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Abstract

Branch and bound algorithms stand out as the best performing

exact solutions for the Maximum Clique problem. The main recent

advances are basically refinements on the same algorithm, where

heuristic coloring functions are used for bounding. We look into an

attempt to get a tighter bound by applying an heuristic employed in

MaxSat solvers. Such heuristic depends on a reduction between the

two problems. We show how this heuristic works without resorting to

MaxSat terminology, and reformulate it using only graph theoretic

concepts.

1 Introduction

Among the exact algorithms proposed for the Maximum Clique problem

(MC) in the literature, branch and bound schemes stand out as the best

performing from an experimental point of view. Moreover, authors seem to

agree in that the best choice for the bounding function in such algorithms

is the use of (an upper bound on) the chromatic number of the graph.
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Indeed, it is remarkable that the main recent advances on the subject

are essentially variations on the same algorithm, changing only in the

proposed way to color the graph (see [CZ12, Pro12] for recent reviews).

This is also the focus in [LQ10b], which proposes the idea of refining

the bound given by coloring via a rather unusual reduction to the Par-

tial Maximum Satisfiability problem (PMaxSat). The authors report the

experimental performance of their implementation and, based on them,

conclude that the approach “is a very promising research direction”. Also

based on experimental data, they note that, even though the refined en-

coding allows PMaxSat solvers to perform better than is possible using

an encoding previously found in the literature, such solvers are not able

to compete with dedicated branch and bound algorithms for MC.

Schematically their idea may be described as follows. Given a graph G

and a coloring of G, an instance of PMaxSat is computed. This instance

is then given as input to a certain heuristic algorithm that is part of a

PMaxSat solver. If this heuristic is able to output an upper bound on

the number of satisfiable clauses of the PMaxSat instance, this bound is

then translated into an upper bound for the size of the maximum clique

in G, which is tighter than the number of colors in the coloring originally

given. The resulting algorithm is called the MaxCLQ algorithm.

While the reduction proposed in [LQ10b] is not particularly compli-

cated or unnatural, the fact that the algorithm is described in terms of

propositional calculus obscures its graph theoretic meaning. In this work

we show that, although the main novelty presented in [LQ10b] is the use

of (as the authors put it) “MaxSat technology”, its idea can be expressed

in pure graph theoretical terms, and that such description has several ad-

vantages. It leads to an algorithm which is shorter and simpler to describe

and resorts only to usual graph theoretic concepts. Moreover, the resulting

algorithm is a natural one in the sense that no artificial constructions or

formulations are needed when the workings of the heuristic for PMaxSat

are interpreted back in graph theoretic terms. As such, the idea can be

used as a starting point for further refinements and, last but not least, the
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simplification of the algorithm simplifies its analysis.

The work is organized as follows. In Section 2 we outline the usual

branch and bound scheme for MC and how it is improved through an

encoding to PMaxSat. We present this improvement using only graph

theoretical terms in Section 3 and conclude in Section 4.

1.1 Definitions and Notation

A graph G is a pair (V (G), E(G)) where V (G) is a finite set of vertices

and E(G) is a set of (unordered) pairs of vertices, called edges. Two

vertices u and v are neighbors in G if {u, v} ∈ E(G). The neighborhood

of v in G is the set of its neighbors in G and is denoted ΓG(v). The graph

G is complete if any two vertices of G are neighbors.

IfX ⊆ V (G), thenG[X] is the induced subgraph given by V (G[X]) = X

and E(G[X]) = {{x, y} ∈ E(G) : x, y ∈ X}. The set X is a clique

if the graph G[X] is complete and is independent if G[X] has no edges.

The maximum size of a clique in G is denoted ω(G). The Maximum Clique

problem (MC) is the problem of finding a clique of maximum size on a

given graph.

Given an integer k, a k–coloring of a graph G is a surjection

f : V (G) → {1, . . . , k} satisfying f(u) ̸= f(v) for every {u, v} ∈ E(G).

For each 1 ≤ i ≤ k, the set f−1(i) = {v ∈ V (G) | f(v) = i} is called a

color so that the value of f(v) is called the color of v and k is called the

number of colors in the k-coloring f . A coloring of G is a k-coloring of G

for some k. We note that ω(G) ≤ k for any k-coloring of G.

Let V = {x1, x2, . . . , xn} be a finite set of variables. A literal on V is a

variable xi or its negation xi, for some xi ∈ V . An assignment for V is a

set A of literals on V , such that either xi ∈ A or xi ∈ A for each xi ∈ V . A

clause on V is a set of literals on V . A clause is satisfied by an assignment

if (at least) one of its literals is in the assignment. A formula on V is a set

of clauses on V . The Partial Maximum Satisfiability problem (PMaxSat)

is the problem of, given a triple (V, S,H) where V is a set of variables and

S and H are formulas on V , finding an assignment for V that satisfies all
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clauses in H and the maximum possible number of clauses in S.

2 Maximum Clique via MaxSat . . .

The usual branch and bound scheme for solving MC can be stated as

follows (for a detailed explanation, see [CZ12], which also includes several

specific algorithms).

MaxClique(G,Q,K,C)

Input : a graph G, cliques Q and C in G and a set K of vertices

in G.

