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Abstract

The Laplacian energy of a graph G on n vertices and m edges

is defined as the sum of absolute values of the differences between

each Laplacian eigenvalue of G and the average degree 2m/n. In

this work we construct pairs of threshold graphs of same order, with

same Laplacian energy and different sets of Laplacian eigenvalues.

1 Introduction

Let G be a simple and undirect graph on vertices v1, . . . , vn. The Lapla-

cian matrix L = L(G) of G is the n× n matrix for which the entry Lii is

the degree of vertex vi, 1 ≤ i ≤ n, and the entries Lij are −1, if vertex vi

and vj are adjacent in G, and 0 otherwise. The matrix L is symmetric,

positive-semidefinite and always has 0 as an eigenvalue. For these and

other properties of the L matrix, see [Mer94]. As usual, we denote the

L-eigenvalues as µ1, µ2, . . . , µn, where µ1 ≥ µ2 ≥ . . . ≥ µn = 0; these

real numbers constitute the Laplacian spectrum of G. Two graphs are
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cospectral if they share the same Laplacian spectrum, otherwise they are

non-cospectral.

If G has m edges, then 2m/n is its average degree and the Laplacian

energy of G is defined as LE(G) =

n∑
i=1

∣∣∣∣µi −
2m

n

∣∣∣∣. After introduced by

Gutman and Zhou in [GZ06], this concept has been extensively investi-

gated. In particular, the problem of constructing families of non-cospectral

graphs with same order and equal Laplacian energy (called Laplacian-

equienergetic graphs or simply L-equienergetic graphs) has already been

studied in [Ste09] and [FHT14], but a general characterization remains an

open problem.

Our investigation concerns the construction of L-equienergetic threshold

graphs.

Threshold graphs were introduced by Chvátal and Hammer [CH77] and

independently, by Henderson and Zalcstein [HZ77], in 1977. They con-

stitute an important class of graphs due to their numerous applications

in diverse areas. Threshold graphs can be characterized in many ways.

In this paper, a threshold graph is obtained through an iterative process

which starts with an isolated vertex, and where, at each step, either a

new isolated vertex is added, or a vertex adjacent to all previous vertices

(dominating vertex ) is added. Following this construction, a threshold

graph can be represented by a string of 0′s and 1′s, corresponding respec-

tively to isolated vertices and dominating vertices. The threshold graph

constructed in Figure 1 has 0-1-string (0, 0, 0, 1, 0, 0, 1).

Figure 1: Constructing the threshold graph with string (0, 0, 0, 1, 0, 0, 1).

The number of characters 1 in the string (that is, the number of domi-
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nating vertices in the graph) is called the trace of the graph and denoted

by T = T (G). The dominating vertices with the first vertice inserted in

the graph constitute a clique. Thus, the clique number of the graph is

equal to T + 1. For example, the graph in Figure 1 has clique number 3

(= T + 1). The other 4 (= n− T − 1) vertices constitute an independent

set.

The 0-1-string of a threshold graph also provides its degree sequence

d = [d1, d2, . . . , di, . . . , dn], where d1 ≥ d2 ≥ . . . ≥ dn . For example, the

graph in Figure 1 has degree sequence [6, 4, 2, 2, 2, 1, 1].

The following known result furnishes the sequence of L-eigenvalues of

a threshold graph from its degree sequence, showing that all of them are

integers.

Theorem 1.1 ([Mer94]). Let G be a threshold graph on n vertices, with

trace T and degree sequence [d1, d2, . . . , dn] arranged in non increasing

order. Then for the Laplacian eigenvalues of G it holds that µi = di + 1,

if 1 ≤ i ≤ T , µi = di+1, if T + 1 ≤ i ≤ n− 1, and µn = 0.

In [VDVJT13], the authors establish an explicit formula to compute the

Laplacian energy of threshold graphs satisfying certain hypothesis.

Theorem 1.2 ([VDVJT13]). Let G be a threshold graph on n vertices,

m edges and trace T with 3 ≤ T ≤ n− 1. If the Laplacian eigenvalues of

G satisfy µT ≥ 2m/n ≥ µT+1 then the Laplacian energy of G is given by

LE(G) = T 2 + T +

(
1− 2T

n

)
2m.

