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Abstract

The firefighter game is a model of the containment of the spread-

ing of an undesired property within a network, like an infecting dis-

ease. In 2007, Finbow et al. showed that finding an optimal strat-

egy is NP-hard for trees of maximum degree three, and presented

a tractable case on graphs of maximum degree three when the fire

breaks out at a vertex of degree two. This implies that the fire-

fighter game is hard for graphs of maximum degree three such that

the fire breaks out in a vertex of degree three. So, a natural question

arises: Is there a subclass of graphs of degree at most three for which

the optimal strategy can be computed efficiently? In this paper, we

show how to determine optimal strategies for Blanusa, Flower, and

Goldberg snarks. We calculate their surviving rate, which is average

proportion of vertices that can be saved.

1 Introduction

The Firefighter game was introduced by Hartnell at the 25th Manitoba

Conference on Combinatorial and Computing in Winnipeg (1995). It is
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a model of the containment of the spreading of an undesired property

within a network, like an infecting disease. Let (G, v) be a pair where G

is a simple, undirected and connected graph, and v is a specified vertex

of G, the root of G. The game proceeds in rounds. At round 0, a fire

breaks out at vertex v. In subsequent rounds, the firefighter defends at

most one vertex, which is not burning and was not defended in previous

rounds; and the fire spreads to all vertices of G that are neither burning

nor defended and have a burning neighbour. Once burning or defended,

a vertex remains so for the rest of the game. The process ends when the

fire can spread no further. The objective is to build a strategy in order to

minimise the damage on the graph, that is, the player chooses a sequence

of vertices for the firefighter to protect, so as to burn the minimum number

of vertices on the graph.

FIREFIGHTER

Instance: A rooted graph (G, v) and an integer k ≥ 1.

Question: If the fire breaks out at v, is there a strategy under

which at most k vertices burn on graph G?

Let sn(G, v) denote the maximum number of vertices of G that the

firefighter can save when the fire breaks out at vertex v. When there is

no ambiguity, we write only sn(v), and we emphasise that generally the

parameter sn(G, v) depends heavily on v. Let ρ(G, v) = sn(G, v)/n be the

proportion of vertices saved where n denote the order of G. The surviving

rate ρ(G) of a graph G with order n is defined to be the average proportion

of vertices that can be saved when a fire breaks out at a random vertex

of the graph, i.e.,

ρ(G) =
1

n

∑
v∈V

ρ(G, v) =
∑
v∈V

sn(v)

n2
.

MacGillivray et al. [MW03] showed that firefighter is NP-complete

even if G is bipartite. Finbow et al. [FKMR07] showed that firefighter



The Burning of the Snark 3

is NP-complete for trees of maximum degree three, and presented a tractable

case on graphs of maximum degree three when the fire breaks out at

a vertex of degree two. This implies that the firefighter problem

is NP-complete for graphs of maximum degree three such that the fire

breaks out in a vertex of degree three. Even with respect to approxima-

tion algorithms for the firefighter problem and its variants, there exist

only few known results on trees [CVY08, CDD+13, HL00] and graphs of

bounded treewidth [CCVZ10]. Given the difficulty of the firefighter

problem, it is natural to study this problem for graph classes: outerplanar

graphs [WYZ11]; interval, split, permutation, and Pk-free graphs [FHvL12];

planar graphs [KWZ12]; square girds and hexagonal grids [GKP14].

Here we study the firefighter problem on some well-known snarks.

Snarks are simple connected bridgeless cubic graph whose edges cannot

be properly coloured with three colours. The name snark was given by

Gardner in 1976 and was based on the poem by Lewis Carroll “The Hunt-

ing of the Snark”. The definition of snarks was motivated by the search of

counter-examples to the four-colour conjecture. The importance of these

graphs stems so far from the fact that several relevant conjectures stated

in the past would have snarks as minimal counter-examples: Tutte’s 5-

Flow Conjecture, the 1-Factor Double Cover Conjecture, and the Cycle

Double Cover Conjecture. In this work, we contribute to the study of

firefighter by presenting an algorithm that returns optimal strategies

for Blanusa, Flower and Goldberg snarks [Bla46, CDdM11, Gol81, Isa75,

SDdF11] and we calculate their surviving rates.

