Constructing pairs of Laplacian equienergetic threshold graphs

R. R. Del-Vecchio(
G. B. Pereira
C. T. M. Vinagre©

Abstract

The Laplacian energy of a graph G on n vertices and m edges is defined as the sum of absolute values of the differences between each Laplacian eigenvalue of G and the average degree $2 m / n$. In this work we construct pairs of threshold graphs of same order, with same Laplacian energy and different sets of Laplacian eigenvalues.

1 Introduction

Let G be a simple and undirect graph on vertices v_{1}, \ldots, v_{n}. The Laplacian matrix $L=L(G)$ of G is the $n \times n$ matrix for which the entry $L_{i i}$ is the degree of vertex $v_{i}, 1 \leq i \leq n$, and the entries $L_{i j}$ are -1 , if vertex v_{i} and v_{j} are adjacent in G, and 0 otherwise. The matrix L is symmetric, positive-semidefinite and always has 0 as an eigenvalue. For these and other properties of the L matrix, see [Mer94]. As usual, we denote the L-eigenvalues as $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, where $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}=0$; these real numbers constitute the Laplacian spectrum of G. Two graphs are

[^0]cospectral if they share the same Laplacian spectrum, otherwise they are non-cospectral.

If G has m edges, then $2 m / n$ is its average degree and the Laplacian energy of G is defined as $L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|$. After introduced by Gutman and Zhou in [GZ06], this concept has been extensively investigated. In particular, the problem of constructing families of non-cospectral graphs with same order and equal Laplacian energy (called Laplacianequienergetic graphs or simply L-equienergetic graphs) has already been studied in [Ste09] and [FHT14], but a general characterization remains an open problem.

Our investigation concerns the construction of L-equienergetic threshold graphs.

Threshold graphs were introduced by Chvátal and Hammer [CH77] and independently, by Henderson and Zalcstein [HZ77], in 1977. They constitute an important class of graphs due to their numerous applications in diverse areas. Threshold graphs can be characterized in many ways. In this paper, a threshold graph is obtained through an iterative process which starts with an isolated vertex, and where, at each step, either a new isolated vertex is added, or a vertex adjacent to all previous vertices (dominating vertex) is added. Following this construction, a threshold graph can be represented by a string of $0^{\prime} s$ and $1^{\prime} s$, corresponding respectively to isolated vertices and dominating vertices. The threshold graph constructed in Figure 1 has 0 -1-string ($0,0,0,1,0,0,1$).

Figure 1: Constructing the threshold graph with string $(0,0,0,1,0,0,1)$.
The number of characters 1 in the string (that is, the number of domi-
nating vertices in the graph) is called the trace of the graph and denoted by $T=T(G)$. The dominating vertices with the first vertice inserted in the graph constitute a clique. Thus, the clique number of the graph is equal to $T+1$. For example, the graph in Figure 1 has clique number 3 $(=T+1)$. The other $4(=n-T-1)$ vertices constitute an independent set.

The 0-1-string of a threshold graph also provides its degree sequence $d=\left[d_{1}, d_{2}, \ldots, d_{i}, \ldots, d_{n}\right]$, where $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$. For example, the graph in Figure 1 has degree sequence $[6,4,2,2,2,1,1]$.

The following known result furnishes the sequence of L-eigenvalues of a threshold graph from its degree sequence, showing that all of them are integers.

Theorem 1.1 ([Mer94]). Let G be a threshold graph on n vertices, with trace T and degree sequence $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$ arranged in non increasing order. Then for the Laplacian eigenvalues of G it holds that $\mu_{i}=d_{i}+1$, if $1 \leq i \leq T, \mu_{i}=d_{i+1}$, if $T+1 \leq i \leq n-1$, and $\mu_{n}=0$.

In [VDVJT13], the authors establish an explicit formula to compute the Laplacian energy of threshold graphs satisfying certain hypothesis.

