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Abstract

The Cluster Editing problem aims to transform an undirected

graph into a vertex-disjoint union of cliques by adding or deleting

at most k edges. It has been proven NP-hard several times as it

has been discovered and rediscovered in important application ar-

eas. Most biologists, social scientists and other practitioners have

databases and networks that need clustering. This paper describes

four approaches to more realistically model what is found in prac-

tice: 1) Parameterized Complexity, kernelization, and the Cluster

Editing Crown Reduction Rule, 2) Bigger, more aggressive, aggre-

gate parameterization, 3) Fuzzy Cluster Editing and moving ap-

proximation into the modeling, and 4) Working “bottom-up” uniting

kernelization and heuristics. Some applications are discussed.

1 Introduction

Clustering of information is important in various domains or in data-

mining for related sets of objects. A graph is obtained by setting a thresh-

2000 AMS Subject Classification: 68R10 and 05C69.

Key Words and Phrases: Computational Complexity, Parameterized Complexity,

Multivariate Algorithmics, Cluster Editing

http://doi.org/10.21711/231766362015/rmc442
https://orcid.org/0000-0002-5097-9929


2 F. A. Rosamond

old on some measure of pairwise relatedness or similarity. Vertices repre-

sent objects. Similar objects are connected by an edge. The aim of clus-

tering is to partition the vertices into disjoint subsets, so that genes (or

other objects) that correspond to the vertices within each subset display

some measure of homogeneity. Likely, the input graph is corrupted and

we have to clean (edit) the graph to reconstruct the clustering by adding

edges in the case of omissions or deleting edges when there are false posi-

tives. There are many variations on cluster editing because there are many

applications. An interpretation may be the distance between objects as a

measure of their similarity: the larger the distance, the more similar the

objects. An objective, parameterized by the desired number k of clus-

ters, may be to find a k-clustering that minimizes the sum of distances

between pairs of objects in different clusters (minimum k-cut). Another

interpretation may be that the larger the distance, the more dissimilar

the objects. Objectives parameterized by the desired number k of clus-

ters may be: minimize the maximum diameter of a cluster (k-clustering),

minimize the average distance to a centroid object (k-median), minimize

average squared distance to an arbitrary centroid object (k-means), max-

imize the sum of distances between pairs of objects in different clusters

(maximum k-cut).

The Cluster Editing problem was first introduced in the context of

machine learning under the name, Correlation Clustering [BBC04].

The underlying model is that objects can be truly categorized, and prob-

abilities are given about pairs of objects belonging to common categories.

Bansal et al. [BBC04] addressed minimizing disagreements and maximiz-

ing agreements, proved NP-hardness and gave a constant-factor approxi-

mation algorithm for the special case in which the graph is complete (full

information) and every edge has the same weight.

An O(log n)-approximation [DFHT05] has been shown for the general

case based on a linear-programming rounding technique, and an O(r3)-

approximation for Kr,r-minor-free graphs. The problem is equivalent to

minimum multicut, and therefore APX-hard and difficult to approximate
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better than Θ(log n) [DFHT05]. The problem remains NP-hard on graphs

with maximum degree six [KU12]. There is no PTAS unless P = NP, but

there is a polynomial-time 4-approximation [CGW05].

Cluster Editing is fixed-parameter tractable under various param-

eterizations. Parameterized complexity is briefly reviewed in the next

section.

2 Parameterized Complexity

Parameterized complexity studies a two-dimensional generalization of

polynomial-time where in addition to the overall input size n, every prob-

lem comes with a secondary measurement, the parameter [DF13]. The

parameter allows us to examine various aspects of the data. For example,

the NP-complete Closest Substring problem, an important consensus

problem in computational biology, has an input of k strings over an alpha-

bet Σ and non-negative integers d and L. The question asks if there is a

string s of length L, and each of the given strings has a length L substring

that differs from s by not more than distance d. The complexity of the

problem has been examined when parameterized by d alone, by k alone,

by d and k together, and for L, d and k combined. Adding parameters can

lead to increased realism, better understanding of the problem properties,

new formulations of the question, and ultimately to more efficient and

practical algorithms.

