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Constructing pairs of Laplacian

equienergetic threshold graphs

R. R. Del-Vecchio® G. B. Pereira
C. T. M. Vinagre®

Abstract

The Laplacian energy of a graph G on n vertices and m edges
is defined as the sum of absolute values of the differences between
each Laplacian eigenvalue of G and the average degree 2m/n. In
this work we construct pairs of threshold graphs of same order, with

same Laplacian energy and different sets of Laplacian eigenvalues.

1 Introduction

Let G be a simple and undirect graph on vertices vy, ...,v,. The Lapla-
cian matriz L = L(G) of G is the n x n matrix for which the entry L; is
the degree of vertex v;, 1 <14 < n, and the entries L;; are —1, if vertex v;
and v; are adjacent in G, and 0 otherwise. The matrix L is symmetric,
positive-semidefinite and always has 0 as an eigenvalue. For these and
other properties of the L matrix, see [Mer94]. As usual, we denote the
L-eigenvalues as p1, po, ..., fn, where p1 > ps > ... > p, = 0; these

real numbers constitute the Laplacian spectrum of G. Two graphs are
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cospectral if they share the same Laplacian spectrum, otherwise they are
non-cospectral.
If G has m edges, then 2m/n is its average degree and the Laplacian
n
energy of G is defined as LE(G) = Z i — 2m .
i=1 "
Gutman and Zhou in [GZ06], this concept has been extensively investi-

After introduced by

gated. In particular, the problem of constructing families of non-cospectral
graphs with same order and equal Laplacian energy (called Laplacian-
equienergetic graphs or simply L-equienergetic graphs) has already been
studied in [Ste09] and [FHT14], but a general characterization remains an
open problem.

Our investigation concerns the construction of L-equienergetic threshold
graphs.

Threshold graphs were introduced by Chvétal and Hammer [CH77] and
independently, by Henderson and Zalcstein [HZ77], in 1977. They con-
stitute an important class of graphs due to their numerous applications
in diverse areas. Threshold graphs can be characterized in many ways.
In this paper, a threshold graph is obtained through an iterative process
which starts with an isolated vertex, and where, at each step, either a
new isolated vertex is added, or a vertex adjacent to all previous vertices
(dominating vertex) is added. Following this construction, a threshold
graph can be represented by a string of 0's and 1’s, corresponding respec-
tively to isolated vertices and dominating vertices. The threshold graph
constructed in Figure 1 has 0-1-string (0,0,0,1,0,0,1).

O O
O
O O

Figure 1: Constructing the threshold graph with string (0,0,0,1,0,0,1).

The number of characters 1 in the string (that is, the number of domi-
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nating vertices in the graph) is called the trace of the graph and denoted
by T'= T(G). The dominating vertices with the first vertice inserted in
the graph constitute a clique. Thus, the clique number of the graph is
equal to T+ 1. For example, the graph in Figure 1 has clique number 3
(=T +1). The other 4 (=n — T — 1) vertices constitute an independent
set.

The 0-1-string of a threshold graph also provides its degree sequence
d = [dy,ds,...,d;,...,d,], where di > d2 > ... > d,,. For example, the
graph in Figure 1 has degree sequence [6,4,2,2,2,1,1].

The following known result furnishes the sequence of L-eigenvalues of
a threshold graph from its degree sequence, showing that all of them are

integers.

Theorem 1.1 ([Mer94]). Let G be a threshold graph on n vertices, with
trace T and degree sequence [dy,ds,...,d,] arranged in non increasing
order. Then for the Laplacian eigenvalues of G it holds that u; = d; + 1,
if1<i<T, py=dip1,if T+1<i<n-1,and p, =0.

In [VDVJT13], the authors establish an explicit formula to compute the
Laplacian energy of threshold graphs satisfying certain hypothesis.

Theorem 1.2 ([VDVJT13]). Let G be a threshold graph on n vertices,
m edges and trace T with 3 < T < n — 1. If the Laplacian eigenvalues of
G satisfy pr > 2m/n > pryq then the Laplacian energy of G is given by

LEG)=T?+T+ (1—2T> o2m.

n

2 Families of threshold graphs satisfying condi-
tions of Theorem 1.2
Given integers n > 3 and T > 1, the graph on n vertices obtained by

attaching n — T — 1 pendent vertices to the same vertex of the complete

graph K7y is said to be the pineapple on n wertices and trace T and
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denoted P, r. Its 0-1 string is (0,1,1,...,1,0,0,...,0,1). For fixed n

T—1 n—T—1
and T, it is the threshold graph with least number of edges. The graph

P, 1 has degree sequence [n—1,T (T times), 1((n — T — 1) times)], $(T°%+
T)+ (n—T — 1) edges and its Laplacian spectrum is n, T+ 1 ((T — 1)
times), 1 ((n — T — 1) times) and 0.

