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Abstract

A vertex v is called a contour vertex if no neighbor of v has an

eccentricity greater than v. The contour Ct(G) is the set formed by

all contour vertices of G. Given a set S ⊆ V (G), the closed interval

I[S] of S is the set formed by all vertices lying on shortest paths

between any pair of vertices of S. We say that S is geodetic if I[S] =

V (G). We denote I2[Ct(G)] = I[I[Ct(G)]]. In this work, we show

structural and computational results for two problems proposed by

Cáceres et al. 2005: (i) to determine whether the contour is geodetic;

(ii) to determine if there exists a graph G such that I2[Ct(G)] ̸=
V (G). We contribute to the study of these problems by adding three

infinite families of graphs whose contour is not geodetic to the set of

only 3 known graphs since 2005. We prove that if Ct(G) ⊆ S ⊆ V (G)

and |S| ≥ |V (G)| − 3, then S is geodetic. And so, when S = Ct(G),

we have a relation between |V (G)| and the geodeticity of I[Ct(G)].

Using computational tools, we show that, if there exists a positive

answer for the problem (ii) of Cáceres et al. 2005, the graph must

contain at least 11 vertices.

2000 AMS Subject Classification: 05C75, 05C85 and 05C12.

Key Words and Phrases: Graph Theory, Geodetic Convexity, Contour.

Partially supported by CNPq, FAPERJ and PROPPI/UFF.

http://doi.org/10.21711/231766362015/rmc447
https://orcid.org/0000-0002-2886-2740
https://orcid.org/0000-0002-8340-4881
https://orcid.org/0000-0002-4827-4487


2 D. Artigas, S. Dantas, A. L. S. Oliveira and T. M. D. Silva

1 Introduction

We consider only finite, simple and connected graphs G. Given a set

S ⊆ V (G), we say that the closed interval I[S] of S is the set of vertices

lying on shortest paths between any pair of vertices of S. The set S is

geodetic if I[S] = V (G). The distance d(v, w) between two vertices v

and w is the number of edges in the shortest path between them. The

eccentricity ecc(v) of a vertex v is the maximum distance between v and

any vertex w of G. A vertex v is a contour vertex if no neighbor of

v has an eccentricity greater than v. The contour Ct(G) of G is the set

formed by all contour vertices of G [CMOLP05]. A vertex w is an eccentric

vertex of some vertex v if the distance between v and w is equal to the

eccentricity of v. We denote I2[S] = I[I[S]]. The diameter diam(G) of G

is the maximum eccentricity of the vertices in V (G). For more information

about graph theoretical notation, see [BM08].

In 2005, Cáceres et al. [CMOLP05] proposed two questions concerning

the contour of a graph: (i) the problem of determining whether the contour

of a graph is geodetic; (ii) the problem of deciding if there exists a graph

G such that I2[Ct(G)] = V (G).

The first graph whose contour is not geodetic was presented in 2005

in [CMOLP05]. A slight variation of this graph was presented in [CHM+08].

Only in 2013 [ADD+13] was exposed another graph whose contour is not

geodetic.

Also in 2005, Cáceres et al. [CMOLP05] studied the contour of distance-

hereditary graphs and showed that it is geodetic. Later, in 2008, Cáceres

et al. [CHM+08] showed that the contour of every chordal graph is geode-

tic. In 2013, Artigas et al. [ADD+13] established a relation between the

diameter of a graph and the geodeticity of its contour set. They proved

that if diam(G) ≤ 4, then I[Ct(G)] = V (G) for every graph G. They

also showed that if G is a bipartite graph such that diam(G) ≤ 7, then

I[Ct(G)] = V (G).

In this work, we present structural properties for problem (i) of [CMOLP05].



New Results of the Geodeticity of the Contour of a Graph 3

We prove that for any set S, such that Ct(G) ⊆ S ⊆ V (G) and |S| ≥
|V (G)| − 3, we have that S is geodetic. Every graph G presented in the

literature whose Ct(G) is not geodetic is such that |V (G) \ I[Ct(G)]| = 1.

Thus, our result implies that I[Ct(G)] is geodetic for all of known ex-

amples. Here we present three infinite families of graphs whose contour

is not geodetic, particularly, one of them is the first example such that

|V (G) \ I[Ct(G)]| > k, k > 0. These three infinite families were obtained

by variations of the previously known examples. We also prove that for

integers (i, j, k, l), i ≥ 3 and j, k, l ≥ 1, there exists a graph with i con-

tour vertices, j vertices that do not belong to I[Ct(G)] and k contour

vertices with l eccentric vertices which are not contour vertices. Finally,

using computational tools, we verified that if |V (G)| < 10, then Ct(G) is

geodetic; and there exist only four non-isomorphic graphs with 10 vertices

whose contour is not geodetic and we present these graphs. This directly

implies that an answer for the problem (ii) of Cáceres et al. [CMOLP05]

must contain at least 11 vertices.

2 Structural Results

In this section, we show structural results for the problem of determining

whether the contour of a graph is geodetic. Before proving our main

results, we present some others previously known.

Remark 2.1. If G is a graph and v, u ∈ V (G), then | ecc(v)− ecc(u) |≤
d(v, u). In particular, if vw ∈ E(G) then |ecc(v)− ecc(w)| ≤ 1.

Remark 2.2. Let G be a graph. If e(v) is an eccentric vertex of v ∈ V (G),

then ecc(e(v)) ≥ ecc(v).

