
Matemática Contemporânea, Vol. 45, 97–105

http://doi.org/10.21711/231766362017/rmc4511

©2017, Sociedade Brasileira de Matemática

On the problem of finding all minimum

spanning trees

João Guilherme Martinez Rosiane de Freitas

Altigran Silva

Abstract

Aminimum spanning tree is a subgraph of an undirected weighted

graph that still connects all the vertices, has no cycles and has min-

imum total weight. Many efficient algorithms are known to solve

the problem of determining a single best solution to the problem,

such as Prim’s and Kruskal’s algorithms. However, the problem of

enumerating all the minimum spanning trees of a graph is an NP-

hard problem, it has great theoretical and practical importance, but

there are few algorithms to solve it. In this work, we analyze these

algorithms and their properties and we make a comparison with the

use of experiments. Such algorithms were analyzed according to

their theoretical properties, computational complexity and imple-

mentation details, and a comparative analysis was performed using

general and specific graph class instances.

1 Introduction

Let G be an undirected weighted graph with n vertices and m edges.

We say that T is a spanning tree of G if it is a subgraph from G that con-

2000 AMS Subject Classification: 68R10, 68R15.

Key Words and Phrases: minimum spanning trees, graphs, algorithms.

http://doi.org/10.21711/231766362017/rmc4511


98 J. G. Martinez, R. de Freitas and A. Silva

nects all vertices and does not contain a cycle. T is a minimum spanning

tree (MST) if the total weight of its edges is minimal. The problem has

optimal substructure and it can be solved by greedy algorithms in almost

linear time O(m+n log n) if used along with efficient data structures such

as Fibonacci heaps [FT87]. However, the problem then becomes exponen-

tial to enumerate all possible MSTs, as for example in complete equal edge

weight graphs. Cayley [Cay89] has proved that the number of trees gen-

erated is nn−2. Figure 1 shows an example graph and all of its spanning

trees.

Figure 1: (a) Example G graph. (b) All STs of G with the MSTs framed.

Our work consists of a theoretical and empirical analysis on the main

algorithms of the literature to solve the problem of finding all minimum

spanning trees. We also verified the behavior of such algorithms in differ-

ent graph classes.

2 Implemented algorithms

Let us first consider N as the number of spanning trees (ST) of a graph

G, and K as the number of minimum spanning trees of the same graph.

The works from Gabow &Myers, Matsui, Kapoor & Ramesh, Shioura &

Tamura provide algorithms for enumerating all spanning trees of a graph

([GM78],[Mat97],[KR95],[ST95]). These algorithms could be used as a

solution to the MST enumeration problem in such a way that the non-

minimum trees could be discarded at the end and only the minimum ones

would remain. However, this strategy would demand a high unnecessary

computational cost considering that N can be much greater than K. The

algorithm proposed by Sörensen & Janssens is slightly different from the



On the problem of finding all minimum spanning trees 99

others because it outputs the trees in increasing order, which could be a

more elegant solution with smaller cost considering that we could stop the

enumeration as soon as the cost of the current tree gets bigger than the

previous one [SJ05].

Some of the few papers that present algorithms to solve the mini-

mum spanning trees enumeration problems ([Epp95],[YKW10],[Wri00])

have much better time complexity bounds comparing to the ones that

generate only spanning trees as we can see in Table 1. These algorithms

are described below.

Table 1: Algorithms for enumerating STs and MSTs and their complexi-

ties.

Algorithm Year Return Time Complexity

Gabow & Myers 1978 All STs O(n+m+N.n)

Matsui 1997 All STs O(n+m+N.n)

Kapoor & Ramesh 1995 All STs O(n+m+N)

Shioura & Tamura 1995 All STs O(n+m+N)

Sörensen & Janssens 2005 All STs (in order) O(N.m logm+N2)

Wright 2000 All MSTs undefined in original paper

Yamada, Kataoka & Watanabe 2010 All MSTs O(K.m log n)

Eppstein 1995 All MSTs O(m+ n log n+K)

2.1 Yamada, Kataoka and Watanabe’s algorithm

Three algorithms are proposed in the paper from Yamada, Kataoka

& Watanabe [YKW10], but in our paper we have implemented only the

second one. The algorithm uses a combinatorial optimization framework

for solving enumerating problems. It considers two edge sets, F as the

fixed edges that must be in the current tree and R as the restricted edges

that cannot be in the current tree.

Let T0 be an MST from G, and e ∈ T0, deleting e from T0 splits the

tree into two connected components V1 and V2, so define Cut(e) as the set

of edges that can substitute e and reconnect V1 and V2, and S(e) := {ẽ ∈



100 J. G. Martinez, R. de Freitas and A. Silva

Cut(e) | ẽ ̸= e, w(ẽ) = w(e)}. The algorithm is described in details in the

original paper and has time complexity O(mnK).

2.2 Wright’s algorithm

Let T0 be an arbitrary minimum spanning tree from G, and consider f

as an edge in G that is not in T0. Wright proves that an edge f = (u, v)

is part of some MST, if and only if there is an edge e in the path from u

to v in T0 with w(e) = w(f) [Wri00]. This theorem is used in all other

MSTs enumeration algorithms.

