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Abstract

Timber is a two player game played on a directed graph, with

a domino on each arc. The direction of the arc indicates the direc-

tion in which the domino can be initially toppled. If one domino is

toppled, it topples the dominoes in the direction it was toppled and

creates a chain reaction. The goal of this game is to topple all the

dominoes and the player who topples the last dominoes wins. A P -

position is a configuration where the second player can always force a

win. We contribute to the open problem of determining the number

of P -positions showing structural properties to establish whether

a configuration D of a caterpillar is a P -position, expanding the

existing results for paths. We prove that a caterpillar 1 has no P -

position, and we generalize the characterization of paths to double

brooms and to caterpillars with even number of adjacent legs to each

vertex of the spine, as well as to caterpillars with an odd number of

legs adjacent to each vertex of the spine.
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1 Introduction

A combinatorial game is a finite two player game with perfect infor-

mation1 and the aim of its study is usually to know a winning strategy.

Because these games are of pure strategy, they have aroused the inter-

est of many researchers and there exists a rich and recent literature on

Game Theory [ANW07, BCG01, Ren13, Sie13, PDG14]. We studied the

combinatorial game called Timber.

Timber is a two player game introduced by Nowakowski et al. in [NRL+13].

It is an Impartial game, because the players are not distinguished, i.e.,

they both have the same allowed set of moves. Let G = (V (G), E(G))

be a graph. A configuration D = (V (D), E⃗(D)) is an orientation of G.

Timber is played on a directed graph D, with a domino on each arc. The

orientation of the arc represents the available movement of the domino

piece. Each player chooses a domino on some arc (x, y) and topples it in

the direction of vertex y, removing from D all vertices of the connected

component of G minus the edge xy containing y. See Figure 1.

Figure 1: (a) Digraph D; What remains after toppling: (b) (3, 2), (c)

(6, 5).

A P -position is a configuration D in which the second player wins,

1Perfect information is a situation in which all the relevant information is public to

both players, and the set of available moves is also public.
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independent of what the first player plays. The number of P -positions

of a graph G is the number of configurations of the graph G that are a

P -position. The number of P -positions of a path is known [NRL+13].

Our goal is to contribute to the open problem of determining the number

of P -positions of a tree by studying the case where G is a caterpillar.

A N -position is a configuration in which the first player wins [NRL+13].

Notice that the number of configurations in which the first player wins is

2|E(G)| minus the number of P -positions of G.

In Section 2, we briefly present the results shown in [NRL+13] that give

us the number of P -positions of paths and reduce the problem of deciding

whether a tree is a P -position to the same problem in a smaller tree.

Using these results, in Section 3, we study special cases of caterpillars

determining their number of P -positions. Finally, we conclude our work

exposing open problems in Section 4.

2 Known results for Paths and Trees

In [NRL+13], the authors presented the number of P -positions of paths

Ps with s vertices and size (s−1) (the number is 0 when s is even and the
s−1
2 Catalan number when s is odd, i.e., ( (s−1)!

( s−1
2

)!( s+1
2

)!
), and the following

three lemmas about a configuration T⃗ of a tree.

Lemma 2.1 [NRL+13] says that if T⃗ has a leaf with outdegree 1, then T⃗

is not a P -position. Since we intend to study the number of P -positions

of a digraph, thus we do not analyze the cases where there is a leaf with

outdegree 1, because it is not a P -position (the first player wins toppling

this leaf).

Figure 2 and Figure 3 illustrate the Lemmas 2.2 and 2.3, respectively.

Lemma 2.2 [NRL+13] shows that, for each T⃗ such that there exists a

source vertex x with N+(x) = {y, z} and N−(x) = ∅, we can remove the

vertex x and contract the vertices y and z without changing the outcome

of T⃗ of being or not a P -position. Lemma 2.3 [NRL+13] shows that in T⃗
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if A⃗ and B⃗ are two oriented paths starting at w, such that |A⃗| = a and

|B⃗| = b, then we can replace A⃗ and B⃗ by just one oriented path Q⃗ starting

at w, such that |Q⃗| = a ⊕ b, using the operator XOR2, without changing

the outcome of T⃗ of being or not a P -position.

Figure 2: (a) T⃗1; (b) T⃗2; T⃗1 and T⃗2 have the same outcome.

Figure 3: (a) T⃗1; (b) T⃗2; T⃗1 and T⃗2 have the same outcome.

These three lemmas determine an algorithm to decide if a an oriented

tree is a P -position (with complexity O(n2)), presented in [NRL+13], in

which Lemma 2.1 solves the trivial cases and Lemmas 2.2 and 2.3 reduce

a large oriented tree into a smaller one. Observe that the Lemmas 2.2

and 2.3 do not address the number of P -positions of a tree. We use these

lemmas to reduce a particular tree, the caterpillar, in order to contribute

to the open problem of determining the number of P -positions.

2The operator XOR (represented by ⊕) returns a bit 1 when the number of operands

equals to 1 is odd. For example, 11⊕ 5 = 14.
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3 Timber in Caterpillars

A caterpillar cat(k1, k2, . . . , ks) is a tree which is obtained from a central

path v1, v2, v3, ..., vs (called spine) by joining ki new leaf vertices to vi

(called legs), for each i = 1, . . . , s. Thus, the number of vertices is n = s+∑s
i=1 ki. See in Figure 4, an example of caterpillar. Using this definition,

a caterpillar 1 is a cat(1, . . . , 1), i.e., ki = 1, for all i = 1, . . . , s; and

a double broom is a cat(k1, 0, . . . , 0, ks), i.e., ki = 0 for i = 2, . . . , s −
1. Caterpillars are used in Chemical to represent the structure of the

benzenoid hydrocarbon molecule and for this reason are also known as

tree benzenoid or Gutman trees, a researcher who developed the work in

this area.

