
Matemática Contemporânea, Vol. 44, 1–10

http://doi.org/10.21711/231766362015/rmc4419

©2015, Sociedade Brasileira de Matemática

Polynomial enumeration of chordless

cycles on cyclically orientable graphs

Diane Castonguay Elisângela Silva Dias

Abstract

In a finite undirected simple graph, a chordless cycle is an induced

subgraph which is a cycle. A graph is called cyclically orientable if

it admits an orientation in which every chordless cycle is cyclically

oriented. We propose an algorithm to enumerate all chordless cycles

of such a graph. Compared to other similar algorithms, the proposed

algorithm has the advantage of finding each chordless cycle only once

in time complexity O(n2), where n is the number of vertices.

1 Introduction

Given a finite undirected simple graph G, a chordless cycle is an in-

duced subgraph that is a cycle. A solution to the problem of determining

if a graph contains a chordless cycle of length k ≥ 4, for some fixed value

of k, was proposed by Hayward [Hay87]. Golumbic [Gol80] proposed an

algorithm to recognize chordal graphs, that is, graphs without any chord-

less cycles. The cases where k ≥ 5 were settled by Nikolopoulos and

Palios [NP07].

2000 AMS Subject Classification: 05C30, 05C38 and 05C85.

Key Words and Phrases: chordless cycles, cyclically orientable graphs.

Partially supported by FAPEG – Fundação de Amparo à Pesquisa do Estado de

Goiás.

http://doi.org/10.21711/231766362015/rmc4419
https://orcid.org/0000-0002-6640-0213
https://orcid.org/0000-0002-1132-1518


2 D. Castonguay and E. S. Dias

It is important to observe that finding any chordless cycle of length

k is easier than enumerating all chordless cycles in a graph G. How-

ever, enumeration is a fundamental task in computer science and many

algorithms have been proposed for enumerating graph structures such

as cycles [RT75, Wil08], circuits [Bis10, Tar73], paths [HH06, RT75],

trees [KR00, RT75] and cliques [MU04, TTT06]. Due to the number of

cycles – which can be exponentially large – these kind of tasks are usually

hard to deal with, since even a small graph may contain a huge number

of such structures.

An algorithm to enumerate chordless cycles with O(n +m) time com-

plexity in the output size, where m is the number of edges, was proposed

by Uno and Satoh [US14]. In this algorithm each chordless cycle will ap-

pear more than once in the output. Actually, it will appear as many times

as its length. Thus, the algorithm has O(n · (n+m)) time complexity in

the size of the sum of lengths of all the chordless cycles in the graph.

Dias et al. [DCLJ13] proposed two algorithms to enumerate all chordless

cycles of a given graph G, with O(n+m) time complexity in the output

size, with the advantage of finding each chordless cycle only once. Recall

that the number of chordless cycles can be exponential in the size of the

graph. The core idea of the two algorithms is to use a vertex labeling

scheme, with which any arbitrary cycle can be described in a unique way.

With this, they generate an initial set of vertex triplets and use a DFS

strategy to find all the chordless cycles.

Cyclically orientable (CO) graphs are introduced by Barot et al. in

[BGZ06]. A graph G is CO if it admits an orientation in which any

chordless cycle is cyclically oriented. Such an orientation is also called

cyclic. The authors obtained several nice characterizations of CO-graphs,

being motivated primarily by their applications in cluster algebras. Gur-

vich [Gur08] and Speyer [Spe05] obtained several new characterizations

that provide algorithms for recognizing CO-graphs and obtaining their

cyclic orientations in linear time. For a CO-graph G, we show that the

number of chordless cycles is polynomial in the size of G.



Polynomial enumeration of chordless cycles on cyclically orientable graphs 3

We present an algorithm that verifies whether the given graph is cycli-

cally orientable and if so, enumerates all chordless cycles in polynomial

time.

The remainder of the paper is organized as follows: some preliminary

definitions and comments are presented in Section 2; our algorithm is

introduced in Section 3; time and space complexity and the correctness of

the algorithm are shown in Section 4, and finally we draw our conclusions

in Section 5.

2 Preliminaries

In this section, we present the mathematical definitions that support

our approach to enumerate all chordless cycles of a cyclically orientable

graph.