For the algorithm, the author defines class [e] as the set of edges that

can replace e; i([e]) as the number of edges in [e] which must be included

in every MST; and c([e]) as the number of possible choices for [e]. For

example, if we consider [e] with 4 edges and i([e]) = 2 than we will have

6 subsets of size 2 as c([e]) =
(
4
2

)
= 6.

The algorithm proposed in the paper works as follows: first it takes an

MST T0 from G as an input and delete all electable edges from G. Then

it determines the classes [e] and i([e]) by inspection in T0 and the choices

of each class. Finally, it combines theses choices, one from each class, to

produce all MSTs from G. Each choice is then evaluated to be suitable

by checking if the graph is both acyclic and connected.

The original paper doesn’t define the time complexity of the algorithm,

but here we make a simple analysis. Lets consider S as the number of

subsets formed by the classes and C as the total number of arbitrary

combinations of choices, one from each class. We can retrieve all non-

MST edges in O(m) time, get the classes of edges in O(mn), form the

subsets of classes in O(S) and generate and check each tree in O(Cn).

However, we can easily see that C ≫ S and C ≥ K, so replacing S by C

we have O(mn+ Cn).



On the problem of finding all minimum spanning trees 101

2.3 Eppstein’s algorithm

The algorithm proposed by Eppstein [Epp95] has the best time com-

plexity so far but it presents much more complex steps. Its main idea is to

form an equivalent graph (EG) from G by performing sliding operations

in a way that all spanning trees of EG are equivalent one to one with

all MSTs of G. A sliding operation is defined as follows: consider edges

e = (u, v) and f = (v, w) that share a common vertex v, and suppose

that w(e) < w(f); to perform a sliding operation we remove f(v, w) and

insert f ′(u,w) with the same weight as f ; this operation is only done if

w(e) < w(f).

To form EG, choose a vertex to be the root of T0 and repeatedly perform

sliding operations through edges e and f as long as e ∈ T0 and u is closer

to the root of T0 than v. Implemented directly this takes O(mn), however,

Eppstein presents a technique to achieve O(m log n) time. To do this, for

any edge e from T0, define the heavy ancestor of e to be the first edge

on the path from e to the root having weight greater than that of e. If

we slide each T0 edge directly with its heavy ancestor, time complexity is

reduced [Epp95]. Algorithm 1 presents the pseudocode.

Algorithm 1: Sliding(G,u,ℓ,root)

mark u as visited;

for each vertex v adjacent to u do

if v is unvisited then

if u = root then

A[0] = Edge(u, v, cost(u, v));

Sliding(G,v,0,root);

SlideChildren(u,v,0);

else

ℓ′ ← BinSearch(A,cost(u, v),0,ℓ);

Edge e = A[ℓ′];

A[ℓ′] = Edge(u, v, cost(u, v));

Sliding(G,v,ℓ′,root);

SlideChildren(u,v,ℓ′);

A[ℓ′] = e;

Before the sliding operations, all non-MST edges must be removed from



102 J. G. Martinez, R. de Freitas and A. Silva

G. The algorithm proposed by Bazlamacci & Hindi [BH97] can perform

this in O(m) time by creating a full branching-tree BT corresponding to

T0 to make use of the following property: The largest edge weight from x

to y in T0 is the same largest edge weight from x to y in BT . Along with

that, we can use the algorithm from Schieber & Vishkin [SV88] to retrieve

the lowest common ancestor (lca) between any two vertices on BT which

allow us to get the heaviest edge by comparing the heaviest one from u to

lca(u, v) and the heaviest one from v to lca(u, v).

After EG is built, Eppstein suggests the algorithm from Kapoor &

Ramesh [KR95] to retrieve all spanning trees from EG, which corresponds

to the MSTs of G. However, it is a complex algorithm, so we decided to

implement the algorithm from Shioura & Tamura [ST95] that has the

same time complexity but much simpler description. Combining all the

previous steps, the total time complexity is O(m+ n log n+K).

3 Comparative computational experiments

The algorithms were implemented in C++1 and the experiments were

executed on an Intel i5, 8GB RAM, Ubuntu 16.04 64 bits machine and

based on the experiments from Yamada, Kataoka & Watanabe [YKW10].

We used complete and arbitrary random graphs, but in the random ones

we used a fixed amount of edges (m = 3n). About the edge weight distri-

bution, the experiments were divided in two categories: equal edge weight

graphs and random edge weight graphs varying randomly between [1, 10L]

(for L = 2 and L = 3).

4 Concluding remarks

By the analysis of the experimental results we could confirm that Epp-

stein’s algorithm [Epp95] has the best performance for all graph classes,

although it is more complex than the others. It is possible to notice that

1Code available at: http://home.ufam.edu.br/joao/msts.zip



On the problem of finding all minimum spanning trees 103

for equal weight edge graphs, Wright’s algorithm [Wri00] is slower than the

one from Yamada, Kataoka & Watanabe [YKW10], most likely because

of the high number of combination choices made. We have also confirmed

Cayley’s formula for complete graphs with equal weight edges, as shown

in Table 2a.

