sandwich problems, including the trivially perfect, {claw, claw}-free
and {diamond, diamond}-free graph classes.

1 Introduction

For a graph property Π, that is, Π is a set of graphs, the corresponding

graph sandwich problem is the following.
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Π Graph Sandwich Problem
Instance: A pair (G1, G2) of two graphs such that G1 and G2 have

the same vertex set, and G1 is a subgraph of G2.

Task: Decide whether there exists a graph G with G1 ⊆ G ⊆ G2

and G ∈ Π.

Let F be a set of graphs. A graph G is F-free if no induced subgraph of

G is in F . Let F be
{
F : F ∈ F

}
, where F is the complement of a graph

F .

The Π-Graph Sandwich Problem was introduced by Golumbic and

Shamir in 1993, attracting much attention because of many applications,

and so several graph sandwich problems were considered for different

graph classes, for instance: interval graph, unit interval graph, permu-

tation graph and comparability graph sandwich problems are all NP-

complete, while the split graph, threshold graph and cograph sandwich

problems are in P (see [2]).

Dantas et al. [7, 8] completely classify the complexity of the {F}-free
Graph Sandwich Problem when F is a four-vertex subgraph. Moti-

vated by a question proposed by M. C. Golumbic about the complexity

status of the graph sandwich problem of the well known trivially perfect

graph class, we study the graph sandwich problems for F-free graphs,

where F is a set of two non-isomorphic graphs of order four.
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Figure 1: All 30 pairs of non-isomorphic graphs of order four up to com-

plementation, together with the status of the corresponding sandwich de-

cision problem, where “P” means “polynomial time solvable” and “NPC”

means “NP-complete”, corresponding result within this paper.

Our goal it to study the complexity of the F-free Graph Sandwich

Problem for sets F containing two non-isomorphic graphs of order four.

It is well-known that it suffices to consider the sets F up to complemen-

tation. Note that P4 is the only self-complementary graph of order four.

Hence, up to complementation, there are five sets F that contain P4.
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There are 10 sets F containing two non-isomorphic graphs with less than

four edges and, up to complementation, there are 15 sets F containing

one graph with less than four edges and one graph with more than four

edges.

Figure 1 represents the 30 cases of two non-isomorphic graphs of order

four up to complementation, and summarizes our contributions.

This work is divided in four sections. Section 2 contains an interesting

structural characterization of a two forbidden four-vertex subgraph class,

and a (sketch) proof. It also contains a key lemma used in the proof of

our complexity result, which we present in Section 4. In the final section,

we conclude with a comment on the open cases.

2 Preliminaries

In this section, we define some concepts to the benefice of the reader,

including comments of well-known properties of them. For the first defi-

nition see e.g. [3, 6].

A graph G is called chain graph if it is {2K2, C3, C5}-free.

The following three definitions belongs to the Modular Decomposition

Theory (see e.g. [4, 9]).

Let G = (V (G), E(G)) be a graph. A subset H ⊆ V (G) is a module set

in G if for every v /∈ H either v is adjacent to each vertex of H or v is

non-adjacent to any vertex of H. In addition, if the module set H has

at least two elements and is not the vertex set V (G), then it is called

a homogeneous set in G. A graph G is called prime if it contains no

homogeneous sets.

Given a connected and co-connected graph G, it is well-known that the

maximal homogeneous sets are pairwise disjoint. In this case, we associate

the quotient graph G∗, called the characteristic graph of G, that arises by

contracting every maximal homogeneous set to a vertex. The Modular
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Decomposition Theorem state that G∗ is prime.

Finally, we introduce the following classes of graphs which appears in [1].

A graph G is a thin spider if it is partitionable into a clique C and an

independent set S with |S| ≤ |C| ≤ |S| + 1 such that the edges between

C and S are a matching and at most one vertex in C is uncovered by the

matching.