Output: the clique C or a maximum clique in G[Q ∪K]

containing Q, whichever is larger.

if K = ∅ then
if |Q| > |C| then

C ← Q

else

if |Q|+ upper-bound(G,K) > |C| then
v ← a vertex from K

MaxClique(G,Q ∪ {v},K ∩ ΓG(v), C)

MaxClique(G,Q,K − {v}, C)
return C

In Algorithm MaxClique(G,Q,K,C), the function upper-bound(G,K)

returns an integer b such that ω(G[K]) ≤ b. In this way, the execution of

MaxClique(G, ∅, V (G), ∅) returns a maximum clique in G.

Often, the function upper-bound(G,K) computes a coloring of G[K] and

returns the number of colors in this coloring. This bound, however, may

not be tight for two reasons. First, the coloring may not be optimal, and

second, even if it were, the gap between the size of the maximum clique

and the number of colors needed to color a graph may be arbitrarily large

[GST12].

The coloring bound is refined in [LQ10b] through the resort to a heuris-

tic found in a PMaxSat solver, which is able to detect a set of clauses in

S with a particular property. The idea can be summarized as follows.
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1. compute a coloring f for G[K];

2. set the upper bound b to the number of colors in this coloring;

3. from G, K and the coloring f , compute an instance (V, S,H) for

PMaxSat;

4. use a certain heuristic common inPMaxSat solvers to find a nonempty

set I ⊆ S such that not all clauses in I can be simultaneously satis-

fied while all clauses in H are satisfied;

5. if no such set I is found, return b;

6. otherwise,

(a) decrease the value of b by 1;

(b) remove the clauses in this set I from S;

(c) go back to step (4).

In the next section, we explain all this in graph theoretical terms.

3 . . . and Back Again

Let G be a graph and let f be a coloring of G. We call a set of colors of f

loose if there is no clique in G with one vertex from each color from the set.

As an example, any set of three colors in a coloring of a circuit on 5 vertices

is a loose set. We define a loose family as a family of mutually disjoint loose

sets of colors of f . The idea for the upper bound in Algorithm MaxClique

is straightforward from the following.

Theorem 1. Let G be a graph and let f be a k–coloring of G.

1. If L is a loose set of colors of f , then ω(G) ≤ k − 1, and

2. if S is a loose family, then ω(G) ≤ k − |S|.
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upper-bound(G,K)

Input : a graph G and a set K of vertices in G.

Output: an upper bound on ω(G[K]).

f ← a coloring of G[K]

C ← the set of colors in f

k ← |C|
return k − size-of-loose-family(G[K],C)

The Algorithm size-of-loose-family(G, C) finds and removes from the set

C one loose set of colors at a time in a greedy fashion. Note that, as every

time a loose set of colors is found it is removed from C, it follows that all
loose sets found in this way are mutually disjoint. This is an important

point because otherwise the bound could be decreased erroneously. For

example, this would happen if a loose set is found and this set is actually

a superset of another loose set previously found (any superset of a loose

set is also a loose set).

size-of-loose-family(G, C)
Input : a graph G and the set C of colors of a coloring of G.

Output: the size of a loose family.

mark each color in C as non–tested

s← 0

while C contains a non–tested color do

X ← a non–tested color in C of minimum size

mark X as tested

L← loose-set(G, C, X)

if L ̸= ∅ then
C ← C − L

s← s+ 1
return s

Algorithm loose-set(G, C, X) returns a loose set in C containing the color
X. Note that deciding if the set of all colors in a k-coloring of a graph

G is loose is the same as deciding if there is a clique of size k in G and,

therefore, is an NP-complete problem.
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The following heuristic is used: starting from some vertex v, greedily

look for a clique using one vertex from each color without choosing vertices

from colors of size two or more. The actual clique is not stored, it is enough

to determine if such clique can be found.

Now suppose such heuristic was not able to produce a clique. This fact

alone is not sufficient to find a loose set of colors, mainly because it fixes a

certain vertex v. So, the process is repeated for all vertices v in the color

X. Then, if no clique was found for any v in X, the color X along with

the colors of all vertices that were greedily chosen and the colors where no

vertex could be chosen form a loose set of colors. This process is described

in the Algorithm loose-set(G, C, X).

loose-set(G, C, X)

Input : a graph G, a set of colors C and a color X ∈ C.
Output: a loose set of colors in C containing X, or ∅ if none was

found.

L← {X}
for each v ∈ X do

T ← C
remove X from T

remove every u ̸∈ ΓG(v) from each color in T

while there is no empty color and

there is an unitary color Y = {w} in T do
remove Y from T

remove every u ̸∈ ΓG(w) from each color in T

if T = ∅ then
return ∅

else
add to L the colors in C that became unitary or empty in T

return L
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4 Conclusion and Future Work

Branch and bound algorithms stand out as the best performing algo-

rithms in the literature for MC from an experimental point of view. Sev-

eral algorithms rely on some heuristic coloring as the bounding function.

The MaxCLQ algorithm is no exception, however its main novelty is ap-

plying a heuristic taken from a PMaxSat solver to get a tighter bound.

In this work we converted this novelty back to pure graph theoretic terms,

resulting in a natural heuristic that can be used directly in any branch

and bound algorithm for MC.

As future work, this heuristic can be inserted in other algorithms, quite

directly in those that already use coloring for bounding. Also, there are

other works applying MaxSat techniques for MC [LQ10a, SSTL13] that

may have natural interpretations on graph theory, so similar studies like

the present one may be conducted.
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Departamento de Informática
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