Theorem 1.2 ([VDVJT13]). Let G be a threshold graph on n vertices, m edges and trace T with $3 \leq T \leq n-1$. If the Laplacian eigenvalues of G satisfy $\mu_{T} \geq 2 m / n \geq \mu_{T+1}$ then the Laplacian energy of G is given by

$$
L E(G)=T^{2}+T+\left(1-\frac{2 T}{n}\right) 2 m
$$

2 Families of threshold graphs satisfying conditions of Theorem 1.2

Given integers $n \geq 3$ and $T \geq 1$, the graph on n vertices obtained by attaching $n-T-1$ pendent vertices to the same vertex of the complete graph K_{T+1} is said to be the pineapple on n vertices and trace T and
denoted $P_{n, T}$. Its $0-1$ string is $(0, \underbrace{1,1, \ldots, 1}_{T-1}, \underbrace{0,0, \ldots, 0}_{n-T-1}, 1)$. For fixed n and T, it is the threshold graph with least number of edges. The graph $P_{n, T}$ has degree sequence $[n-1, T(T$ times $), 1((n-T-1)$ times $)], \frac{1}{2}\left(T^{2}+\right.$ $T)+(n-T-1)$ edges and its Laplacian spectrum is $n, T+1((T-1)$ times), $1((n-T-1)$ times $)$ and 0 .

In what follows, n and T are integers such that $4 \leq T \leq n-2$.

2.1 A known family

In [VDVJT13], the authors exhibit a family of threshold graphs satisfying the hypothesis of Theorem 1.2. Denote by $\mathcal{G}_{n, T}$ the family of threshold graphs G_{t} on n vertices and trace T, where $G_{0}=P_{n, T}$ and for $t, 1 \leq t \leq(T-1)(n-T-1), G_{t}$ is obtained from G_{0} by the addition of t edges to specific vertices of G_{0} in such way that the 0 -1-strings of the graphs obtained are:

$$
\begin{gathered}
s_{0}=(0, \underbrace{1, \cdots, 1}_{T-1}, \underbrace{0,0, \cdots, 0}_{n-T-1}, 1) ; s_{1}=(0, \underbrace{1, \cdots, 1}_{T-2}, 0,1,0,0, \cdots, 0,1) ; \\
s_{2}=(0, \underbrace{1, \cdots, 1,0,0,1,0,0, \cdots, 0,1) ; \cdots s_{(n-T-1)}=(0, \underbrace{1, \cdots, 1}_{T-2}, 0,0, \cdots, 0,1,1) ;}_{T-2} \\
s_{(n-T-1)+1}=(0, \underbrace{1, \cdots, 1}_{T-3}, 0,1,0,0, \cdots, 0,1,1) ; \cdots \\
s_{2(n-T-1)}=(0, \underbrace{1, \cdots, 1}_{T-3}, 0, \cdots 0,1,1,1) ; \cdots s_{(T-2)(n-T-1)}=(0,1,0, \cdots, 0 \underbrace{1, \cdots, 1}_{T-2}, 1) ; \\
s_{(T-2)(n-T-1)+1}=(0,0,1,0, \cdots, 0, \underbrace{1, \cdots, 1}_{T-2}, 1) ; \cdots \\
\cdots s_{(T-1)(n-T-1)}=(0, \cdots, 0, \underbrace{1, \cdots, 1}_{T-1}, 1) .
\end{gathered}
$$

In [VDVJT13], conditions on the number of inserted edges t are given in order to identify the graphs G_{t} of $\mathcal{G}_{n, T}$ satisfying the hypothesis of Theorem 1.2. The introduction of the parameters t^{b} and t^{\sharp}, both depending on n and T, provides bounds on t in order to compute the Laplacian energy of these graphs.

Figure 2: The graphs $G_{0}=P_{13,5}, G_{3}$ and G_{9} of family $\mathcal{G}_{13,5}$.

Theorem 2.1 ([VDVJT13]). For fixed n and T, let $t^{b}=\frac{1}{2}(n-T)(T-1)+1$ and $t^{\sharp}=\frac{1}{n-2}\left[(1-n) T^{2}+\left(n^{2}-1\right) T+(3-2 n) n-2\right]$. Thus $1 \leq t^{b} \leq(n-$ $T-1)(T-2) \leq t^{\sharp} \leq(n-T-1)(T-1)$. Furthermore, for each integer $t, 1 \leq t \leq$ $(n-T-1)(T-1)$, if $t \leq t^{b}$ or $t \geq t^{\sharp}$ then $L E\left(G_{t}\right)=T^{2}+T+\left(2-\frac{4 T}{n}\right) m_{t}$, where m_{t} denotes the number of edges of the graph G_{t} of $\mathcal{G}_{n, t}$.

As pointed out in [VDVJT13], at least half of the threshold graphs in $\mathcal{G}_{n, T}$ satisfy the conditions of Theorem 2.1.