2 Families of threshold graphs satisfying condi-

tions of Theorem 1.2

Given integers n ≥ 3 and T ≥ 1, the graph on n vertices obtained by

attaching n − T − 1 pendent vertices to the same vertex of the complete

graph KT+1 is said to be the pineapple on n vertices and trace T and
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denoted Pn,T . Its 0-1 string is (0, 1, 1, . . . , 1︸ ︷︷ ︸
T−1

, 0, 0, . . . , 0︸ ︷︷ ︸
n−T−1

, 1). For fixed n

and T , it is the threshold graph with least number of edges. The graph

Pn,T has degree sequence [n−1, T (T times), 1((n− T − 1) times)], 1
2(T

2+

T ) + (n − T − 1) edges and its Laplacian spectrum is n, T + 1 ((T − 1)

times), 1 ((n− T − 1) times) and 0.

In what follows, n and T are integers such that 4 ≤ T ≤ n− 2.

2.1 A known family

In [VDVJT13], the authors exhibit a family of threshold graphs sat-

isfying the hypothesis of Theorem 1.2. Denote by Gn,T the family of

threshold graphs Gt on n vertices and trace T , where G0 = Pn,T and for

t, 1 ≤ t ≤ (T − 1)(n− T − 1), Gt is obtained from G0 by the addition of

t edges to specific vertices of G0 in such way that the 0-1-strings of the

graphs obtained are:

s0 = (0, 1, · · · , 1︸ ︷︷ ︸
T−1

, 0, 0, · · · , 0︸ ︷︷ ︸
n−T−1

, 1); s1 = (0, 1, · · · , 1︸ ︷︷ ︸
T−2

, 0, 1, 0, 0, · · · , 0, 1);

s2 = (0, 1, · · · , 1︸ ︷︷ ︸
T−2

, 0, 0, 1, 0, 0, · · · , 0, 1); · · · s(n−T−1) = (0, 1, · · · , 1︸ ︷︷ ︸
T−2

, 0, 0, · · · , 0, 1, 1);

s(n−T−1)+1 = (0, 1, · · · , 1︸ ︷︷ ︸
T−3

, 0, 1, 0, 0, · · · , 0, 1, 1); · · ·

s2(n−T−1) = (0, 1, · · · , 1︸ ︷︷ ︸
T−3

, 0, · · · 0, 1, 1, 1); · · · s(T−2)(n−T−1) = (0, 1, 0, · · · , 0 1, · · · , 1︸ ︷︷ ︸
T−2

, 1);

s(T−2)(n−T−1)+1 = (0, 0, 1, 0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
T−2

, 1); · · ·

· · · s(T−1)(n−T−1) = (0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
T−1

, 1).

In [VDVJT13], conditions on the number of inserted edges t are given in order

to identify the graphs Gt of Gn,T satisfying the hypothesis of Theorem 1.2. The

introduction of the parameters t♭ and t♯, both depending on n and T , provides

bounds on t in order to compute the Laplacian energy of these graphs.
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Figure 2: The graphs G0 = P13,5, G3 and G9 of family G13,5.

Theorem 2.1 ([VDVJT13]). For fixed n and T , let t♭ = 1
2 (n− T )(T − 1) + 1

and t♯ = 1
n−2

[
(1− n)T 2 +(n2 − 1)T + (3− 2n)n− 2

]
. Thus 1 ≤ t♭ ≤ (n −

T −1)(T −2) ≤ t♯ ≤ (n−T −1)(T −1). Furthermore, for each integer t, 1 ≤ t ≤

(n−T −1)(T −1), if t ≤ t♭ or t ≥ t♯ then LE(Gt) = T 2 + T +

(
2− 4T

n

)
mt,

where mt denotes the number of edges of the graph Gt of Gn,t.

As pointed out in [VDVJT13], at least half of the threshold graphs in Gn,T

satisfy the conditions of Theorem 2.1.

2.2 A new family

In this work, we present the construction of another family of threshold graphs

for which Theorem 1.2 still holds.

