Total coloring of snarks is NP-complete

Vinícius F. dos Santos(1)
Diana Sasaki(i)

Abstract

Snarks are bridgeless cubic graphs that do not allow 3-edgecolorings. We prove that the problem of determining if a snark is of Type 1 is NP-complete.

1 Introduction

Let $G=(V, E)$ be a finite 3-regular graph with vertex set V and edge set E. A k-total-coloring of G is an assignment of k colors to the edges and vertices of G, so that adjacent or incident elements have different colors. The total chromatic number of G, denoted by $\chi^{\prime \prime}(G)$, is the least k for which G has a k-total-coloring. The well-known Total Coloring Conjecture states that $\Delta(G)+1 \leq \chi^{\prime \prime}(G) \leq \Delta(G)+2$ (where $\Delta(G)$ is the maximum degree of G) and it has been proved for cubic graphs [Ros71]. Hence, the total chromatic number of a cubic graph is either 4 , in which case the graph is called Type 1, or 5, in which case it is called Type 2. Snarks are bridgeless cubic graphs that do not allow 3-edge-colorings (Class 2), and their importance arises at least in part from the fact that several well-known conjectures would have snarks as minimal counterexamples.

[^0]Some common definitions used in this paper will be omitted due to space constraints.

In 2003, Cavicchioli et al. verified that all snarks with girth at least 5 and fewer than 30 vertices are Type 1 [CMRS03]. In 2011, Campos et al. proved that the infinite families of Flower and Goldberg snarks are Type 1 [CDdM11]. In 2013, Brinkmann et al. verified that all snarks with such girth and fewer than 38 vertices are Type 1 [BGHM13]. Later on, Sasaki et al. proved that both Blanuša families and a part of Loupekine family are Type 1 and presented some Type 2 snarks with small girth [SDdFP14]. Motivated by the question proposed by Cavicchioli et al. [CMRS03] of finding, if one exists, the smallest Type 2 snark of girth at least 5 , we investigate the total coloring of snarks.

It is shown in [SA89] that the problem of determining if a cubic bipartite graph is Type 1 is NP-complete. We prove that, similarly, the problem of determining if a snark is Type 1 is NP-complete. Our proof resembles the one in [SA89] but requires a slightly different construction. The proof is by reduction from the well-known NP-complete problem of determining if a 4-regular graph has a 4-edge-coloring (Class 1).

Preliminaries Since this work is based on the proofs of the NP-completeness of the problem of deciding whether a bipartite cubic graph is Type 1 [SA89] and has an equitable 4 -total-coloring [$\left.\mathrm{DdFM}^{+} 16\right]$, we start by presenting useful coloring properties determined in both papers.

Lemma 1 (Sanchez-Arroyo [SA89]). In each 4-total-coloring of K (resp. $H)$ the three (resp. four) pendant edges of K (resp. H) receive the same color (see Figure 1).

Figure 1: Graphs K and H, respectively.

Lemma 2 (Dantas et al. [DdFM $\left.{ }^{+} 16\right]$). Consider any proper partial 4coloring C^{P} of H such that only w_{3}^{\prime}, all pendant edges and all pendant vertices are colored, and:

- all the pendant edges have the same color, say i,
- p_{1}, p_{2} have distinct colors, say resp. j and k (see Figure 2).

This coloring C^{P} can be extended to the vertices $w_{1}, w_{2}, w_{3}, w_{1}^{\prime}, w_{2}^{\prime}$ and edge $w_{3} w_{1}^{\prime}$ so that it is still proper and the colors of w_{1}, w_{2}, w_{3} (resp. $\left.w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right)$ are all distinct.

Figure 2: The framed elements are already colored by the proper partial 4-coloring C^{P}.

Lemma 3 (Dantas et al. [DdFM $\left.{ }^{+} 16\right]$). Consider a proper partial 4coloring of the pendant edges of K and their extremities, such that all pendant edges are colored with the same color and w_{1}, w_{2}, w_{3} are colored with the three other colors. This coloring may be extended to a 4 -totalcoloring of K (see Figure 3).

As a corollary of Lemmas 2 and 3, we obtain the result that any partial coloring satisfying the conditions of Lemma 2 can be extended to a 4 -total-coloring of H.

In this work, we prove the following result on the total coloring of snarks.
Theorem 1.1. The problem of deciding whether or not a snark is Type 1 is NP-complete.