Let G be a finite undirected simple graph with vertex set V (G) and

edge set E(G). Let n = |V (G)| and m = |E(G)|. We denote by Adj(x) =

{y ∈ V (G)|(x, y) ∈ E(G)}.
A simple path is a finite sequence of vertices ⟨v1, v2, . . . , vk⟩ such that

(vi, vi+1) ∈ E(G) and no vertex appears repeated in the sequence, that is,

vi ̸= vj , for i = 1, . . . , k − 1, j = 1, . . . , k and j ̸= i. A cycle is a simple

path ⟨v1, v2, . . . , vk⟩ such that (vk, v1) ∈ E(G). Note that our definition

of cycle, as in [DCLJ13], does not repeat the first vertex at the end of the

sequence as usually done by other authors. A chord of a path (resp. cycle)

is an edge between two vertices of the path (cycle), that is not part of the

path (cycle). A path (cycle) without chord is a chordless path (chordless

cycle).

A graph G is connected when there exists a path between each pair of

vertices of G, otherwise G is disconnected. A connected component of G

is a maximal connected subgraph of G. A graph is two-connected if it is

connected and it is necessary to eliminate at least two of its vertices in

order to disconnect it.

Two-connected components are important because any chordless cycle



4 D. Castonguay and E. S. Dias

is contained in exactly one of these components. To identify them, we

can use on algorithm based in Szwarcfiter’s ideas [Szw88], that has time

complexity O(n2).

For better understanding of this work, we will present a theorem and a

proposition that is used in our algorithm.

Theorem 1 (Speyer [Spe05]). A graph G is cyclically orientable if and

only if all of its two-connected components are. A two-connected graph is

cyclically orientable if and only if it is either a cycle, a single edge, or of

the form G′∪C, where G′ is a cyclically orientable graph, C is a cycle and

G′ and C meet along a single edge. Moreover, if G = G′ ∪ C is any such

decomposition of G into a cycle and a subgraph meeting along a single

edge, then G is cyclically orientable if and only if G′ is.

Proposition 1 (Speyer [Spe05]). If G is a cyclically orientable graph with

n vertices, then G has at most 2 · n− 3 edges.

3 The proposed algorithm

As we show in Theorem 2, based on the theorems and propositions

described by Speyer [Spe05], Algorithm 1 is able to verify if a given graph

G is cyclically orientable and if so, returns all chordless cycles.

The algorithm is based on the analysis of each two-connected component

found in a given graph as input. Following the idea of Theorem 1, the

algorithm identifies chordless cycles in a two-connected component. This

is achieved by reducing the initial two-connected components to a unique

cycle.

Algorithm 1, initially, verifies if the given graph satisfies Proposition 1,

that is, if the graph has 2 · n − 3 edges. If not, it returns NO. Next, it

finds all two-connected components and it also verifies if each component

satisfies Proposition 1 or if the graph G does not have vertices any with

degree two. If one of these conditions are not satisfied, it returns NO.

After doing the preliminary verifications, the algorithm stores in a queue

F all vertices of degree two of each two-connected component. Vertices



Polynomial enumeration of chordless cycles on cyclically orientable graphs 5

are removed and new ones are added to F during the algorithm execution.

To add and to remove elements of F takes time O(1). This continues to

occur until all vertices of degree two are examined. Observe that if G is

CO, then all vertices will be examined exactly once in F .

The algorithm starts with all the vertices of queue Fand an attempt is

made to find and to eliminate paths (cycles) until the initial two-connected

component is reduced to a cycle and, thus settling whether or not it is

CO. After verifying whether or not a two-connected component is CO,

the algorithm analyses the next component. This will continue for all

components. By the end of the process, the given graph will be classified as

CO if all of its two-connected components are classified as CO; otherwise,

the graph is classified as not CO.

The algorithm returns YES if and only if all two-components return

YES. Therefore, given a two-connected graph G, it determines, in O(n2)

complexity time, whether or not G is CO and, if it is, returns the set of

all chordless cycles C of G.



6 D. Castonguay and E. S. Dias

Algorithm 1: ChordlessCyclesCOGraph(G)

Input: An undirected simple graph G.

Output: Response if G is CO and, if it is, the set C of chordless cycles of G.