Lemma 2.1. [CHM+08] Let G be a graph and let u0 ∈ V (G). Suppose

that P = u0, u1, . . . , ut is a path in G such that ecc(ui+1) = ecc(ui) + 1,

for each i ∈ {0, 1, . . . , t − 1}. Then, for each eccentric vertex e(ut) of ut,

there exists a geodesic between e(ut) and ut that contains P . Further,

e(ut) is an eccentric vertex of every vertex on P .
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The next result establishes a relation between the cardinality of Ct(G)

and the problem of determining whether Ct(G) is geodetic.

Theorem 2.2. Let G be a graph and S ⊆ V (G). If Ct(G) ⊆ S and

|S| ≥ |V (G)| − 3, then S is geodetic.

Proof. Let |S| = |V (G)|− 1 and v0 /∈ S. There exists a vertex v1 adjacent

to v0 such that v1 ∈ S and ecc(v1) = ecc(v0) + 1. Since ecc(v1) > ecc(v0),

there exists a vertex x adjacent to v0 such that x is not adjacent to v1.

Consequently, v0 ∈ I[x, v1] ⊆ I[S].

Let |S| = |V (G)| − 2 and x, y /∈ S. If x and y are not adjacent, we

apply the previous argument twice. Consider that x and y are adjacent.

If ecc(x) + 1 = ecc(y), since y /∈ Ct(G), there exists a vertex z adjacent

to y such that ecc(y) + 1 = ecc(z). Let e(z) be an eccentric vertex of z,

by Lemma 2.1 there exists a geodesic between z and e(z) containing x

and y. Since ecc(e(z)) ≥ ecc(z), we conclude that e(z) ̸= x, e(z) ̸= y and

e(z) ∈ S. Consequently, x, y ∈ I[S]. If ecc(x) = ecc(y), then there exists

a vertex z adjacent to x such that ecc(z) = ecc(x) + 1. Let e(z) be an

eccentric vertex of z , by Lemma 3 there exists a geodesic between z and

e(z) containing x. Since ecc(e(z)) ≥ ecc(z), we conclude that x ∈ I[S].

Analogously, we conclude that y ∈ I[S].

Let |S| = |V (G)| − 3 and x, y, z /∈ S. If {x, y, z} is an independent set

then we use the argument of the case |S| = |V (G)|− 1. Consider that x, y

are adjacent and z is not adjacent to x or y. We separately analyse the

vertex z and vertices x, y, the arguments are similar to the previous ones.

Now, suppose that {x, y, z} is a clique. By Remark 2.1, at least two of

them have the same eccentricity. Without loss of generality, consider that

ecc(x) = ecc(y) and ecc(x) = ecc(z) − 1. Let v be a vertex adjacent to

z such that ecc(v) = ecc(z) + 1, therefore v has an eccentric vertex e(v)

such that, by Remark 2, ecc(e(v)) ≥ ecc(v) and e(v) ∈ S, which implies

that there exists a geodesic between v and e(v) that contains x, z and y, z.

Hence, {x, y, z} ⊆ I[S]. The case that ecc(x) = ecc(z) + 1 is similar to

the previous one. It remains to consider the case where {x, y, z} induces
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a P3, and the arguments are analogous to those used in this proof. ■

We contribute to the problem of determining whether the contour of a

graph is geodetic by generalizing two graphs found in the literature (see

Figure 1). We construct three infinite families of graphs whose contour is

not geodetic. We refer to Figure 2 and Figure 3.

Figure 1: graphs whose contour is not geodetic [ADD+13, CHM+08]
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k vertices k vertices

Figure 2: First infinite family of graphs whose contour is not geodetic.
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Figure 3: Second infinite family of graphs whose contour is not geodetic.
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The third family can be obtained from the family presented in Figure 3,

by removing either one vertex xk or one vertex x′k. The graphs presented

in the literature whose contour is not geodetic are such that |V (G) \
I[Ct(G)]| = 1. We see that the infinite family shown in Figure 2 is such

that |V (G) \ I[Ct(G)]| = k, k > 0. I[Ct(G)] is geodetic for the three

families, i.e. I2[Ct(G)] = V (G).

The following theorem guarantees that it is possible to construct graphs

with any number of contour vertices and any vertices that are not in

I[Ct(G)].

Theorem 2.3. For any integers (i, j, k, l) such that i ≥ 3, j, k, l ≥ 1,

there exists a graph G with i contour vertices, j vertices that does not

belong to I[Ct(G)] and k contour vertices with l eccentric vertices which

are not contour vertices.

3 Computational Results

In this section we show computational results obtained in this research.

We start this approach by searching for all graphs whose contour is not

geodetic in the set of all graphs with a fixed number of vertices. In the first

step we generate all non isomorphic graphs with a fixed number of vertices

and then we implement and execute the Algorithm 1 to verify whether the

contour is geodetic. Hereinafter we present our main algorithm.

Algorithm 1 Algorithm to check whether I[Ct(G)] = V (G).

1: Calculate the eccentricity of every vertex of G;

2: Determine for each vertex v if v ∈ Ct(G);

3: Verify if I[Ct(G)] = V (G).

Applying this algorithm, we obtain the next results. They completely

classify the problem for all graphs with up to 10 vertices.

Theorem 3.1. If G is a graph with at most 9 vertices, then I[Ct(G)] =
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V (G).

Theorem 3.2. There exists four graphs G with 10 vertices such that

I[Ct(G)] ̸= V (G). Moreover, the graphs are depicted in Figure 4.

Figure 4: The unique four graphs with 10 vertices whose contour is not

geodetic.

Corollary 3.3. If G is a graph with at most 10 vertices, then I2[Ct(G)] =

V (G).

Proof. The Theorems 6 and 7 guarantee that the only graphs with up to

10 vertices whose contour is not geodetic are the ones shown in Figure 4.

For all of them, I2[Ct(G)] = V (G). ■
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