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Abstract

A multi-break rearrangement generalizes most of genome rear-

rangements, such as block-interchanges, transpositions and rever-

sals. A k-break cuts k adjacencies over a permutation, and forms

k new adjacencies by joining the extremities according to an arbi-

trary matching. Block-interchange distance is a polynomial problem,

but the transposition and the reversal distances are both NP-hard

problems. A FPT algorithm is known for the multi-break distance

between two permutations. We propose the restricted multi-break

rearrangement (rmb), where a restricted k-break cuts k adjacencies

but forms k new adjacencies according to a fixed matching. By

considering permutations graphs we are able to formulate a better

way to represent the orders of a permutations. Cographs are P4-free

graphs, a subclass of permutation graphs. The permutations that

characterize cographs are the separable permutations, exactly the

permutations which do not contain particular patterns that yield

P4’s. By using their cotree representation, we give an algorithm to

sort by rmb the separable permutations.
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1 Introduction

Genome rearrangements ask for the minimum number of mutational

events over a genome required to transform a genome into another one.

These problems are classical in bioinformatics [FLR+09]. In a mathemat-

ical model we assume a genome as a permutation of integers and we aim

at finding the minimum number of operations to transform a given per-

mutation into the identity permutation, named rearrangement distance,

where several approaches regarding forms of operations are considered.

In the present work we propose the restricted multi-break rearrangement

operation, which generalizes the well-known block-interchange, transposi-

tion and reversal operations, and is a restricted form of the multi-break

operation [AP08].

2 Sorting by rmb and k-rmb

For our purposes, a gene is represented by a unique integer and a chro-

mosome with n genes is a permutation π = [π0 π1 π2 . . . πnπn+1], where

π0 = 0 and πn+1 = n+1. The remaining elements form a bijection from

the set {1, 2, . . . , n} onto itself, and the operations we consider will never

act on π0 nor πn+1.

Definition 2.1. The restricted multi-break rmb(a, b; c1↔d1; c2↔d2; . . .

; ck ↔ dk), where 1 ≤ a ≤ c1 ≤ d1 ≤ c2 ≤ d2 ≤ . . . ≤ ck ≤ dk ≤ b ≤ n, in

π, reverses the interval of π defined by positions a and b, except for the

non-reversible blocks defined by the pairs (ci, di) for 1 ≤ i ≤ k, thereby

transforming π into the permutation π.rmb illustrated in Figure 1:

[π0π1· · ·πa−1 πb· · ·πdk+1 πck · · ·πdk πck−1· · ·πd1+1 πc1 · · ·πd1︸ ︷︷ ︸
k non-reversible blocks

πc1−1· · ·πa πb+1· · ·πnπn+1],

Figure 1: Permutation obtained from a restricted multi-break operation.



Sorting Separable Permutations by Restricted Multi-break Rearrangements 3

A sequence of m restricted multi-breaks sorts a permutation π (or is a

sorting sequence for π) if π rmb1 rmb2 · · · rmbm = ι, where each rmbi is a

restricted multi-break and ι = [0 1 2 . . . n n+1] is the identity permutation.

The k-rmb distance, denoted dkrmb(π) is the length of a minimum sequence

of restricted multi-breaks that sorts π, where each restricted multi-break

has at most k non-reversible blocks. When k = n we call the rmb distance

of π, denoted by drmb(π), by the length of a shortest sorting sequence of

restricted multi-breaks for π.

A rmb generalizes a transposition τ(a, d+1, b+1)= rmb(a, b; a↔d; d+

1↔ b), a block-interchange β(a, d1, c2+1, b) = rmb(a, b; a↔ d1; d1+1↔
c2; c2+1↔b), and a reversal ρ(a, b)=rmb(a, b).

