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End vertices in containment interval

graphs

Liliana Alcon® Noemi Gudino
Marisa Gutierrez®

Abstract

An interval containment model of a graph maps vertices into
intervals of a line in such a way that two vertices are adjacent if
and only if the corresponding intervals are comparable under the
inclusion relation. Graphs admitting an interval containment model
are called containment interval graphs or CI graphs for short. A
vertex v of a C'I graph G is an end-vertex if there is an interval
containment model of G in which the left endpoint of the interval
corresponding to v is less than all other endpoints. In this work,
we present a characterization of end-vertices in terms of forbidden

induced subgraphs.

1 Introduction and previous results

A graph G is a containment graph of intervals (or C1 for short) if there
is a collection of intervals of the real line (Iy),ev (@) satisfying that uw

is an edge of G if and only if I, C I, or I, C I; the collection is called
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a CI model of G. Without loss of generality, it can be assumed that the

intervals of a C'I model are closed, with positive length and no two have
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Figure 1: These graphs, together with the complement of the graphs in
Figure 2, constitute a minimal family of forbidden induced subgraphs for

comparability graphs.

a same endpoint [5, 8]. Let [, and r,, denote, respectively, the left and
the right endpoint of the interval I,,. A vertex v is an end-verter of G if
there exists a C'I model of G where [, < l,, for every w € V(G) — {v}.

In this paper, we describe end-vertices of C'I graphs using a self - com-
plementary family of forbidden induced subgraphs. In addition, in Section
3, homogeneously representable C'I graphs (all vertices are end-vertices)
are characterized by a simple finite family of forbidden induced subgraphs.

A transitive orientation ﬁ of a graph G is an assignment of one of the
two possible directions, u or @, to each edge uw € E(G), such that
if ub e ﬁ and 70 € E then b € ﬁ Graphs admitting a transitive
orientation are called comparability graphs [5, 8].

Next theorem, due to Gallai, provides a characterization of compara-
bility graphs in terms of forbidden induced subgraphs. The complement
of a graph G is the graph G = (V(G), E(G)) such that wv € E(G) if and
only if wv ¢ E(G).

Theorem 1 ([3]). A graph G is a comparability graph if and only if G

contains none of the graphs depicted in Figure 1, nor the complement of
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those in Figure 2, as induced subgraphs.

A vertex v of a comparability graph G is a sink (respectively, a source)
if there exists a transitive orientation B of G such that ¢ E (wb ¢ E)
for all w € V(G). Olariu and Gimbel, almost simultaneously, obtained
a characterization of sinks in terms of forbidden induced subgraphs as

follows.

Theorem 2 ([4, 6]). Let G be a comparability graph. A vertex v of G is
a sink if and only if G contains none of the graphs A, B, C, Dogy1 with
k> 2, E, withn > 3, in Figure 3, with v as the designated vertex.

C1 graphs have been widely studied and characterized in different ways.
For instance, they are co-comparability graphs, and in [1, 8] is showed the
relationship between CI graphs and the partially ordered sets (or posets)
of dimension at most 2. Given a poset P = (V, <), the comparability
graph of P is Gp = (V,E) with £ = {ww:u <vorv <win P}. The
dimension of a poset P is the minimal number of linear extension of P
whose intersection is P [1]. The CT graphs are exactly the comparability

graphs of posets with dimension at most 2.

Theorem 3 ([1]). A graph G is CI if and only if G and its complement

G are comparability graphs.

In addition, the class of C'I graphs is equivalent to the class of permu-

tation graphs [2, 7].

2 Characterization of end-vertices of C'I graphs

In the proof of the main Theorem 5, we will use the following two results.

Remark 1 ([1]). Ifﬁ s a transitive orientation of a CI graph G then
there exists a CI model (Iy)wev(q) of G compatible with E; ie. for each
pair of vertices u,w € V(G), I, C I, if and only if b € E
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Figure 2: The complement of these graphs, together with the graphs in
Figure 1, constitute a minimal family of forbidden induced subgraphs for

comparability graphs.
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Given a CI model of a graph G, the right set R, of a vertex v € V(G)
is {w : ly < ry <ry}; and the left set Ly, is {w : I, <1, < 1y} Clearly, if

w € R, N Ly, then I, C I, and, consequently, w is adjacent to v.

Lemma 4. Let (I,,)o<i<k be a CI model of a chordless path P = [vgvy . . . vg]
with k > 2. If I,,, C I, then exactly one of the following statements holds:
(i) v2 € Ry, and 1y, < 14, for 2 < i < k. (ii) va € Ly, and l,, < ly, for
2<1<k.

Proof. We proceed by induction. The proposition holds trivially when
k = 2. Let kK > 2 and assume [,,, C [,,,. Since vq is adjacent to v; and
nonadjacent to vg, we have that vy € Ry, \ Ly, or va € Ly, \ Ry,-

Assume, w.l.g., that vo € R,,. Thus, ry, <1y, for 2 <i¢ <k —1. To
complete the proof, we will show that r,, < 7,.