2.2 A new family

In this work, we present the construction of another family of threshold graphs for which Theorem 1.2 still holds.

The graphs F_{t} of the family $\mathcal{F}_{n, T}$ have n vertices and trace T. They are also obtained from the pineapple $F_{0}=P_{n, T}$ by the insertion of t edges $(1 \leq$ $t \leq(T-1)(n-T-1))$ in such way theirs respective 0 -1-strings s_{1}, \ldots, s_{t} $\ldots s_{(n-T-1)(T-1)}$ are:

$$
\begin{gathered}
s_{1}=(0, \underbrace{1, \cdots, 1}_{T-2}, 0,1,0, \cdots, 0,1) ; s_{2}=(0, \underbrace{1, \cdots, 1}_{T-3}, 0,1,1,0, \cdots, 0,1) ; \\
s_{3}=(0, \underbrace{1, \cdots, 1}_{T-4}, 0,1,1,1,0, \cdots, 0,1) ; \cdots s_{(T-1)}=(0,0, \underbrace{1, \cdots, 1}_{T-1}, 0, \cdots, 0,1) ; \\
s_{(T-1)+1}=(0,0, \underbrace{1, \cdots, 1}_{T-2}, 0,1,0, \cdots, 0,1) ; s_{(T-1)+2}=(0,0, \underbrace{1, \cdots, 1,}_{T-3} 0,1,1,0, \cdots, 0,1) ; \\
\cdots s_{2(T-1)}=(0,0,0, \underbrace{1, \cdots, 1}_{T-1}, 0, \cdots, 0,1) ; s_{2(T-1)+1}=(0,0,0, \underbrace{1, \cdots, 1}_{T-2}, 0,1,0, \cdots, 0,1) ;
\end{gathered}
$$

$$
\begin{aligned}
& \cdots s_{(n-T-1)(T-1)-1}=(0, \cdots, 0,1,0, \underbrace{1, \cdots, 1}_{T-1}) \cdots \\
& \cdots s_{(n-T-1)(T-1)}=(0, \cdots, 0,1,1,1, \cdots, 1,1)
\end{aligned}
$$

Figure 3: Graphs in family $\mathcal{F}_{8,4}: F_{0}=P_{8,4}, F_{1}, F_{2}, F_{3}, F_{4}$ and F_{9}.
Reasonings analogous to Proposition 2 of [VDVJT13] we can prove that:
Theorem 2.2. For fixed n and T, let $t_{1}=\frac{T(T-1)}{n-2}+1$ and $t_{2}=\frac{1}{2}(n-T)(T-1)+$ $1-\frac{n}{2}$. Thus $1 \leq t_{1} \leq(n-T-1)(T-2) \leq t_{2} \leq(n-T-1)(n-1)$. Furthermore, for all $t, \quad 1 \leq t \leq(n-T-1)(T-1)$, if $1 \leq t \leq t_{1} \quad$ or $t \geq t_{2}$ then $L E\left(F_{t}\right)=T^{2}+T+\left(2-\frac{4 T}{n}\right) m_{t}$, where m_{t} denotes the number of edges of the graph F_{t}.

Proof: Analogously to the proof of Theorem 2.1 (Proposition 2 of [VDVJT13]), the three statements below must be proved:

1. $\mu_{T} \geq \frac{2 m_{t}}{n} ; \forall 1 \leq t \leq(n-T-1)(T-1)$
2. for $1 \leq t \leq(T-2), \mu_{T+1} \leq \frac{2 m_{t}}{n}$ if and only if $t \leq t_{1}$;
3. for $(T-1) \leq t \leq(n-T-1)(T-1), \mu_{T+1} \leq \frac{2 m_{t}}{n}$ if and only if $t \geq t_{2}$.

Numerical experiments show that at least half of the threshold graphs in $\mathcal{F}_{n, T}$ satisfy the conditions of Theorem 2.2 .

3 Constructing pairs of L-equinergetic threshold graphs

Threshold graphs are determined by their L-spectra, that is, if G and H are two L-cospectral threshold graphs then they are isomorphic [Mer94].

In [Ste09], the author constructs large sets of L-equienergetic threshold graphs all of them having equal trace. Pairs of L-equienergetic threshold graphs with different traces are exhibited in [VDVJT13]. In what follows, we present infinite pairs of L-equinergetic threshold graphs.

In the next result, we present pairs of L-equinergetic graphs where both graphs were constructed by the same way although with different traces.

