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Total coloring of snarks is NP-complete

Vińıcius F. dos Santos Diana Sasaki

Abstract

Snarks are bridgeless cubic graphs that do not allow 3-edge-

colorings. We prove that the problem of determining if a snark is of

Type 1 is NP-complete.

1 Introduction

Let G = (V,E) be a finite 3-regular graph with vertex set V and edge

set E. A k-total-coloring of G is an assignment of k colors to the edges and

vertices of G, so that adjacent or incident elements have different colors.

The total chromatic number of G, denoted by χ′′(G), is the least k for

which G has a k-total-coloring. The well-known Total Coloring Conjecture

states that ∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2 (where ∆(G) is the maximum

degree of G) and it has been proved for cubic graphs [Ros71]. Hence, the

total chromatic number of a cubic graph is either 4, in which case the

graph is called Type 1, or 5, in which case it is called Type 2. Snarks

are bridgeless cubic graphs that do not allow 3-edge-colorings (Class 2),

and their importance arises at least in part from the fact that several

well-known conjectures would have snarks as minimal counterexamples.
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Some common definitions used in this paper will be omitted due to space

constraints.

In 2003, Cavicchioli et al. verified that all snarks with girth at least

5 and fewer than 30 vertices are Type 1 [CMRS03]. In 2011, Campos

et al. proved that the infinite families of Flower and Goldberg snarks

are Type 1 [CDdM11]. In 2013, Brinkmann et al. verified that all

snarks with such girth and fewer than 38 vertices are Type 1 [BGHM13].

Later on, Sasaki et al. proved that both Blanuša families and a part of

Loupekine family are Type 1 and presented some Type 2 snarks with small

girth [SDdFP14]. Motivated by the question proposed by Cavicchioli et

al. [CMRS03] of finding, if one exists, the smallest Type 2 snark of girth

at least 5, we investigate the total coloring of snarks.

It is shown in [SA89] that the problem of determining if a cubic bipartite

graph is Type 1 is NP-complete. We prove that, similarly, the problem of

determining if a snark is Type 1 is NP-complete. Our proof resembles the

one in [SA89] but requires a slightly different construction. The proof is

by reduction from the well-known NP-complete problem of determining if

a 4-regular graph has a 4-edge-coloring (Class 1).

Preliminaries Since this work is based on the proofs of the NP-completeness

of the problem of deciding whether a bipartite cubic graph is Type 1 [SA89]

and has an equitable 4-total-coloring [DdFM+16], we start by presenting

useful coloring properties determined in both papers.

Lemma 1 (Sanchez-Arroyo [SA89]). In each 4-total-coloring of K (resp.

H) the three (resp. four) pendant edges of K (resp. H) receive the same

color (see Figure 1).

Figure 1: Graphs K and H, respectively.
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Lemma 2 (Dantas et al. [DdFM+16]). Consider any proper partial 4-

coloring CP of H such that only w′
3, all pendant edges and all pendant

vertices are colored, and:

� all the pendant edges have the same color, say i,

� p1, p2 have distinct colors, say resp. j and k (see Figure 2).

This coloring CP can be extended to the vertices w1, w2, w3, w
′
1, w

′
2 and

edge w3w
′
1 so that it is still proper and the colors of w1, w2, w3 (resp.

w′
1, w

′
2, w

′
3) are all distinct.

Figure 2: The framed elements are already colored by the proper partial

4-coloring CP .

Lemma 3 (Dantas et al. [DdFM+16]). Consider a proper partial 4-

coloring of the pendant edges of K and their extremities, such that all

pendant edges are colored with the same color and w1, w2, w3 are colored

with the three other colors. This coloring may be extended to a 4-total-

coloring of K (see Figure 3).

As a corollary of Lemmas 2 and 3, we obtain the result that any partial

coloring satisfying the conditions of Lemma 2 can be extended to a 4-

total-coloring of H.

In this work, we prove the following result on the total coloring of snarks.

Theorem 1.1. The problem of deciding whether or not a snark is Type 1

is NP-complete.
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Figure 3: An extension of a proper partial 4-coloring of K satisfying the

hypothesis of Lemma 3. The framed elements are already colored by a

proper partial 4-coloring.

2 Proof of Theorem 1.1

Since we can verify in polynomial time that a candidate coloring is a

4-total-coloring, the problem is in the class NP.

Given a 4-regular graph G, we construct a snark GR by replacing each

vertex of G by the graph R. The graph R is obtained from four disjoint

copies of the graph H and two disjoint copies of the Petersen graph P and

due to the construction of R, it preserves interesting coloring properties

of H. In the following, we prove that the graph G has a 4-edge-coloring

if and only if the snark GR has a 4-total-coloring.

Construction of graph GR from G Let G be a 4-regular graph. A

graph GR is built as follows. GR contains a disjoint copy Rv of R, for

each vertex v of G. Two copies of R are joined by an edge whenever the

corresponding vertices are adjacent in G, so that there is a one-to-one

correspondence between the set of edges of G and the set of edges of GR

that connect two copies of R. We call the edges connecting copies of R

connecting edges of GR. The construction of GR can clearly be done in

polynomial time in the order of G.

We denote by R4, the graph R plus the 4 connecting edges and their

respective endvertices shown in Figure 4.