A problem is fixed-parameter tractable (FPT) if it can be decided in

time O(f(k)nc) or (additively) O(f(k) + nc), where n is the input size

and k is a feature of the problem called the parameter, f is an arbitrary

function and c is a constant independent of both n and k. For examples,

consider clique and vertex cover. A clique in a graph is a subset of the

vertices such that every two distinct vertices in the subset are adjacent. A

clique is also called a cluster or complete graph. A vertex cover is a subset

of the vertices such that every edge in the graph has an endpoint in the

subset (edges are “covered” by vertices). Those vertices not in the cover
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form an independent set. Clique and vertex cover are duals.

Finding a Vertex Cover or finding a Clique in a graph are both NP-

complete problems. They can be solved by brute force: “generate and

check all k-subsets,” naively O(n(k+1)). In the parameterized setting they

differ. Clique, parameterized by k, the size of the clique, is not FPT

and remains brute force, but Vertex Cover is FPT with running time

O(1.2738k + kn), where the parameter k is the size of the vertex cover

[CM12].

A parameterized problem is said to admit a kernel if, in polynomial

time, the size of the instance I can be reduced to a function in k, the

parameter, while preserving the answer. A problem is FPT if and only if

it is kernelizable. Kernelization can be thought of as preprocessing with

guarantee via a suite of reduction rules in which an input to the problem

is replaced by a smaller input, called a kernel. Vertex Cover can be

reduced to an instance of size 2k by using only three reduction rules.

(1)Degree 0 Rule: If G has a vertex of degree 0, delete that

vertex since it cannot cover any edges, and reduce the size of

G. The size of the parameter k stays the same.

(2)Degree 1 Rule: If G has a vertex u of degree 1, delete u

and its edge. Put its neighbor v in the vertex cover (since v

covers the edge (u, v) and possibly more edges). Reduce G to

G′ = G− u− v and k reduces to k − 1.

(3)Large Degree Rule: If G has a vertex u and the degree

u ≥ k, then put u into the vertex cover (else we must take all

k of its neighbors). Reduce G to G′ = G−u−v and k reduces

to k − 1.

Each of these rules must be proved sound. That is, G′ is a Vertex Cover

if and only if G is. Reduction rules often cascade, reducing the input even

further (e.g., invoking the Large Degree Rule may introduce vertices of

degree 1 so that the Degree 1 Rule can be invoked again). Running time

can be improved by interleaving kernelization with depth-bounded search
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trees: kernelize, begin a bounded search tree, rekernelize the children,

repeat. The reduced instance still must be solved, by brute force or other

methods.

The parameterized Cluster Editing problem is defined as follows:

Cluster Editing

Input: (G, k)

Parameter: k

Question: Can G be transformed into a disjoint union of complete

graphs

(a cluster graph) by adding or deleting ≤ k edges?

Cai showed that it is FPT to decide whether an input graph can be

transformed into a graph with a specified hereditary property by deleting

vertices and/or edges, and adding edges, when the hereditary property can

be characterized by a finite set of forbidden induced subgraphs [Cai96].

Cluster Editing is equivalent to destroying (by adding/deleting edges)

all occurrences of an induced P3, and therefore by [Cai96] is FPT by a

search tree algorithm that runs in time O(3kn4) .

There has been steady improvement in run time and kernel size for

Cluster Editing. For references, see the survey [BB13] and the Table

of Races on the Parameterized Complexity wiki (http://www.fpt.wikidot.

com) which reports the current best known f(k) and kernel size for many

FPT problems. The current best running time is O(1.62k+m+n), found

by searching for a conflict triple, then branching on integer-weighted in-

stances [Böc12]. Current best kernel size is 2k vertices, using kernelization

based on edge cuts [CM12].

3 Crown Reduction Rule

The Degree 1 Reduction Rule for Vertex Cover was generalized to

the hugely useful Crown Reduction Rule for Vertex Cover [Fel06], and

has led to crown rules for other problems including Cluster Editing

http://www.fpt.wikidot.com
http://www.fpt.wikidot.com
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Figure 1: Degree 1 Reduction Rule and its extension to the Crown Re-

duction Rule for kernelizing Vertex Cover

[FLRS07], see Figure 1. These rules are important in applications such as

the Clustal XP portal that allows biochemists an extended and parallel

version of Clustal [DFRS04], and in clustering projects such as Neuro-

sciences and Alcoholism, Optimization and Metaheuristic Methods for

Cancer Research, Mouse Phenotype Analysis, Combinatorial Analysis of

North Sea Historical Data, and others [AKFLS07]. Cluster editing re-

duction rules have been used to reduce leukemia gene expression datasets

[BB13].