The graphs Ft of the family Fn,T have n vertices and trace T . They are

also obtained from the pineapple F0 = Pn,T by the insertion of t edges ( 1 ≤
t ≤ (T − 1)(n − T − 1)) in such way theirs respective 0-1-strings s1, . . . , st

. . . s(n−T−1)(T−1) are:

s1 = (0, 1, · · · , 1︸ ︷︷ ︸
T−2

, 0, 1, 0, · · · , 0, 1); s2 = (0, 1, · · · , 1︸ ︷︷ ︸
T−3

, 0, 1, 1, 0, · · · , 0, 1);

s3 = (0, 1, · · · , 1︸ ︷︷ ︸
T−4

, 0, 1, 1, 1, 0, · · · , 0, 1); · · · s(T−1) = (0, 0, 1, · · · , 1︸ ︷︷ ︸
T−1

, 0, · · · , 0, 1);

s(T−1)+1 = (0, 0, 1, · · · , 1︸ ︷︷ ︸
T−2

, 0, 1, 0, · · · , 0, 1); s(T−1)+2 = (0, 0, 1, · · · , 1,︸ ︷︷ ︸
T−3

0, 1, 1, 0, · · · , 0, 1);

· · · s2(T−1) = (0, 0, 0, 1, · · · , 1︸ ︷︷ ︸
T−1

, 0, · · · , 0, 1); s2(T−1)+1 = (0, 0, 0, 1, · · · , 1︸ ︷︷ ︸
T−2

, 0, 1, 0, · · · , 0, 1);
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· · · s(n−T−1)(T−1)−1 = (0, · · · , 0, 1, 0, 1, · · · , 1︸ ︷︷ ︸
T−1

) · · ·

· · · ...s(n−T−1)(T−1) = (0, · · · , 0, 1, 1, 1, · · · , 1, 1)

Figure 3: Graphs in family F8,4: F0 = P8,4, F1, F2, F3, F4 and F9.

Reasonings analogous to Proposition 2 of [VDVJT13] we can prove that:

Theorem 2.2. For fixed n and T , let t1 = T (T−1)
n−2 +1 and t2 = 1

2 (n−T )(T−1)+

1 − n
2 . Thus 1 ≤ t1 ≤ (n − T − 1)(T − 2) ≤ t2 ≤ (n − T − 1)(n − 1).

Furthermore, for all t, 1 ≤ t ≤ (n − T − 1)(T − 1), if 1 ≤ t ≤ t1 or t ≥ t2

then LE(Ft) = T 2 + T +

(
2− 4T

n

)
mt, where mt denotes the number of edges

of the graph Ft.

Proof: Analogously to the proof of Theorem 2.1 (Proposition 2 of [VDVJT13]),

the three statements below must be proved:

1. µT ≥ 2mt

n ;∀1 ≤ t ≤ (n− T − 1)(T − 1)

2. for 1 ≤ t ≤ (T − 2), µT+1 ≤ 2mt

n if and only if t ≤ t1 ;

3. for (T − 1) ≤ t ≤ (n− T − 1)(T − 1), µT+1 ≤ 2mt

n if and only if t ≥ t2.

■

Numerical experiments show that at least half of the threshold graphs in Fn,T

satisfy the conditions of Theorem 2.2.
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3 Constructing pairs of L-equinergetic threshold

graphs

Threshold graphs are determined by their L-spectra, that is, if G and H are

two L-cospectral threshold graphs then they are isomorphic [Mer94].

In [Ste09], the author constructs large sets of L-equienergetic threshold graphs

all of them having equal trace. Pairs of L-equienergetic threshold graphs with

different traces are exhibited in [VDVJT13]. In what follows, we present infinite

pairs of L-equinergetic threshold graphs.

In the next result, we present pairs of L-equinergetic graphs where both graphs

were constructed by the same way although with different traces.

Theorem 3.1. For fixed n and T , let T ′ = n − T . For t such that 1 ≤ t ≤
(n−T − 1)(T − 1), let s = (n−T ′− 1)(T ′− 1)− (t− 1). If t ≤ t1(T ) of Theorem

2.2 then LE(Ft) = LE(Fs), where Ft belongs to family Fn,T and Fs to family

Fn,T ′ .