A graph G is an enhanced bipartite chain graph if it is partitionable into

a chain graph with independent sets, say B and C, and three additional

vertices a, b and c (a and c optional) such that NG(a) = {b, c}, NG(b) =

B ∪ {a, c} and NG(c) = C ∪ {a, b}.
Figure 2 shows an example of an enhanced bipartite chain graph, which

is a key ingredient in the proof of our main result.
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Figure 2: The enhanced bipartite chain graph ECh4 with triangle T :

a, b, c. The vertex b is adjacent to all vertices in the independent set

C = {c1, c2, c3, c4}, and the vertex c is adjacent to all vertices in the

independent set B = {b1, b2, b3, b4}.
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3 Structural Results

In order to prove the complexity results of the two forbidden four-vertex

subgraph sandwich problem, we study structural properties of several such

classes. Here, we prove a structural result of the {2K2, paw}-free class and
the {diamond, 2K2}-free class, useful in the main result of Section 4. Let

G = (V (G), E(G)) be a simple graph.

Lemma 1. If δ ≥ 1, then G is {2K2, paw}-free if and only if G is con-

nected and satisfies one of the following properties: (i) G is a complete

multipartite graph; or (ii) the homogeneous sets of G are independent and

the characteristic graph G∗ of G is isomorphic to C5; or (iii) G is a chain

graph.

Before presenting the proof of Lemma 1, we characterize the {2K2, C3}-
free prime graphs.

Proposition 1. A prime graph is {2K2, C3}-free if and only if it is either

isomorphic to C5 or a (prime) chain graph.

Now, we characterize the {2K2, paw}-free graphs by using the Modular

Decomposition Theorem.

Proof of Lemma 1: Clearly G is connected, because otherwise, since δ ≥ 1,

we induce 2K2. Suppose that G is a prime graph. By Olariu’s Lemma [5],

it is clear that G is C3-free. Thus, G is a {2K2, C3}-free prime graph. By

Proposition 1, we are done.

Now, we can assume that G is not prime. If G is disconnected and

remarking that G is paw-free, then each one of its components is a com-

plete graph, i.e. P3-free. In other words, G is a complete multipartite

graph. So, we assume that G is connected and G is connected. Similar to

the prime case, Olariu’s Lemma [5] implies that G is {2K2, C3}-free. In

particular, the characteristic graph G∗ is a {2K2, C3}-free prime graph.

Hence, by Proposition 1, G∗ is C5 or a (prime) chain graph. We claim

that every homogeneous set H of G is an independent set. Set A the set of
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vertices adjacent to each vertex of H. We proceed by contradiction. Let

x an y two adjacent vertices of H. For any element v ∈ A, the induced

subgraph G[x, y, v] ∼= C3, which is a contradiction.

Applying Proposition 1 to G∗, if G∗ is a prime chain graph, then G is

a chain graph, since every homogeneous set is independent. Therefore, in

any case, we are done.

Finally, to prove the converse, we analyze each possibility: if (i) then G

is P3-free, in particular G is {2K2, paw}-free; if (ii) then G is {2K2, C3}-
free, since C5 is also. In particular, G is {2K2, paw}-free; if (iii), by

definition, G is {2K2, C3, C5}-free, in particular G is {2K2, paw}-free. 2

In order to prove the main result of Section 4, we also state the following

result.

Lemma 2. If G is a {diamond, 2K2}-free graph with δ ≥ 1, then G is

connected and satisfies one of the following conditions: (i) G is complete

bipartite, (ii) or G arises adding all possible edges between the center of

some stars, (iii) or the homogeneous sets of G are independent sets, and

the characteristic graph G∗ of G either has at most 9 vertices, or is a thin

spider, or is an enhanced bipartite chain graph.

4 A Complexity Result

In this section, we present one of the complexity results obtained in this

work. In the context of Π Graph Sandwich Problem, we say that an

edge is forced (resp. forbidden) if it belongs to E1 (resp. E3 := E2).

Theorem 1. The {diamond, 2K2}-free Graph Sandwich Problem

is NP-complete.