1 if (|E(G)| > 2 · |V (G)| − 3) then

2 return NO

3 else

4 foreach two-connected component Gi of G do

5 if (|E(Gi)| > 2 · |V (Gi)| − 3) then

6 return NO

7 C ← ∅
8 foreach two-connected component Gi of G that is not a single edge do

9 initialize the queue F with all vertices of degree(v) = 2

10 while (F is not empty) do

11 take the first element u of queue F

12 if (color(u) = white) then

13 P ← ∅; y ← u

14 x← a, such that a ∈ Adj(u) and color(a) = white

15 while ((degree(x) = 2) and (∃a ∈ Adj(x) : color(a) = white)) do

16 F ← F − {x}; color(x)← gray

17 P ← ⟨key(x), P ⟩; x← a

18 while ((degree(y) = 2) and (∃b ∈ Adj(y) : color(b) = white)) do

19 F ← F − {y}; color(y)← gray

20 P ← ⟨P, key(y)⟩; y ← b

21 if (x ̸= y) then

22 if ((x, y) ∈ E(Gi)) then

23 C ← C ∪ ⟨key(x), P, key(y)⟩
24 degree(x)← degree(x)− 1; degree(y)← degree(y)− 1

25 if (degree(x) = 2) then

26 F ← F ∪ {x}

27 if (degree(y) = 2) then

28 F ← F ∪ {y}

29 else

// we create a new vertex w.

30 Adj(x)← Adj(x) ∪ {w}; Adj(y)← Adj(y) ∪ {w}
31 Adj(w)← {x, y}; degree(w)← 2

32 color(w)← white; key(w)← P

33 else

34 C ← C ∪ ⟨key(x), P ⟩

35 foreach u ∈ V (Gi) do

36 if color(u) = white then

37 return NO

38 return YES, C



Polynomial enumeration of chordless cycles on cyclically orientable graphs 7

4 Algorithm analysis

The correctness of Algorithm ChordlessCyclesCOGraph(G) is divided

into two parts. The first part establishes whether or not G is CO, and

follows from Speyer [Spe05]. The theorem below complete the correctness

of algorithm.

Theorem 2. If a graph G is CO, then Algorithm 1 finds all chordless

cycles of G.

Proof. Suppose G is CO. Since all two-connected components Gi of G are

CO, we can assume that G is two-connected. Denote by G′ the graph

obtained at the end of an iteration of Algorithm 1. In the first case (Line

21), we have that G = G′ ∪ C. All chordless cycles of G are chordless

cycles of G′ or equal to C, since other cycles that contain vertices of the

path P will have a chord (x, y). In the second case (Line 29), we have

that G′ is essentially G, since we identify the new vertex w with P . In

the last case (Line 33), the graph G is a cycle which is clearly a chordless

cycle. ■

The algorithm to determine all two-connected components has time

complexity O(m), see [Szw88]. Based on Proposition 1, the algorithm

starts testing if G has at most 2 ·n−3 edges. Therefore, any computation

takes time O(m) and, in fact, has time O(n).

Our algorithm uses a boolean function color(v) which assigns the value

“white” or “gray” to all vertices. The “gray” vertices are those that we

remove from G and will be identified with a new vertex w or will compose

a new chordless cycle. If G is CO, then all vertices will be added to F

at some stage and afterwards, will be colored “gray”. The algorithm has

O(n) steps each of which is resolved recursively, using DFS. The DFS

algorithm has time complexity O(n + m). Therefore, Algorithm 1 has

time complexity O(n2).



8 D. Castonguay and E. S. Dias

5 Conclusions

We presented an easy to follow algorithm that establishes whether or

not a given graph is CO and enumerates all chordless cycles in a CO-

graph, that has time complexity O(n2). The core idea is to reduce the

given graph, listing the chordless cycles in the process, until we have just

a single cycle and then conclude whether or not the graph is CO.

References

[BGZ06] M. Barot, C. Geiss, and A. Zelevinsky, Cluster algebras of finite type

and positive symmetrizable matrices, J. London Math. Soc. (2) 73 (2006), no.

3, 545–564. MR 2241966

[Bis10] R. Bisdorff, On enumerating chordless circuits in directed graphs, 2010.

[DCLJ13] E. S. Dias, D. Castonguay, H. Longo, and W. A. R. Jradi, Efficient

enumeration of all chordless cycles in graphs, 2013.

[Gol80] M. C. Golumbic, Algorithmic graph theory and perfect graphs, Academic

Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto,

Ont., 1980, With a foreword by Claude Berge, Computer Science and Applied

Mathematics. MR 562306

[Gur08] V. Gurvich, On cyclically orientable graphs, Discrete Math. 308 (2008),

no. 1, 129–135. MR 2370526

[Hay87] R. B. Hayward, Two classes of perfect graphs, Ph.D. thesis, McGill

Univ., 1987.