In what follows, n and T" are integers such that 4 <T <n — 2.

2.1 A known family

In [VDVJIT13], the authors exhibit a family of threshold graphs sat-
isfying the hypothesis of Theorem 1.2. Denote by G, r the family of
threshold graphs G; on n vertices and trace T', where Go = P, 7 and for
t,1<t<(T'—1)(n—T —1), G is obtained from G by the addition of
t edges to specific vertices of Gy in such way that the 0-1-strings of the
graphs obtained are:

SOZ(Ovla"' 713070,”' ;071); S1 :(0;17 ,1,0,1,0,0,"' 7031);
—— ———— ———
T-1 n—T-1 T-2
82:<071a"'71a070517070a"'7071); S(nfol):(O717"'717()’0’""071)1);
T-2 T-2

S(n—-T-1)+1 = (07 1a e 717 Oa 17 0707 e 707 17 1)7
——

T-3
S2(n—T-1) = (07 17 T 7]-7 Oa -0, ]-7 ]-a l)a T S(T-2)(n—-T—-1) = (07 ]-aOv =50 17 Ty 1; 1)a
T-3 T-2
S(T-2)(n—T—1)+1 = (0707 17 0) T 70a 17 ) 11 1)7 T
——
T-2
o S(T-1)(n—T—-1) = (Oa <, 0,1,-000 1)
T-1

In [VDVJT13], conditions on the number of inserted edges ¢ are given in order
to identify the graphs G; of G, r satisfying the hypothesis of Theorem 1.2. The
introduction of the parameters t* and tf, both depending on n and T, provides

bounds on ¢ in order to compute the Laplacian energy of these graphs.
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Figure 2: The graphs GO = ]313757 G3 and Gg of famlly g13,5.

Theorem 2.1 ([VDVJT13]). For fixed n and T, let ¢* = 2(n—T)(T — 1) +1
and t* = L [(1-n)T? +(n* - 1T+ B -2n)n—2]. Thus 1 < ¢’ < (n—
T—-1)(T—-2) <t* < (n—T—1)(T—1). Furthermore, for each integer ¢, 1 <t <

AT
(n—T—1)(T—1), if t<t" or t>t! then LE(Gy) =T*+ T + (2) my,
n

where m; denotes the number of edges of the graph G; of G, ;.

As pointed out in [VDVJT13], at least half of the threshold graphs in G, r
satisfy the conditions of Theorem 2.1.

2.2 A new family

In this work, we present the construction of another family of threshold graphs
for which Theorem 1.2 still holds.

The graphs F; of the family F, r have n vertices and trace 7. They are
also obtained from the pineapple Fy = P, r by the insertion of ¢ edges ( 1 <
t < (I'—1)(n—T—1)) in such way theirs respective 0-1-strings si1,...,5

ce S(nfol)(Tfl) are:

31:(0»17"‘ ;1,07170a'“ 7071); 52:(071a"' 7130a171707"' 7071);
—— ——

T-2 T-3
83:(071a"'71a071717170a"'70a1);"' S(T—l):(ovoala"'a1507"'5071);
T—4 T-1

S(T-1)+1 = (07031;"' 713031707"' ,071); S(r-1)4+2 = (analv”' ,1,0,1,1,0,"' 7031);
——— ———

T-2 T-3

: SZ(T*l) = (07070717"' 71707"' 3071)7 82(T71)+1 = (0a070717"' 717071705"' 70a1)a

T-1 T—2
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CS(n—-T—-1)(T-1)—-1 = (Oa e 707 1a 07 1, 1) e
T-1

. "'S(n—T—l)(T—l) = (0, e ,0, 17 1, 1, ey 1, 1)

Figure 3: Graphs in family Fs4: Fy = Ps 4, Fi1, Fa, F3, Fy and Fy.

Reasonings analogous to Proposition 2 of [VDVJT13] we can prove that:

Theorem 2.2. For fixed n and T, let t; = T(nT:zl) +1and to = 3(n—T)(T—1)+
1-—%. Thus 1<t <(n-T—-1)(T-2) <ty < (n—-T-1)(n—-1).

Furthermore, for all t, 1<t < (n—-T-1D)(T-1), if 1 <t <t; or t>ts

4T

then LE(F}) = T>+ T+ (2 - ) my, where m; denotes the number of edges
n

of the graph Fy;.