2 Main results

Our results are based on work of Fomin et al. [FHvL12] who showed

an optimal strategy for interval graphs using the idea of surrounding

the fire by a special vertex set. Since Blanusa, Flower, and Goldberg

snarks [Bla46, CDdM11, Gol81, Isa75, SDdF11] are constructed using ba-

sic blocks, we use a “sufficient” number of blocks, called container sub-
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graph, and prevent the fire from spreading to the graph by defending

“extreme” vertices of the container subgraph. In our implemented al-

gorithm we investigate all possible strategies on the container subgraph,

which yields an overall optimal strategy for Blanusa, Flower and Goldberg

snarks.

Throughout this section, we consider a snark G, with vertex set V (G)

and edge set E(G). Furthermore, we consider V (G) = V (B0) ∪ V (B1) ∪
. . . ∪ V (Bl−1), where each Bi is a basic block, 0 ≤ i ≤ l − 1, with l

sufficiently large. We remark that these snarks have the property that

there are no edges between Bi and Bj , j − i more than 2. Given a set

S and a property Π, we say that S is minimal with respect to Π, if no

proper subset of S has property Π. Let u, v ∈ V (G). A (u, v)-path is a

sequence of distinct vertices u0u1 . . . uk such that ui is adjacent to ui+1,

0 ≤ i ≤ k − 1, for u0 = u, and uk = v. Let u, v ∈ V (G) be non-adjacent.

A set S ⊆ V (G) is called (u, v)-separator, if u and v belong to different

components of G − S. The vertex u ∈ Bi is a link-vertex if it has a

neighbour in Bi−1 or Bi+1. Let u ∈ V (Bi), v ∈ V (Bj), i ̸= j, and let k

be the number of edges that join block Bj to blocks Bj−1 and Bj+1. It

is possible to obtain a minimal (u, v)-separator of size k, by choosing all

link-vertices of Bj−1 ∪ Bj+1 that have a neighbour in V (Bj). We denote

by Sv a minimal (u, v)-separator with cardinality k as defined previously

such that dG(u, v) ≥ dG(w, v) ≥ k + 1 for all w ∈ Sv. Since Sv has order

k and the fire needs at least k + 1 rounds to burn any vertex of Sv, if σ

is a strategy that defends all vertices of Sv in the first k rounds, then σ

surrounds the fire. Let Cσ be the component of G[V (G)\Sv] that contains

u. Note that σ saves all vertices of Cσ. We call Sv a set of extreme vertices

and the induced subgraph G[(V (G)\V (Cσ))∪Sv] a Sv-container subgraph.

Lemma 1. If σo is an optimal strategy for the Sv-container subgraph

such that the fire starts at v and saves all vertices of Sv, then strategy σo

is an optimal strategy for G.

Proof. Let σ be any strategy such that Sv is a set of defended vertices, let

Cσ be the component that contains u in G[V (G) \ Sv], and let w ∈ Cσ.
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Since Sv is (u, v)-separator, each (v, w)-path has a vertex of Sv. By hy-

pothesis, σo saves all vertices of Sv in the Sv-container subgraph. So each

(v, w)-path has a vertex defended by σo, and therefore, the vertex w is

saved by strategy σo. Since σo is an optimal strategy for the Sv-container

subgraph and it is a strategy for G that saves all vertices of V (Cσ) ∪ Sv,

we have that σo is an optimal strategy for the whole graph G. 2

We remark that if there exists a strategy σ for the Sv-container sub-

graph that burns at least one vertex of Sv, then we cannot conclude that

σ is an optimal strategy for the whole graph G. The defence test algo-

rithm was implemented and executed on the Sv-container subgraph and

it investigates all possible strategies. By the symmetry of the snarks and

Lemma 1, finding optimal strategies for these infinite classes of graphs

reduces to a finite problem, which we solved by exhaustive search. Each

defence is a t-permutation P (nv, t) of the vertex set of the Sv-container

subgraph, where nv is the order of the Sv-container subgraph and t is the

number of vertices defended by the strategy during the game.

First, we apply the defence test algorithm on Blanusa snarks BFl

and present its surviving rate. We refer to Figure 1 for an example of the

first Blanusa snark BF5.