[HH06] R. Haas and M. Hoffmann, Chordless paths through three vertices, The-

oret. Comput. Sci. 351 (2006), no. 3, 360–371. MR 2202496

[KR00] S. Kapoor and H. Ramesh, An algorithm for enumerating all spanning

trees of a directed graph, Algorithmica 27 (2000), no. 2, 120–130. MR 1746776

[MU04] K. Makino and T. Uno, New algorithms for enumerating all maximal

cliques, Algorithm theory–SWAT 2004, Lecture Notes in Comput. Sci., vol.

3111, Springer, Berlin, 2004, pp. 260–272. MR 2159537

https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/S0024610706022769
https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/S0024610706022769
https://mathscinet.ams.org/mathscinet-getitem?mr=2241966
http://sma.uni.lu/bisdorff/ChordlessCircuits/documents/chordlessCircuits.pdf
https://arxiv.org/abs/1309.1051
https://arxiv.org/abs/1309.1051
https://mathscinet.ams.org/mathscinet-getitem?mr=562306
https://www.sciencedirect.com/science/article/pii/S0012365X0700146X?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=2370526
https://www.sciencedirect.com/science/article/pii/S0304397505006304?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=2202496
https://link.springer.com/article/10.1007%2Fs004530010008
https://link.springer.com/article/10.1007%2Fs004530010008
https://mathscinet.ams.org/mathscinet-getitem?mr=1746776
https://link.springer.com/chapter/10.1007%2F978-3-540-27810-8_23
https://link.springer.com/chapter/10.1007%2F978-3-540-27810-8_23
https://mathscinet.ams.org/mathscinet-getitem?mr=2159537


Polynomial enumeration of chordless cycles on cyclically orientable graphs 9

[NP07] S. D. Nikolopoulos and L. Palios, Detecting holes and antiholes in graphs,

Algorithmica 47 (2007), no. 2, 119–138. MR 2290455

[RT75] R. C. Read and R. E. Tarjan, Bounds on backtrack algorithms for listing

cycles, paths, and spanning trees, Networks 5 (1975), no. 3, 237–252. MR

0401486

[Spe05] D. E. Speyer, Cyclically orientable graphs, 2005.

[Szw88] J. L. Szwarcfiter, Grafos e algoritmos computacionais, 2 ed., Ed. Campus

Ltda, 1988.

[Tar73] R. Tarjan, Enumeration of the elementary circuits of a directed graph,

SIAM J. Comput. 2 (1973), 211–216. MR 0325448

[TTT06] E. Tomita, A. Tanaka, and H. Takahashi, The worst-case time complex-

ity for generating all maximal cliques and computational experiments, Theoret.

Comput. Sci. 363 (2006), no. 1, 28–42. MR 2263489

[US14] T. Uno and H. Satoh, An efficient algorithm for enumerating chordless

cycles and chordless paths, 2014.

[Wil08] M. Wild, Generating all cycles, chordless cycles, and Hamiltonian cycles

with the principle of exclusion, J. Discrete Algorithms 6 (2008), no. 1, 93–102.

MR 2398208

https://link.springer.com/article/10.1007%2Fs00453-006-1225-y
https://mathscinet.ams.org/mathscinet-getitem?mr=2290455
https://mathscinet.ams.org/mathscinet-getitem?mr=0401486
https://mathscinet.ams.org/mathscinet-getitem?mr=0401486
https://arxiv.org/pdf/math/0511233v1.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=0325448
https://www.sciencedirect.com/science/article/pii/S0304397506003586?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0304397506003586?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=2263489
https://arxiv.org/pdf/1404.7610v1.pdf
https://arxiv.org/pdf/1404.7610v1.pdf
https://www.sciencedirect.com/science/article/pii/S1570866707000020?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1570866707000020?via%3Dihub
https://mathscinet.ams.org/mathscinet-getitem?mr=2398208


10 D. Castonguay and E. S. Dias

Diane Castonguay

Instituto de Informática –

Universidade Federal de Goiás

UFG 291 Goiânia, Goiás

Brazil

diane@inf.ufg.br

Elisângela Silva Dias

Instituto de Informática –

Universidade Federal de Goiás

UFG 291 Goiânia, Goiás

Brazil

elisangela@inf.ufg.br


	Introduction
	Preliminaries
	The proposed algorithm
	Algorithm analysis
	Conclusions