Theorem 3.1. For fixed n and T, let $T^{\prime}=n-T$. For t such that $1 \leq t \leq$ $(n-T-1)(T-1)$, let $s=\left(n-T^{\prime}-1\right)\left(T^{\prime}-1\right)-(t-1)$. If $t \leq t_{1}(T)$ of Theorem 2.2 then $L E\left(F_{t}\right)=L E\left(F_{s}\right)$, where F_{t} belongs to family $\mathcal{F}_{n, T}$ and F_{s} to family $\mathcal{F}_{n, T^{\prime}}$.

Proof: Firstly, we note that F_{t} and F_{s} have different spectra since theirs traces are distinct. By algebraic manipulations it can be verified that if $t \leq t_{1}(T)$ then $s \geq t_{2}\left(T^{\prime}\right)$ and so, $L E\left(F_{t}\right)$ and $L E\left(F_{s}\right)$ can be obtained by Theorem 2.2. Let m_{t} and m_{s} denote the number of edges of F_{t} and of F_{s}, respectively. Then

$$
\begin{gathered}
L E\left(F_{t}\right)=T^{2}+T+\left(1-\frac{2 T}{n}\right) 2 m_{t}= \\
=T^{2}+T+\left(1-\frac{2 T}{n}\right) 2\left(\frac{T(T+1)}{2}+n-T-1+t\right)= \\
=2\left[T^{2}-2 T+n-\frac{T^{2}}{n}(T-1)+(t-1)\left(1-\frac{2 T}{n}\right)\right]
\end{gathered}
$$

Since $\quad 2 m_{s}=2\left(\frac{T^{\prime}\left(T^{\prime}+1\right)}{2}+n-T^{\prime}-1+\left(T^{\prime}-1\right)\left(n-T^{\prime}-1\right)-(t-1)\right)=$

$$
=n^{2}-T^{2}+T-n+2-2 t
$$

then $\left(1-\frac{2 T^{\prime}}{n}\right) 2 m_{s}=\left(\frac{2 T}{n}-1\right)\left(n^{2}-T^{2}+T-n+2-2 t\right)=$ $=T^{2}+2 T n-3 T-n^{2}+n-\frac{2 T^{2}}{n}(T-1)+(t-1)\left(2-\frac{4 T}{n}\right)$. Thus it follows that $L E\left(F_{s}\right)=T^{\prime 2}+T^{\prime}+\left(1-\frac{2 T^{\prime}}{n}\right) 2 m_{s}=2\left[T^{2}-2 T+n-\frac{T^{2}}{n}(T-1)+(t-1)\left(1-\frac{2 T}{n}\right)\right]=L E\left(F_{t}\right)$.

In the sequence, we construct pairs of L-equienergetic graphs where one belongs to family $\mathcal{G}_{n, T}$ and the other, to family $\mathcal{F}_{n, T}$.

Theorem 3.2. Consider the parameters t^{b}, t^{\sharp} of Theorems 2.1 and t_{1} and t_{2} of Theorem 2.2. For all integer t with $1 \leq t \leq(n-T-1)(T-1)$, if $t \leq \min \left\{t^{b}, t_{1}\right\}$ or $t \geq \max \left\{t^{\sharp}, t_{2}\right\}$ then the graphs G_{t} in family $\mathcal{G}_{n, T}$ and F_{t} in family $\mathcal{F}_{n, T}$ are L-equinergetic.

Proof: As the graphs G_{t} and F_{t} have the same trace and same order n, the assertion follows from Theorems 2.1 and 2.2, since $L E\left(G_{t}\right)=T^{2}+T+\left(1-\frac{2 T}{n}\right) 2 m_{t}$ and $L E\left(F_{t}\right)=T^{2}+T+\left(1-\frac{2 T}{n}\right) 2 m_{t}^{\prime}$. The constructions of the families guarantee that they have the same number of edges $\left(m_{t}=m_{t}^{\prime}\right)$ and different spectra.

The next corollary provides four non-isomorphic threshold graphs with same Laplacian energy.