The next two results are similar to the ones in Dantas et al. [DdFM+16]

since our construction preserves the key coloring properties used to prove

the corresponding results in that paper.
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Figure 4: The graph R4 on the left, a representation of it in the middle,

and a depiction of the graph GR obtained from the 4-regular graph G on

6 vertices and 12 edges on the right.

Claim 1. If GR is Type 1, then G is Class 1.

Proof of Claim 1. Suppose that there exists a 4-total-coloring CT of GR,

and let us consider the 4-total-coloring induced by CT on R4
v for any vertex

v of G. By the construction of R4, since any two of the four copies of H

contained in R4
v have adjacent pendants, we obtain that CT assigns four

distinct colors to the connecting edges incident to Rv. So, assigning to

each edge vw of G the color given by CT to the connecting edge between

Rv and Rw we obtain a 4-edge-coloring of G. ■

Claim 2. If G is Class 1, then GR is Type 1.

Proof of Claim 2. Let CE be a 4-edge-coloring of G. Starting from this

coloring we will define a 4-total-coloring CT of GR. We define first the

colors of the connecting edges of GR: for every edge vw of G we assign

the color CE(vw) to the corresponding connecting edge Evw of GR. Then,

we assign colors to the extremities of the connecting edges with any two

available distinct colors. At this moment, the coloring is a proper partial

4-coloring of GR that assigns, in each copy of R4, colors to all pendant

edges and their extremities. For a vertex v of G, let the four connecting

edges incident to R4
v be colored i, j, k, l as on Figure 5. In this figure, we

show how this coloring can be extended to a proper coloring of all edges
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and vertices of R4 that are not inside a K2,3 of a copy of H. Doing this

for every copy of R4, we extend the present coloring to a proper partial

4-coloring of GR that colors the extremities of the connecting edges, and

all other vertices and edges of GR that are not inside a copy of H.

Noticing that the proper partial 4-coloring on Figure 5 is such that the

conditions of Lemma 2 are verified for every copy of H in R4, and since

it colors every copy of R4 as in Figure 5, we can apply Lemmas 2 and 3

in order to extend the coloring to a 4-total-coloring CT of GR. ■

Figure 5: An extension of a proper partial 4-coloring of the framed ele-

ments of R4.

It remains to show that the constructed graph GR is a snark.

Definition 2.1 (Isaacs, 1975 [Isa75]). Given a cubic graph G and a vertex

x of G, the cubic semi-graph obtained by removing vertex x will be denoted

by Gx. Given two cubic graphs G and H, any cubic graph obtained from

Gx and Hy, for some vertices x and y, by connecting the semi-edges of Gx
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to the semi-edges of Hy is said to be obtained by a 3-construction from G

and H (see Figure 6).

Figure 6: Graphs G and H and a 3-construction of G and H.

Lemma 4 (Isaacs, 1975 [Isa75]). If a cubic graph F , obtained by the

3-construction of bridgeless cubic graphs G and H, such that at least one

of G or H is a snark, then F itself is also a snark.

Let GR− be the cubic graph obtained from GR by replacing each Pe-

tersen graph by a vertex in all copies of R. The graph GR is obtained

by 2|V (G)| 3-constructions of the Petersen graph and GR−. Since the

Petersen graph is a snark, the graph GR is a snark. This ends the proof

of Theorem 1.1.

3 Final considerations

Let A be a proper subset of V . We call the set F of edges of G with one

endpoint in A and the other endpoint in V \ A, the edge cutset induced

by A. A subset F of edges of G is an edge cutset if there exists a proper

subset A of V such that F is the edge cutset induced by A. If G[A] and

G[V \ A] contain cycles, then F is said to be a c-cutset. We say that G

is cyclically k-edge-connected if it does not have a c-cutset of cardinality

smaller than k. If G has at least one c-cutset, the cyclic-edge-connectivity

of G is the smallest cardinality of a c-cutset of G.

There are many definitions of snarks in the literature and the one most

used is cyclically-4-edge-connected cubic graphs of Class 2. In this work,

we consider snarks simply as bridgeless cubic graphs of Class 2 and prove
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that the problem of determining whether a snark is Type 1 is NP-complete.

More precisely, our proof holds for snarks with cyclic-edge-connectivity 3,

since the smallest cardinality of a c-cutset of the constructed graph GR

is 3. Indeed, for cyclic-edge-connectivity 1, 2 or 3 there exist examples of

Class 2 cubic graphs of each Type [SDdFP14].

Cyclically-4-edge-connected cubic graphs of Class 2 and Type 2 have

recently been found [BPS15] (all containing squares). So, also for cyclic-

edge-connectivity 4 there exist examples of Class 2 cubic graphs of each

Type [BPS15, SDdFP14]. In order to investigate the complexity problem

of determining whether a cyclically-4-edge-connected cubic graph of Class

2 is Type 1, another approach is necessary, since our gadget has several

c-cutsets of size 3. We leave this as an open problem.
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Dauphine and CNRS

LAMSADE UMR 7243

France

diana.sasaki@gmail.com

https://mathscinet.ams.org/mathscinet-getitem?mr=0382052
https://mathscinet.ams.org/mathscinet-getitem?mr=0278995
https://www.sciencedirect.com/science/article/pii/0012365X89901878?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0012365X89901878?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=1026351
https://www.sciencedirect.com/science/article/pii/S0166218X13001935?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=3159133



	Introduction
	Proof of Theorem 1.1
	Final considerations