Figure 3: An extension of a proper partial 4-coloring of K satisfying the hypothesis of Lemma 3. The framed elements are already colored by a proper partial 4-coloring.

2 Proof of Theorem 1.1

Since we can verify in polynomial time that a candidate coloring is a 4 -total-coloring, the problem is in the class NP.

Given a 4-regular graph G, we construct a snark G^{R} by replacing each vertex of G by the graph R. The graph R is obtained from four disjoint copies of the graph H and two disjoint copies of the Petersen graph P and due to the construction of R, it preserves interesting coloring properties of H. In the following, we prove that the graph G has a 4 -edge-coloring if and only if the snark G^{R} has a 4 -total-coloring.

Construction of graph G^{R} from G Let G be a 4-regular graph. A graph G^{R} is built as follows. G^{R} contains a disjoint copy R_{v} of R, for each vertex v of G. Two copies of R are joined by an edge whenever the corresponding vertices are adjacent in G, so that there is a one-to-one correspondence between the set of edges of G and the set of edges of G^{R} that connect two copies of R. We call the edges connecting copies of R connecting edges of G^{R}. The construction of G^{R} can clearly be done in polynomial time in the order of G.

We denote by R^{4}, the graph R plus the 4 connecting edges and their respective endvertices shown in Figure 4.

The next two results are similar to the ones in Dantas et al. [DdFM $\left.{ }^{+} 16\right]$ since our construction preserves the key coloring properties used to prove the corresponding results in that paper.

Figure 4: The graph R^{4} on the left, a representation of it in the middle, and a depiction of the graph G^{R} obtained from the 4-regular graph G on 6 vertices and 12 edges on the right.

Claim 1. If G^{R} is Type 1, then G is Class 1.
Proof of Claim 1. Suppose that there exists a 4-total-coloring C^{T} of G^{R}, and let us consider the 4 -total-coloring induced by C^{T} on R_{v}^{4} for any vertex v of G. By the construction of R^{4}, since any two of the four copies of H contained in R_{v}^{4} have adjacent pendants, we obtain that C^{T} assigns four distinct colors to the connecting edges incident to R_{v}. So, assigning to each edge $v w$ of G the color given by C^{T} to the connecting edge between R_{v} and R_{w} we obtain a 4-edge-coloring of G.

Claim 2. If G is Class 1 , then G^{R} is Type 1.
Proof of Claim 2. Let C^{E} be a 4-edge-coloring of G. Starting from this coloring we will define a 4 -total-coloring C^{T} of G^{R}. We define first the colors of the connecting edges of G^{R} : for every edge $v w$ of G we assign the color $C^{E}(v w)$ to the corresponding connecting edge $E_{v w}$ of G^{R}. Then, we assign colors to the extremities of the connecting edges with any two available distinct colors. At this moment, the coloring is a proper partial 4-coloring of G^{R} that assigns, in each copy of R^{4}, colors to all pendant edges and their extremities. For a vertex v of G, let the four connecting edges incident to R_{v}^{4} be colored i, j, k, l as on Figure 5 . In this figure, we show how this coloring can be extended to a proper coloring of all edges
and vertices of R^{4} that are not inside a $K_{2,3}$ of a copy of H. Doing this for every copy of R^{4}, we extend the present coloring to a proper partial 4-coloring of G^{R} that colors the extremities of the connecting edges, and all other vertices and edges of G^{R} that are not inside a copy of H.

Noticing that the proper partial 4-coloring on Figure 5 is such that the conditions of Lemma 2 are verified for every copy of H in R^{4}, and since it colors every copy of R^{4} as in Figure 5, we can apply Lemmas 2 and 3 in order to extend the coloring to a 4-total-coloring C^{T} of G^{R}.

Figure 5: An extension of a proper partial 4-coloring of the framed elements of R^{4}.

It remains to show that the constructed graph G^{R} is a snark.
Definition 2.1 (Isaacs, 1975 [Isa75]). Given a cubic graph G and a vertex x of G, the cubic semi-graph obtained by removing vertex x will be denoted by G_{x}. Given two cubic graphs G and H, any cubic graph obtained from G_{x} and H_{y}, for some vertices x and y, by connecting the semi-edges of G_{x}
to the semi-edges of H_{y} is said to be obtained by a 3-construction from G and H (see Figure 6).

Figure 6: Graphs G and H and a 3-construction of G and H.