Since vy, is adjacent to vi_1, it follows that I, , C I, or I, C I, .
In the former case, it is clear that r,, < 7,,_, < 7. Thus, assume
I, C I,, ,;and,in order to derive a contradiction, suppose that r,, < 7.

Since 1y, < 1y, _, and vi_1 is not adjacent to vg, we have that l,,, <1, .
Therefore l,, < l,, , < l,, and so I,, C I,,, which contradicts the fact

that vy and vy are nonadjacent. |

Theorem 5. Let G be a connected CI graph. A vertex z is an end-vertex
of G if and only if G contains none of the graphs A, A, B, B, C, C,
Doji1, Dopr1, E3, Eop, Eoi, for k > 2, as induced subgraphs with z as
the vertex highlighted in Figure 3.

Proof. Let (Iy)wev(q) be a CI model of G with [, < [, for all w €
V(G) — {z}. Let E be the orientation of G obtained by orienting u to v
(wb) whenever I, C I,. Recall that two vertices are adjacent if and only
if the interval corresponding to one of them is contained in the interval
corresponding to the other. Clearly, E is a transitive orientation of G and
z is a sink; thus, by Theorem 2, G does not contain the graphs A, B, C,
Doy 1 with & > 2 and E,, with n > 3 as induced subgraph with z as the
designated vertex. Observe that E3 = Es.
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Figure 3: The highlighted vertices in the graphs A, B, C, Dspy1 with
k > 2, E, with n > 3, cannot be a sink of a comparability graph. The
highlighted vertices in the graphs A, A, B, B, C, C, Dajy1, Dary1, E3,
Esy., Eoy, for k> 2, cannot be an end-vertex of a CI graph.
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Let H be any induced subgraph of G containing vertex z. Denote by
H' the graph H plus a vertex 2’ adjacent to z, that is, H' = (V(H) U
2/, E(H) U z'z) and denote by H” the graph H’ plus a vertex 2z adjacent
to 2/, that is, H" = (V(H")U 2", E(H) U 2"2"). We claim that H" and
H" are CI graphs .

Indeed, C'I models of H' and H" can be obtained by adding to (Iw)wev (#)
the intervals I, = [l, + €1, + 2¢] and I.» = [l, — €,1; + 3¢] with € small
enough.

Now, in order to derive a contradiction, assume that H is any one of
the graphs A, B, C, Dogi1, Eor, with & > 2, and z is the vertex of
H highlighted in Figure 3. Notice that (A4)” = (B)’ = T in Figure 2;

(C) = M in Figure 2; (Dogy1)" = Jor11 in Figure 1 and Egy" = Nogqq in
Figure 2.

Thus, by the previous claim (2), these graphs are C'I, which contradicts
the fact that neither the graphs depicted in Figures 1 and 2 nor their
complements are C'I graphs.

To prove the converse, notice first that, by Theorem 2, the vertex z
must be a sink of G, which means there exists a transitive orientation ﬁ
of G in which all edges incident in z are oriented towards z.

Let G’ be the graph G plus a pendent vertex 2’ adjacent to z. Since a
transitive orientation E’ of G’ can be obtained adding z’—>z to E, it follows
that G’ is a comparability graph and z is a sink of G’.

Assume, in order to derive a contradiction, that G’ is not CI. Thus,
G’ contains an induced subgraph H which is either a graph in Figure 2 or
the complement of a graph in Figure 1; even more, H must contain 2’, so
H must have a vertex of degree one and z must be the only neighbor of
that vertex.

An inspection of those figures reveals that H has to be one of the graphs
T,S, M, G1, Gy, Gg or N, for some n > 4, in Figure 2; or the complement
of the graph Joy41 for some k > 2 in Figure 1. In the following paragraph,
we will show that each case implies a contradiction, therefore G’ is a CT

graph.
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*If H is any one of the graphs S, G1, G2 or G3, then G contains the
graph A in Figure 3 with z as the highlighted vertex.

*If H is the graph 7', then G contains the graph B in Figure 3 with z
as the highlighted vertex.

*If H is the graph M, then we have to consider two cases depending on
which vertex of degree one is z’: its neighbor z is adjacent to two vertices
with degree 3, or its neighbor z is adjacent to a vertex with degree 3 and
other with degree 2. In the first case, G contains the graph A in Figure 3
with z as the highlighted vertex; and, in the latter, G contains the graph
C in Figure 3 with z as the highlighted vertex.

*If H is the graph Ny, then G contains the graph E3 in Figure 3 with
z as the highlighted vertex.

* If H is the graph N, for some n > 4, then, again, we consider two
cases depending on which vertex of degree one is 2: if 2’ is the vertex
labelled 1 (or n) then G contains the graphs F,,_; and D, _; in Figure 3
with z as the highlighted vertex. Notice that E,_1 is forbidden when n
is odd and D,,_; is forbidden when n is even. If 2z’ is neither the vertex
labelled 1 nor the vertex labelled n, then G contains the graph A in Figure
3 with z as the highlighted vertex.