Proof: Firstly, we note that Ft and Fs have different spectra since theirs traces

are distinct. By algebraic manipulations it can be verified that if t ≤ t1(T ) then

s ≥ t2(T
′) and so, LE(Ft) and LE(Fs) can be obtained by Theorem 2.2. Let mt

and ms denote the number of edges of Ft and of Fs, respectively. Then

LE (Ft) = T 2 + T +

(
1− 2T

n

)
2mt =

= T 2 + T +

(
1− 2T

n

)
2

(
T (T + 1)

2
+ n− T − 1 + t

)
=

= 2

[
T 2 − 2T + n− T 2

n
(T − 1) + (t− 1)

(
1− 2T

n

)]
.

Since 2ms = 2

T
′
(
T

′
+ 1
)

2
+ n− T

′
− 1 +

(
T

′
− 1
)(

n− T
′
− 1
)
− (t− 1)

 =

= n2 − T 2 + T − n+ 2− 2t

then

(
1− 2T

′

n

)
2ms =

(
2T

n
− 1

)(
n2 − T 2 + T − n+ 2− 2t

)
=

= T 2+2Tn−3T−n2+n− 2T 2

n
(T − 1)+(t− 1)

(
2− 4T

n

)
. Thus it follows that

LE(Fs) = T
′2+T

′
+(1−2T

′

n
)2ms = 2[T 2−2T+n−T 2

n
(T−1)+(t−1)(1−2T

n
)] = LE(Ft) .
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■

In the sequence, we construct pairs of L-equienergetic graphs where one be-

longs to family Gn,T and the other, to family Fn,T .

Theorem 3.2. Consider the parameters t♭, t♯ of Theorems 2.1 and t1 and t2 of

Theorem 2.2. For all integer t with 1 ≤ t ≤ (n−T − 1)(T − 1), if t ≤ min{t♭, t1}
or t ≥ max{t♯, t2} then the graphs Gt in family Gn,T and Ft in family Fn,T are

L-equinergetic.

Proof: As the graphs Gt and Ft have the same trace and same order n, the asser-

tion follows from Theorems 2.1 and 2.2, since LE(Gt) = T 2 + T +

(
1− 2T

n

)
2mt

and LE(Ft) = T 2 + T +

(
1− 2T

n

)
2m′

t . The constructions of the families guar-

antee that they have the same number of edges (mt = m′
t) and different spectra.

■

The next corollary provides four non-isomorphic threshold graphs with same

Laplacian energy.

Corollary 3.1. Consider the parameters t♭ and t1 of Theorems 2.1 and of The-

orem 2.2, respectively. For all integer t with 1 ≤ t ≤ (n − T − 1)(T − 1), if

t ≤ min{t♭, t1} then the graphs Gt in family Gn,T , Gs in family Gn,T ′ , Ft in

family Fn,T and Fs in family Fn,T ′ are L-equinergetic, where T ′ = n − T and

s = (n− T ′ − 1)(T ′ − 1)− (t− 1).

Proof: As in Theorem 3.1, manipulating algebraically some inequalities, we

verify that if t ≤ t1(T ) then s ≥ t♯(T ′). In addition, by the proof of Theorem

3.1, we have s ≥ t2(T
′). Then Theorem 3.2 assures that the graphs Gs and Fs,

of families Gn,T ′ and Fn,T ′ , respectively, are L-equienergetic. But from Theorem

3.1, we know that LE(Fs) = LE(Ft) ( Ft graph in family Fn,T ). By using again

Theorem 3.2, we obtain LE(Ft) = LE(Gt) ( Gt graph of Gn,T ), finally proving

that LE(Gs) = LE(Fs) = LE(Ft) = LE(Gt).

■

Example 1. Considering n = 12 and T = 7 we have T ′ = 5. Taking t = 4

we have LE(G4) = LE(F4) = LE(F21) = LE(G21) = 44, where G4 ∈ G12,7,

F4 ∈ F12,7, F21 ∈ F12,5 and G21 ∈ G12,5.
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Figure 4: G4, F4, G21, F21 with LE(G4) = LE(F4) = LE(F21) = LE(G21) = 44.
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