Lemma 4 (Isaacs, 1975 [Isa75]). If a cubic graph F, obtained by the 3-construction of bridgeless cubic graphs G and H, such that at least one of G or H is a snark, then F itself is also a snark.

Let G^{R-} be the cubic graph obtained from G^{R} by replacing each Petersen graph by a vertex in all copies of R. The graph G^{R} is obtained by $2|V(G)| 3$-constructions of the Petersen graph and G^{R-}. Since the Petersen graph is a snark, the graph G^{R} is a snark. This ends the proof of Theorem 1.1.

3 Final considerations

Let A be a proper subset of V. We call the set F of edges of G with one endpoint in A and the other endpoint in $V \backslash A$, the edge cutset induced by A. A subset F of edges of G is an edge cutset if there exists a proper subset A of V such that F is the edge cutset induced by A. If $G[A]$ and $G[V \backslash A]$ contain cycles, then F is said to be a c-cutset. We say that G is cyclically k-edge-connected if it does not have a c-cutset of cardinality smaller than k. If G has at least one c-cutset, the cyclic-edge-connectivity of G is the smallest cardinality of a c-cutset of G.

There are many definitions of snarks in the literature and the one most used is cyclically-4-edge-connected cubic graphs of Class 2. In this work, we consider snarks simply as bridgeless cubic graphs of Class 2 and prove
that the problem of determining whether a snark is Type 1 is NP-complete. More precisely, our proof holds for snarks with cyclic-edge-connectivity 3, since the smallest cardinality of a c-cutset of the constructed graph G^{R} is 3 . Indeed, for cyclic-edge-connectivity 1 , 2 or 3 there exist examples of Class 2 cubic graphs of each Type [SDdFP14].

Cyclically-4-edge-connected cubic graphs of Class 2 and Type 2 have recently been found [BPS15] (all containing squares). So, also for cyclic-edge-connectivity 4 there exist examples of Class 2 cubic graphs of each Type [BPS15, SDdFP14]. In order to investigate the complexity problem of determining whether a cyclically-4-edge-connected cubic graph of Class 2 is Type 1, another approach is necessary, since our gadget has several c-cutsets of size 3 . We leave this as an open problem.

References

[BGHM13] Gunnar Brinkmann, Jan Goedgebeur, Jonas Hägglund, and Klas Markström. Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013), no. 4, 468-488. MR 3071376
[BPS15] Gunnar Brinkmann, Myriam Preissmann, and Diana Sasaki, Snarks with total chromatic number 5, Discrete Math. Theor. Comput. Sci. 17 (2015), no. 1, 369-382. MR 3356000
[CDdM11] C. N. Campos, S. Dantas, and C. P. de Mello, The totalchromatic number of some families of snarks, Discrete Math. 311 (2011), no. 12, 984-988. MR 2787309
[CMRS03] A. Cavicchioli, T. E. Murgolo, B. Ruini, and F. Spaggiari, Special classes of snarks, Acta Appl. Math. 76 (2003), no. 1, 57-88. MR 1967454
$\left[\mathrm{DdFM}^{+} 16\right]$ S. Dantas, C. M. H. de Figueiredo, G. Mazzuoccolo, M. Preissmann, V. F. dos Santos, and D. Sasaki. On the equitable total chromatic number of cubic graphs, To appear in Discrete Appl. Math.
[Isa75] Rufus Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975), 221-239. MR 0382052
[Ros71] M. Rosenfeld, On the total coloring of certain graphs, Israel J. Math. 9 (1971), 396-402. MR 0278995
[SA89] Abdón Sánchez-Arroyo, Determining the total colouring number is NP-hard, Discrete Math. 78 (1989), no. 3, 315-319. MR 1026351
[SDdFP14] D. Sasaki, S. Dantas, C. M. H. de Figueiredo, and M. Preissmann, The hunting of a snark with total chromatic number 5, Discrete Appl. Math. 164 (2014), no. part 2, 470-481. MR 3159133

Vinícius F. dos Santos
DECOM, Centro Federal de
Educação Tecnológica de Minas Gerais

Brazil
viniciussantos@decom.cefetmg.br

Diana Sasaki
PSL, Université Paris-
Dauphine and CNRS
LAMSADE UMR 7243
France
diana.sasaki@gmail.com

[^0]: 2000 AMS Subject Classification: 05C15.
 Key Words and Phrases: total coloring, snarks, NP-complete.
 Supported by CNPq and CAPES.