Thus, we have proved that G’ is g] . By Remirk 1, there exist a C'I
model (I)yev(ary compatible with £, i.e. ut € E" implies I, C I,.

Clearly, if I, is an end interval in this model, the vertex z is an end-
vertex of GG, and the proof follows.

So, we assume that the left set L, and the right set R, of z are non
empty. The fact that z is the only neighbor of 2’ implies L, N R, = 0.
Let x be a vertex of L, minimizing the distance to z in G'; and P,, =
[vo = z,v1,v2,...v5_1, v = ] be a shortest path joining z with z. Since z
is a sink, we have that 0nte ﬁ , which implies that I,,, C I,. Therefore,
by Lemma 4, v2 € R, and r, < r,, for every i, or v € L, and [,, < [, for
every i. Since vy = x € L,, the former is not possible; thus, vy € L, which
implies k£ = 2 and the existence of the induced path [z, v1, x]. Analogously,

there exist vertices v and y € R, inducing the path [z, v}, y].
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The proof will be complete showing that the concatenation of both
paths induces the graph A with z as the highlighted vertex.

Clearly, x and y are non-adjacent. We claim that x is non-adjacent to
v]. Indeed, if 2 is adjacent to v}, we have that Ty, < rz; on the other hand,
since 2z’ has degree 1 and I, C I, it follows that 7, < r,, and I, < ly.
Therefore, I,y <1y <l <ry <ry <ry which implies I, C I/, contrary
to the fact that 2’ is adjacent only to z. Analogously, ¥y is non-adjacent to
V1. [ |

As a consequence of Theorems 2 and 5, we have the following result.

Corollary 6. Let G be a CI graph. A vertex z is an end-verter of G if
and only if z is a sink of G and G.

3 Characterization of '/ homogeneously repre-

sentable graphs

A C1T graph G is homogeneously representable if every one of its vertices

is an end-vertex.

Theorem 7. Let G be CI. The graph G is homogeneously representable
if and only if it contains none of the graphs A, A, C, C, E3, depicted in

Figure 3, as induced subgraphs.

Proof. 1t is a straightforward consequence of Theorem 5 and the facts: A
is an induced subgraph of B and of Dgjy1, for k > 2; and E3 is an induced
subgraph of Fop, for k > 2. [ |

In the previous theorem, the condition that G is a CI graph can be
relaxed by adding C5 to the family of forbidden induced subgraph.

Theorem 8. A graph G is CI homogeneously representable if and only if
it contains none of the graphs Cs, A, A, C, C, Es, depicted in Figure 3,

as induced subgraphs.
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Proof. The direct implication follows from Theorem 7 and the fact that

C5 is not a comparability graph.

To prove the converse, keep in mind that the graphs depicted in Figures

1 and 2 and their complements are a family of forbidden induced subgraphs

of a CI graph; and notice that C5 and E3 are self-complementary. |

References

1]

8]

B. Dushnik, E. Miller, Partially ordered sets, Amer. J. Math. 63, pp.
600610, (1941).

S. Even, A. Pnueli, A. Lempel Permutation graphs and transitive
graphs, J. ACM 19, pp. 400410, (1972).

T. Gallai, Transitiv Orientierbare Graphen, Acta. Math. Hungar. 18,
pp. 25-66, (1967).

J. Gimbel, Source in posets and comparability graphs, Order 9, pp.
361-365,(1992).

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Aca-
demic Press, (1980).

S. Olariu, On source in comparability graphs, with applications, Dis-
crete Mathematics, pp. 289-292, (1992).

A. Pnueli, A. Lempel, S. Even, Transitive orientation of graphs and
identification of permutation graphs, Canad. J. Math. 23, pp. 160—
175, (1971).

W.T. Trotter, Combinatorics and parially ordered sets: dimension
theory, The Johns Hopkins University Press, (1992).



96 L. Alcon, N. Gudinio and M. Gutierrez

Liliana Alcon

Mathematics Department, Facultad Ciencias Exactas
Universidad Nacional de La Plata

C.C. 172 La Plata (1900) Argentina

liliana@mate.unlp.edu.ar

Noemi Gudino

Mathematics Department, Facultad Ciencias Exactas
Universidad Nacional de La Plata

CONICET

C.C. 172 La Plata (1900) Argentina

noemigudino@mate.unlp.edu.ar

Marisa Gutierrez

Mathematics Department, Facultad Ciencias Exactas
Universidad Nacional de La Plata

CONICET

C.C. 172 La Plata (1900) Argentina

marisa@mate.unlp.edu.ar



	Introduction and previous results
	Characterization of end-vertices of CI graphs
	Characterization of CI homogeneously representable graphs