Using the 4-approximation [CGW05], Fellows et al. [Fel06] found a

kernel size of 24k vertices for Cluster Editing and predicted a 6k kernel,

later found by using a Cluster Editing Crown Rule [FLRS07].

4 Use big, aggregate parameterization

Contrary to expectation, adding parameters does not make a problem

more difficult, and it is still elegant [AK13]. Abu-Khzam [AK13] noted

that in some applications, it is important to distinguish between the ex-

pected number of false positives and that of false negatives. Frequency of

errors could be low in general (noise), meaning that errors per vertex are

few. In practice, total number of errors per data element may be small.

Abu-Khzam designed a big aggregate parameter (k, a, d, s) where k de-

notes number of edge additions or deletions, each vertex is incident with

at most a edge additions, and at most d edge deletions, s is the minimum
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size of the cliques in the resulting cluster graph. Additional parameters,

say for outliers could be added. Abu-Khzam provides 17 data reduction

rules and shows the problem is FPT if s > 2(a+ d).

Other variants of Cluster Edit utilize aggregate parameterization.

The p-Cluster Edit problem asks whether G can be transformed into a

cluster graph with at most p cliques by adding/deleting at most k edges.

The aggregate parameter is (k, p). The (p, t)-Constrained Cluster

Editing problem transforms G into a cluster graph with at most p clus-

ters, applying at most k edits, and every vertex v has edit degree at most

r(v) < t, e.g., individual edge-edit constraints for every vertex. References

can be found in [BB13, FKP+13]. Including more aspects of a problem

via big, aggregate parameterization (a “Santa Claus sack” filled with vari-

ous sized complexity parameter “gifts”) can more realistically and usefully

describe what is found in practice.

5 Move approximation into the modeling

Features of complicated clustering problems can be moved into the prob-

lem definition as parameters, allowing more realistic modeling. Complete

information about the input often is not available. Some input vertex pairs

may have an undetermined, unknown or undecided relation. Bodlaender

et al. [BFH+10] investigated clustering with partial information, a more

realistic model. They defined a fuzzy graph where E is the set of real

edges, F is the set of unknown relationship (fuzzy edges), and between all

other pairs of vertices in the graph are (definite) non-edges. Fuzzy Clus-

ter Editing has kernel size O(k2 + r) when the input is a fuzzy graph

and the parameter is (k, r), where k is a cost parameter of editing, and

r is a structural parameter, the minimum number of vertices required to

cover the undecided edges of the fuzzy graph. The structural parameter is

motivated by applications where only a small number of “trouble-maker”

vertices are the “cause” of the uncertain information about the input. It

is not known if the problem is FPT when the parameter is k alone.
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6 “Bottom-up” kernelization and heuristics

The approach to algorithm design of abstracting the messy, compli-

cated real-world problem into a simplified, clean special case which is

often proved NP-complete, could be labeled “top down”. As proposed by

Michael Fellows in discussions, a viable alternative is to work “bottom

up,” starting with heuristics that are successful in practice, and incorpo-

rating parameterization. Bastos et al. [BOP+14] coupled reduction rules

forCluster Editing with two greedy constructive heuristics. Their two–

phase algorithm constructs and evaluates step-by-step, a feasible solution.

A local search phase then attempts to improve the initial solution. Ex-

perimental results show that the algorithms are able to find high-quality

solutions in practical runtime.

7 Conclusion

Parameterized complexity algorithm design has a mission to realistically

model what is found in practice and communicate our work to practition-

ers. We offer kernelization and crown reduction rules, aggressive, ag-

gregate parameterization, moving approximation into the modeling and

working bottom-up by finding heuristic subroutines to parameterize as

programmatic directions in this regard.
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