Table 2: Comparative results using the execution time of the algorithms

for some graph classes in seconds.

Graph MSTs Wright YKW Eppstein

K5 125 0,003 0,002 0,000

K6 1269 0,054 0,029 0,006

K7 16807 1,188 0,434 0,082

K8 262144 31,002 7,5482 1,335

K9 4782969 960,126 152,972 23,957

K10 100000000 * 3541,48 502,631

(a) Results for complete graphs with the

same weight. * huge execution time.

L Vertices MSTs Wright YKW Eppstein

2

200 16 0,078 0,087 0,011

400 48 0,350 1,720 0,026

600 2048 6,467 76,091 0,042

800 6144 23,276 230,59 0,06

3

200 1 0,065 0,051 0,011

400 1 0,269 0,051 0,011

600 2 0,614 0,755 0,042

800 2 1,116 1,429 0,061

(b) Results for arbitrary graphs with

m = 3n with random weight edges.

L Graph MSTs Wright YKW Eppstein

2

K20 4 0,004 0,001 0,001

K40 120 0,046 0,056 0,006

K60 176580 69,633 209,633 0,077

K80 5971968 * 4218,73 0,167

3

K20 1 0,003 0,000 0,001

K40 1 0,030 0,003 0,006

K60 12 0,102 0,039 0,014

K80 2 0,234 0,016 0,024

K100 6 0,473 0,050 0,039

K120 8 0,816 0,169 0,057

K140 256 1,432 3,992 0,081

K160 1152 2,681 8,282 0,104

K180 208 2,902 1,940 0,133

K200 1152 4,830 16,314 0,167

(c) Results for complete graphs with ran-

dom weight edges. * huge execution

time.

Finding all MSTs is not trivial as the number of solutions (K) can be

exponential. As ongoing work, we are working in an algorithm that mixes

characteristics of Eppstein’s and YKM’s algorithms, in order to guarantee

a competitive performance but having the most complex step simplified.



104 J. G. Martinez, R. de Freitas and A. Silva

References

[BH97] C. F. Bazlamacci and K. S. Hindi. Verifying minimum spanning

trees in linear time. In Symposium on Operations Research,

pages 139–144, Heidelberg, September 1997. Springer-Verlag.

[Cay89] Arthur Cayley. A theorem on trees. Quart. J. Math, pages

376–378, 1889.

[Epp95] David Eppstein. Representing all minimum spanning trees with

applications to counting and generation. Technical Report 95-

50, Univ. of California, Irvine, Dept. of Information and Com-

puter Science, Irvine, CA, 92697-3425, USA, 1995.

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps

and their uses in improved network optimization algorithms. J.

ACM, 34(3):596–615, July 1987.

[GM78] Harold N. Gabow and Eugene W. Myers. Finding All Spanning

Trees of Directed and Undirected Graphs. SIAM Journal on

Computing, 7(3):280–287, August 1978.

[KR95] Sanjiv Kapoor and H. Ramesh. Algorithms for enumerating

all spanning trees ofundirected and weighted graphs. SIAM J.

Comput., 24(2):247–265, April 1995.

[Mat97] T. Matsui. A Flexible Algorithm for Generating All the Span-

ning Trees in Undirected Graphs. Algorithmica, 18(4):530–543,

August 1997.

[SJ05] Kenneth Sorensen and Gerrit K. Janssens. An algorithm to

generate all spanning trees of a graph in order of increasing

cost. Pesquisa Operacional, 25:219 – 229, 08 2005.

[ST95] Akiyoshi Shioura and Akihisa Tamura. Efficiently scanning all

spanning trees of an undirected graph. J. Operation Research

Society Japan, 38:331–344, 1995.



On the problem of finding all minimum spanning trees 105

[SV88] Baruch Schieber and Uzi Vishkin. On finding lowest common

ancestors: Simplification and parallelization. In AWOC, vol-

ume 319 of Lecture Notes in Computer Science, pages 111–123.

Springer, 1988.

[Wri00] Perrin Wright. Counting and constructing minimal spanning

trees, 2000.

[YKW10] Takeo Yamada, Seiji Kataoka, and Kohtaro Watanabe. Listing

all the minimum spanning trees in an undirected graph. Int. J.

Comput. Math., 87(14):3175–3185, 2010.

João Guilherme Martinez

PPGI/IComp-UFAM

Manaus - Amazonas, Brazil

joaogam@icomp.ufam.edu.br

Rosiane de Freitas

PPGI/IComp - UFAM

Manaus - Amazonas, Brazil

rosiane@icomp.ufam.edu.br

Altigran Silva

PPGI/IComp - UFAM

Manaus - Amazonas, Brazil

alti@icomp.ufam.edu.br


	Introduction
	Implemented algorithms
	Yamada, Kataoka and Watanabe's algorithm
	Wright's algorithm
	Eppstein's algorithm

	Comparative computational experiments
	Concluding remarks