In order to prove this theorem, we refer to the auxiliary graph ECh4

given in Figure 2. Note that the graph ECh4 is prime.

(Sketch) Proof of Theorem 1: Let Π be the class of chain graphs. We

describe a polynomial reduction from Π Graph Sandwich Problem to
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{diamond, 2K2}-free Graph Sandwich Problem. Let I = (V,E1, E3)

be an instance of the Π Graph Sandwich Problem, where E1 is a

matching. We associate the instance J = (U,F 1, F 3) as follows:

-Let U be the union of the set V with the set of new vertices of ECh4.

-Let F 1 be the union of the new forced edges of ECh4 with E1.

-Let F 3 be the union of the new forbidden edges of ECh4, with the edges

av for any v ∈ V , and the previous edges of E3.

First we prove that if there exists a chain sandwich graph solution G for

the instance I, then there exists a {diamond, 2K2}-free sandwich graph

solution H for the instance J .

In fact, suppose that G = (L,R,E) is a chain sandwich graph solution

for the instance I. Graph H arises by the disjoint union of ECh4 with

the graph G, adding all the possible edges between C with R, the edges

br with r ∈ R, and the edges cℓ with ℓ ∈ L. We see that H is an enhanced

bipartite chain graph, in particular, H is as desired.

Now, if there exists a {diamond, 2K2}-free sandwich graph solution H

for the instance J , then there exists a sandwich graph solution G for the

instance I.

In fact, suppose that H is a {diamond, 2K2}-free sandwich graph solu-

tion for the instance J . We show that H is necessarily an enhanced bipar-

tite chain graph with triangle T . Thus, the induced graph H[U \V (T )] is

a bipartite chain graph, in particular G = H[U \ V (ECh4)] satisfies our

requirement. Note that δ(H) ≥ 1. Since H is not complete bipartite, by

Lemma 2, H satisfies the condition (ii) or (iii). Since H contains ECh4,

we show that H does not satisfy the condition (ii). Suppose that H sat-

isfies the condition (ii) and let C be the set of centers and I the set of

leaves of the stars. Clearly V (T ) ⊆ C but, since NH(a) = {b, c}, then
C = V (T ). Hence, I = NH(b) ∪NH(c), but this contradicts the fact that

I is independent. So, H satisfies the condition (iii). Let D = ECh4 − T ,

so D is a chain prime graph. Suppose that H∗ is a thin spider. Since D

is bipartite, then there only exist at most two vertices of H∗ in its clique,

intersecting the set V (D). By definition of thin spider graph, the graph
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H∗[X] (where X are vertices of H∗ that intersect V (D)) is K2 or P3 or

P4. In any case, by the unique representation of the Mahadev and Peled

Theorem (see [6]), we have a contradiction. Note that, by Lemma 2 (iii),

V (D) is not a vertex of H∗. Now, we prove that |V (H∗)| ≥ 11. Note that,

if each vertex of ECh4 is a maximal modular set of H, then we are done.

By contradiction, suppose that a maximal modular set M of H contains

two different vertices of ECh4. We have that V (ECh4) is contained in

M . However, by the Lemma 2 (iii), M is independent, a contradiction.

Hence, H∗ is an enhanced bipartite chain graph with triangle T ∗ : a∗b∗c∗.

Finally, we show that a∗ = {a}, b∗ = {b} and c∗ = {c}. Note that this fact
completes the proof. Clearly, a ∈ a∗, b ∈ b∗ and c ∈ c∗. But N(a) = {b, c},
implying that b∗ = {b} and c∗ = {c}. By contradiction, suppose that there

exists a vertex x ̸= a with x ∈ a∗. Note that x /∈ V (ECh4). So, x ∈ V and

NH(x) = {b, c}, which contradicts the assumption that E1 is a matching.

Therefore, since the ΠGraph Sandwich Problem restricted to forced

matching is NP-complete (see [6]), we are done. 2

5 Conclusion

Analysing the complexity of problems in Figure 1, there is evidence that

most of the corresponding problems are hard.
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