Proof: Analogously to the proof of Theorem 2.1 (Proposition 2 of [VDVJT13)),
the three statements below must be proved:
Lopp>22v1<t< (n—T-1)(T-1)

2. for 1 <t < (T —2), purs1 < 2y if and only if ¢ < ¢y ;

n

3. for (T—1)<t<(n—T—1)(T—1), prs1 < 22 if and only if t > t.
]

Numerical experiments show that at least half of the threshold graphs in F, 7

satisfy the conditions of Theorem 2.2.
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3 Constructing pairs of L-equinergetic threshold
graphs

Threshold graphs are determined by their L-spectra, that is, if G and H are
two L-cospectral threshold graphs then they are isomorphic [Mer94].

In [Ste09], the author constructs large sets of L-equienergetic threshold graphs
all of them having equal trace. Pairs of L-equienergetic threshold graphs with
different traces are exhibited in [VDVJT13]. In what follows, we present infinite
pairs of L-equinergetic threshold graphs.

In the next result, we present pairs of L-equinergetic graphs where both graphs

were constructed by the same way although with different traces.

Theorem 3.1. For fixed n and T, let T/ = n —T. For ¢t such that 1 < t <
(n—T-1)(T-1),let s=(n-T"'—1)(T'=1)—(t—1). If t < ¢;(T) of Theorem
2.2 then LE(F;) = LE(F), where F; belongs to family F,, r and Fy to family
Fn,T’ .

Proof: Firstly, we note that F; and F; have different spectra since theirs traces
are distinct. By algebraic manipulations it can be verified that if ¢ < ¢;(T") then
s > to(T") and so, LE(F;) and LE(F) can be obtained by Theorem 2.2. Let m;

and mg denote the number of edges of F; and of Fj, respectively. Then

2T
LE(F)=T?+T + (1—) 2my; =
n

2T T(T+1
—T2—|—T—|—<1—>2((2+)+n—T—1+t>—

n
T2 2T
_2{T22T+n(T1)+(t1)(1>].
n n
T (1" +1) , / /
Since  2my =2 | ———=+n-T —1+(T —1) (n—T —1)—(t—1) =
=n?—T*4+T-—n+2-2t
2T 2T
then (1—>2ms:(—1> (n2—T2+T—n+2—2t):
n n
272 AT
=T?42Tn—3T—n*+n—"— (T —1)+(t - 1) <2 - > . Thus it follows that
n n

! 2
LE(FS) = T4+T +(1— 2L Yom, = 2[T?—2T+n— 1 (T—1)+(t—1)(1— 2LY] = LE(F,).
n n n
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In the sequence, we construct pairs of L-equienergetic graphs where one be-
longs to family G, r and the other, to family F, r.

Theorem 3.2. Consider the parameters t°, t! of Theorems 2.1 and ¢; and t, of
Theorem 2.2. For all integer ¢t with 1 <t < (n—T—-1)(T—1),ift < min{tb,tl}
or t > max{t* to} then the graphs G; in family Gn,r and F; in family F,, p are

L-equinergetic.

Proof: Asthe graphs G; and F}; have the same trace and same order n, the asser-

2T
tion follows from Theorems 2.1 and 2.2, since LE(Gy) = T? + T + (1 — ) 2my
n

2T
and LE(F,)) =T? +T + <1 — > 2mj, . The constructions of the families guar-
n

antee that they have the same number of edges (m; = m}) and different spectra.
|

The next corollary provides four non-isomorphic threshold graphs with same

Laplacian energy.

Corollary 3.1. Consider the parameters t* and t; of Theorems 2.1 and of The-
orem 2.2, respectively. For all integer ¢t with 1 < ¢t < (n —T — 1)(T — 1), if
t < min{t*,#;} then the graphs G; in family G, r, G, in family G, 7/, F; in
family F, o and Fy in family F,, ;v are L-equinergetic, where 7" = n — T and
s=n-T-1)(T" -1)—(t-1).

Proof: As in Theorem 3.1, manipulating algebraically some inequalities, we
verify that if ¢ < ¢;(T) then s > t¥(7"). In addition, by the proof of Theorem
3.1, we have s > t5(7"). Then Theorem 3.2 assures that the graphs G and F,
of families G, 1 and F,, 7/, respectively, are L-equienergetic. But from Theorem
3.1, we know that LE(Fs) = LE(F}) ( F} graph in family F, 7). By using again
Theorem 3.2, we obtain LE(F;) = LE(G;) ( Gy graph of G, ), finally proving
that LE(G,) = LE(F,) = LE(F,) = LE(GY).

Example 1. Considering n = 12 and T = 7 we have T' = 5. Taking ¢t = 4
we have LE(G4) = LE(F4) = LE(FQl) = LE(GQl) = 44, where G4 S g12’7,
Fy € Fia7, Fo1 € Fia5 and Gy € Gia5.
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Figure 4: G4,F‘47 G217F21 with LE(G4) = LE(F4) = LE(FQl) = LE(GQl) = 44.
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