Figure 4: cat(2, 0, 1, 0, 3, 0).

Next, we present our main results:

Theorem 3.1. Let T be a caterpillar and D be a configuration of T . If

T has a leaf whose outdegree in D is 1, then D is not a P -position.

Proof. Let u be the out-neighbour of v. The first player wins by toppling

the domino on the arc (v, u). (It is a particular case of Lemma 2.1.) ■

Theorem 3.2. Every configuration of a caterpillar 1 is not P -position.

Proof. (by induction in |V (D)|) Base of induction: The shortest caterpillar
1 is cat(1) that has 2 vertices. It is already known that the path with 2

vertices has no P -positions.

Suppose a caterpillar 1 with 2s vertices has no P -positions.
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Let us add one vertex to the spine ofD. By the definition of a caterpillar

1, it is impossible to add one vertex in the spine without adding another

leaf. So we will add two vertices: s+ 1 and s+ 1′. We have the following

options to the orientation of the new arcs in D:

Figure 5: Caterpillar 1 after adding two vertices. (a) Case 1 (b) Case 2

In Case 1, applying Lemma 2.2, we remove the vertex vs+1 and contract

the vertices vs and vs+1′ without changing the outcome. Therefore, we

obtain exactly the case of the induction hypothesis and can conclude that

the caterpillar has no P -positions.

In Case 2, we apply Lemmas 2.2 and 2.3 from the right to the left until

we obtain just a path oriented to the right. The length of this oriented

path is equal to 2R + 1, where R is the number of arcs (vi, vi+1) to the

right, for i ∈ {1, ..., s}. Hence, at the end of the process, we get a path

(u1, ..., u2R+1). This final path has an odd number of arcs. Thus, the

digraph in Case 2 has no P -position.

Therefore, there is no P -position independent of the configuration of

the caterpillar 1.

■

Theorem 3.3. Let G be a caterpillar cat(k1, ..., ks). The number of

P -positions of G is equal to the number of P -positions of a caterpillar

cat(l1, ..., ls), such that if ki is even, then li = 0, and if ki is odd, then

li = 1, for i = 1, ..., s.
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Proof. For i = 1, ..., s:

If ki is even, then we can suppose ki = 2t, for t ∈ Z+, and the vertex

vi has the leaves {u1, u2, ..., u2t}. We apply Lemma 2.3 to pairs of paths

vi, u1 and vi, u2, ..., vi, u2t−1 and vi, u2t. Thus after this process, vertex

vi does not have any adjacent leaf, and we say that in the new caterpillar

li = 0.

If ki is odd, then we can suppose ki = 2t+1, for t ∈ Z+, and the vertex

vi has the leaves {u1, u2, ..., u2t, u2t+1}. We apply Lemma 2.3 to pairs of

paths vi, u1 and vi, u2, ..., vi, u2t−1 and vi, u2t. Thus after this process,

vertex vi has only u2t+1 as an adjacent leaf, and we say that in the new

caterpillar li = 1. ■

So the number of P -positions of a cat(k1, ..., ks) is equal to the number of

P -positions of a cat(k1mod2, ..., ksmod2) and the study of the caterpillars

can be reduced to the study of the binary caterpillars in which ki ∈ {0, 1}.

Corollary 3.4. The number of P -positions of cat(k1, k2, . . . , ks) satisfies:

(i) if each ki is even, for i = 1, . . . , s, then the number of P -positions is

equal to the number of P -positions of a path with s vertices.

(ii) if each ki is odd, for i = 1, . . . , s, then the number of P -positions is

zero.

Proof.

(i) By Theorem 3.3, if ki is even, i = 1, . . . , s, we can replace ki for 0

without changing the outcome. Therefore, this caterpillar has the same

outcome of cat(0, 0, . . . , 0), that is a Ps.

(ii) By Theorem 3.3, if ki is odd, i = 1, . . . , s, we can replace ki for 1

without changing the outcome. Therefore, this caterpillar has the same

outcome of caterpillar 1, and by Theorem 3.2 this caterpillar has no P -

position. ■

Corollary 3.5. Let cat(k1, 0, . . . , 0, ks) be a double broom. The number

of P -positions of a double broom is equal to the number of P -positions of
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a path with s+ k1mod2 + ksmod2 vertices.

Proof. By Theorem 3.3, we can replave k1 and ks for 0 or 1 depending

on the parity of them. Thus, we can make the following analysis of the

number the vertices after this process:

k1 ks vertices in the path

even even 0+s+0=s

even odd 0+s+1=s+1

odd even 1+s+0=s+1

odd odd 1+s+1=s+2

Therefore, the double broom′s case is reduced to the case of the path

with s, s+1 or s+2 vertices, that is the same of the path with s+k1mod2+

ksmod2 vertices.

■

4 Conclusion

In this paper, we studied Timber game restricted to caterpillars, and

give four results that allow us to know the number of P -positions for

certain configurations of caterpillars.

In future works, we intend to find a solution to the number of P -

positions for any caterpillar, to study the minimum number of steps to the

first player win the game in caterpillars and, finally, to get a more efficient

algorithm to reduce the problem of deciding whether a configuration of a

tree is a P -position.
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