Lemma 2. Let BFl, l ≥ 5, be a Blanusa snark. A single fire starting

at vertex v ∈ {xi, zi, ri, ti}, with 0 ≤ i ≤ l − 1, can be contained by one

firefighter per round in four rounds, and the minimum number of burned

vertices is seven.

Proof. We refer to Figure 1 for the notation applied. The number of

edges that join one basic block to its adjacent blocks in BFl, l ≥ 5,

is four, therefore |Sv| = 4 for all vertex v ∈ V (BFl). If v = x0, we

consider Sx0 = {t1, r1, rl−1, tl−1}. Note that the distances dBFl
(x0, t1) =

dBFl
(x0, rl−1) = 5, and dBFl

(x0, r1) = dBFl
(x0, tl−1) = 6. Considering

σ = (t1, r1, rl−1, tl−1), we have Cσ = {r1, t1}∪B2 ∪ . . .∪Bl−1, that is, the

set Sx0-container subgraph is equal to B0 ∪B1 ∪Bl−1 ∪ {rl−1, tl−1}.
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Applying the defence test algorithm for (Sx0-container subgraph, x0),

it returns the strategy σDT = (a, r0, t0, rl). Thus, all vertices of Sx0 are

saved by σDT and, by Lemma 1, the strategy σDT is an optimal strategy

for BFl. The total number of burned vertices given by σDT is seven. By

similar arguments, the algorithm obtains optimal strategies for each ver-

tex xi, zi, ri, ti with 0 ≤ i ≤ l − 1. 2

We present in Table 1 the corresponding results for other fire sources in

BFl.

Theorem 1. The surviving rate ρ of Blanusa snark BFl is 1 − 64l+47
2(5+4l)2

,

l ≥ 5.

Proof. Since |V (BFl)| = 10+8l, by Lemma 2 and similar results for other

fire sources (Table 1), 0 ≤ i ≤ l − 1 and 1 ≤ j ≤ l − 1, we obtain:


sn(BFl, xi) = sn(BFl, zi) = sn(BFl, ri) = sn(BFl, ti) = 3 + 8l

sn(BFl, a) = sn(BFl, b) = sn(BFl, u0) = sn(BFl, v0) = sn(BFl, s0)= 2 + 8l

sn(BFl, uj) = sn(BFl, vj) = sn(BFl, yj) = sn(BFl, sj) = 1 + 8l

sn(BFl, y0) = 8l

.

Thus,

ρ(BFl) = 4

l−1∑
i=0

3 + 8l

(10 + 8l)2
+ 5

(
2 + 8l

(10 + 8l)2

)
+ 4

l−1∑
j=1

1 + 8l

(10 + 8l)2
+

8l

(10 + 8l)2

=
1

(10 + 8l)2
[
(8l)2 + 32l + 6

]
= 1 − 64l + 47

2(5 + 4l)2
.

2

a x0 u0 r0 x1 u1 r1 x2 u2 r2 x3 u3 r3 x4 u4 r4

b z0 v0 t0 x1 v1 t1 x2 v2 t2 x3 v3 t3 x4 v4 t4

y0 s0 y1 s1 y2 s2 y3 s3 y4 s4

x5 u5 t5

z5 v5 t5

y5 s5

Figure 1: Blanusa Snark BF5.
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Figure 2: Blanusa Snark BS1.
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Figure 3: Goldberg Snark G3.
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Figure 4: Flower Snark F9.

The same analysis was performed for Blanusa BSl, Flower Fl, and Gold-

berg Gl snarks, (Figures 2, 3, and 4), and we summarise our results in

Table 1.