Corollary 3.1. Consider the parameters t^{b} and t_{1} of Theorems 2.1 and of Theorem 2.2, respectively. For all integer t with $1 \leq t \leq(n-T-1)(T-1)$, if $t \leq \min \left\{t^{b}, t_{1}\right\}$ then the graphs G_{t} in family $\mathcal{G}_{n, T}, G_{s}$ in family $\mathcal{G}_{n, T^{\prime}}, F_{t}$ in family $\mathcal{F}_{n, T}$ and F_{s} in family $\mathcal{F}_{n, T^{\prime}}$ are L-equinergetic, where $T^{\prime}=n-T$ and $s=\left(n-T^{\prime}-1\right)\left(T^{\prime}-1\right)-(t-1)$.

Proof: As in Theorem 3.1, manipulating algebraically some inequalities, we verify that if $t \leq t_{1}(T)$ then $s \geq t^{\sharp}\left(T^{\prime}\right)$. In addition, by the proof of Theorem 3.1, we have $s \geq t_{2}\left(T^{\prime}\right)$. Then Theorem 3.2 assures that the graphs G_{s} and F_{s}, of families $\mathcal{G}_{n, T^{\prime}}$ and $\mathcal{F}_{n, T^{\prime}}$, respectively, are L-equienergetic. But from Theorem 3.1, we know that $L E\left(F_{s}\right)=L E\left(F_{t}\right)\left(F_{t}\right.$ graph in family $\left.\mathcal{F}_{n, T}\right)$. By using again Theorem 3.2, we obtain $L E\left(F_{t}\right)=L E\left(G_{t}\right)$ (G_{t} graph of $\mathcal{G}_{n, T}$), finally proving that $L E\left(G_{s}\right)=L E\left(F_{s}\right)=L E\left(F_{t}\right)=L E\left(G_{t}\right)$.

Example 1. Considering $n=12$ and $T=7$ we have $T^{\prime}=5$. Taking $t=4$ we have $L E\left(G_{4}\right)=L E\left(F_{4}\right)=L E\left(F_{21}\right)=L E\left(G_{21}\right)=44$, where $G_{4} \in \mathcal{G}_{12,7}$, $F_{4} \in \mathcal{F}_{12,7}, F_{21} \in \mathcal{F}_{12,5}$ and $G_{21} \in \mathcal{G}_{12,5}$.

Figure 4: $G_{4}, F_{4}, G_{21}, F_{21}$ with $L E\left(G_{4}\right)=L E\left(F_{4}\right)=L E\left(F_{21}\right)=L E\left(G_{21}\right)=44$.

References

[CH77] Václav Chvátal and Peter L. Hammer, Aggregation of inequalities in integer programming, Studies in integer programming (Proc. Workshop, Bonn, 1975), Ann. of Discrete Math., vol. 1, North-Holland, Amsterdam, 1977, pp. 145-162. MR 0479384
[FHT14] Eliseu Fritscher, Carlos Hoppen, and Vilmar Trevisan, Unicyclic graphs with equal Laplacian energy, Linear Multilinear Algebra 62 (2014), no. 2, 180-194. MR 3175407
[GZ06] Ivan Gutman and Bo Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006), no. 1, 29-37. MR 2209232
[HZ77] Peter B. Henderson and Yechezkel Zalcstein, A graph-theoretic characterization of the $P V_{\text {chunk }}$ class of synchronizing primitives, SIAM J. Comput. 6 (1977), no. 1, 88-108. MR 0488948
[Mer94] Russell Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl. 199 (1994), 381-389. MR 1274427
[Ste09] Dragan Stevanović, Large sets of noncospectral graphs with equal Laplacian energy, MATCH Commun. Math. Comput. Chem. 61 (2009), no. 2, 463-470. MR 2501828
[VDVJT13] Cybele T. M. Vinagre, Renata R. Del-Vecchio, Dagoberto A. R. Justo, and Vilmar Trevisan, Maximum Laplacian energy among threshold graphs, Linear Algebra Appl. 439 (2013), no. 5, 1479-1495. MR 3067817

R. R. Del-Vecchio
Instituto de Matemática e Estatística da UFF
Niterói, Rio de Janeiro, Brasil renata@vm.uff.br
C. T. M. Vinagre
Instituto de Matemática e Estatística da UFF
Niterói, Rio de Janeiro, Brasil
cybl@vm.uff.br

G. B. Pereira
Instituto de Matemática e Estatística da UFF
Niterói, Rio de Janeiro, Brasil guilhermekbp@gmail.com

[^0]: 2000 AMS Subject Classification: : 05C50 and 05C69.
 Key Words and Phrases: Laplacian energy of graph, threshold graph.
 The first author was partially supported by CNPq.