Snark G |V (G)| Fire source
Number

of rounds

Total

burned

vertices

ρ(G)

BFl 10 + 8l

xi, zi, ri, or ti 4 7

1− 64l+47
2(5+4l)2

a, b, u0, v0, or s0 4 8

uj , vj , yj , or sj 5 9

y0 5 10

BSl 10 + 8l

xj , zj , rj , or tj 4 7

1− 32l+25
(5+4l)2

a, b, c, e, g, r0, s0 or t0 4 8

uj , vj , yj , or sj 5 9

d or f 5 10

Fl 4l
ui, xi, or yi 6 14

1− 61
16lvi 6 19

Gl 8l

vi 6 12

1− 57
32l

xi, yi, zi, wi, si, or ti 6 14

ui 8 18

Table 1: The indices 0 ≤ i ≤ l − 1 and 1 ≤ j ≤ l − 1 are related to label

blocks.
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[GKP14] Tomáš Gavenčiak, Jan Kratochv́ıl, and Pawe l Pra latb, Firefighting

on square, hexagonal, and triangular grids, Discrete Math. 337 (2014),

142–155. MR 3262370

[Gol81] Mark K. Goldberg, Construction of class 2 graphs with maximum vertex

degree 3. J. Combin. Theory Ser. B 31 (1981), no. 3, 282–291. MR 638284

[HL00] Bert Hartnell and Qiyan Li, Firefighting on trees: how bad is the greedy

algorithm?, Proceedings of the Thirty-first Southeastern International Con-

ference on Combinatorics, Graph Theory and Computing (Boca Raton, FL,

2000), vol. 145, 2000, pp. 187–192. MR 1817954

https://epubs.siam.org/doi/10.1137/100791130
https://epubs.siam.org/doi/10.1137/100791130
https://mathscinet.ams.org/mathscinet-getitem?mr=2735926
https://www.sciencedirect.com/science/article/pii/S0166218X13001959?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=3101721
https://www.sciencedirect.com/science/article/pii/S0012365X11000616?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0012365X11000616?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=2787309
https://link.springer.com/chapter/10.1007%2F978-3-540-92182-0_25
https://link.springer.com/chapter/10.1007%2F978-3-540-92182-0_25
https://mathscinet.ams.org/mathscinet-getitem?mr=2539937
https://link.springer.com/chapter/10.1007%2F978-3-642-30347-0_19
https://link.springer.com/chapter/10.1007%2F978-3-642-30347-0_19
https://www.sciencedirect.com/science/article/pii/S0012365X0600776X?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=2326170
https://www.sciencedirect.com/science/article/pii/S0012365X14002477?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0012365X14002477?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=3262370
https://www.sciencedirect.com/science/article/pii/0095895681900307?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0095895681900307?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=638284
https://mathscinet.ams.org/mathscinet-getitem?mr=1817954


The Burning of the Snark 9

[Isa75] Rufus Isaacs, Infinite families of nontrivial trivalent graphs which are not

Tait colorable, Amer. Math. Monthly 82 (1975), 221–239. MR 0382052

[KWZ12] Jiangxu Kong, Weifan Wang, and Xuding Zhu, The surviving rate of

planar graphs, Theoretical Computer Science 416 (2012), 65–70.

[MW03] Gary MacGillivray and Ping Wang, On the firefighter problem, J. Com-

bin. Math. Combin. Comput. 47 (2003), 83–96. MR 2019416

[SDdF11] D. Sasaki, S. Dantas, and C. M. H. de Figueiredo, On coloring problems

of snark families, LAGOS’11–VI Latin-American Algorithms, Graphs and

Optimization Symposium, Electron. Notes Discrete Math., vol. 37, Elsevier

Sci. B. V., Amsterdam, 2011, pp. 45–50. MR 2874281

[WYZ11] Weifan Wang, Xubin Yue, and Xuding Zhu, The surviving rate of an

outerplanar graph for the firefighter problem, Theoret. Comput. Sci. 412

(2011), no. 8-10, 913–921. MR 2797416

https://www.jstor.org/stable/2319844
https://www.jstor.org/stable/2319844
https://mathscinet.ams.org/mathscinet-getitem?mr=0382052
https://mathscinet.ams.org/mathscinet-getitem?mr=2019416
https://www.sciencedirect.com/science/article/abs/pii/S1571065311000102?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1571065311000102?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=2874281
https://www.jstor.org/stable/2319844
https://www.jstor.org/stable/2319844
https://mathscinet.ams.org/mathscinet-getitem?mr=2874281


10 V. Costa, S. Dantas and D. Rautenbach

Vitor Costa Simone Dantas

Institute of Mathematics and Institute of Mathematics and

Statistics Statistics

Rio de Janeiro State University Fluminense Federal University

Rio de Janeiro, Brazil Niterói, Brazil
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