An adjacency (resp. a reverse adjacency) in a permutation π, is a pair

(πi, πi+1) for 0 ≤ i ≤ n such that πi+1 = πi +1 (resp. πi+1 = πi− 1). If it

is neither an adjacency nor a reverse adjacency, i.e. |πi − πi+1| ̸= 1, then

(πi, πi+1) is called a breakpoint, and b(π) is the number of breakpoints of

π. The reduced permutation, denoted gl(π), is obtained by replacing all

consecutive adjacencies by a single element, so we have that b(gl(π)) ≤
b(π) and dkrmb(π) ≥ dkrmb(gl(π)), but drmb(π) = drmb(gl(π)). Note that

this equality also holds on the block-interchange and the transposition

distance problems, but it does not hold on the reversal distance. Regarding

k-rmb distance of a given permutation, we obtain the following bound.

Theorem 2.2. The k-rmb distance of π satisfies dkrmb(π)≥ b(π)
2(k+1) .

Proof. By applying a rmb in π with k non-reversible blocks, the number

of breakpoints of π · rmb is b(π · rmb) ≥ b(π)−(2 + 2k), since the best

case of a rmb(a, b; c1↔d1; c2↔d2; . . . ; ck↔dk) we are able to eliminate a

pair of breakpoints in the external interval (πa−1πa), (πbπb+1) and each

pair of breakpoints of a non-reversible block (πci−1πci), (πdiπdi+1) for

i = 1, . . . , k. Thereby we can conclude the proof by induction on the

number of breakpoints of π. ■
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3 Sorting separable permutations by rmb’s

A graph is a permutation graph [Gol04] if and only if it has an inter-

section model consisting of straight line segments (one per vertex) be-

tween two parallel lines. Every permutation is associated to a permu-

tation graph by the intersection model above. PG(π) = (V,E) is the

permutation graph of π = [0π1 · · ·πnn+1], such that V = {1, 2, · · · , n},
and E = {ij | i < j, πi > πj}. Note that the complementary graph

PG(π) = PG(σ), where σ = πρ(1, n) is the reversal of π.

A cograph is a P4-free graph, i.e. a particular permutation graph that

can be constructed from isolated vertices by disjoint union and join oper-

ations. A permutation σ is a pattern of the permutation π if π contains

a subsequence whose relative ordering matches σ. A permutation is such

that the corresponding permutation graph is a cograph if and only if,

it does not contain neither [2 4 1 3] nor [3 1 4 2] as a pattern, and these

permutations are called separable permutations [BBL98]. The number of

separable permutations of length n is given by the (n−1)-th Schröder

number [Wes95].

Given a cograph we can represent disjoint union and join operations by

its associated tree, named cotree. We construct a cotree by the following

strategy: Given a cograph G, create a leaf node for each vertex of G. If G

is disconnected, create the edges between the root of the cotree and other

internal nodes (which are the connected components of G), and the root

is labeled by 0, corresponding to the union of the connected components

of G. If G is connected, consider its complement graph G (since G is

a cograph and hence if G is connected, G is disconnected), create edges

between the root of the cotree and other internal nodes (which are the

connected components of G), and the root is labeled by 1, corresponding

to the join of the connected components of G. After that we apply the

above strategy to the new internal nodes until we get to the leaves of the

cotree. We have that: the internal nodes on each root-to-leaf path on

the cotree alternate labels 0 and 1; each internal node has at least two
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children (except for the trivial graph); an internal node labeled by 0 that

is parent of p leaves represents p− 1 consecutive permutation adjacencies.

Thus the reduced permutation is obtained by replacing all vertices that

represent the consecutive permutation adjacencies by a single vertex and

by eliminating their parent labeled as 0 if its contains only these leaves

as children; when a reversal is applied, the cotree of G is obtained from

the cotree of G by exchanging the 0/1 labels of the internal nodes and

reflecting the tree.

Given a separable permutation and its corresponding cotree, we present

Algorithm 1, which returns an upper bound for the rmb distance. A rmb

operation can be viewed as a reversal applied over a reduced permutation,

where each block of consecutive permutation adjacencies is considered a

non-reversible block on a rmb operation.

Algorithm 1 Sorting permutation π with cotree T (π) and height h(T (π)).

π ← gl(π); d← 0; T (π) = cotree of PG(π).

while h(T (π)) ≥ 1 do

Apply reversal ρ in the leaves of T (π) (corresponding to a rmb in the

permutation before reducing); d← d+ 1; π ← gl(π.ρ).

end while

return d.

Figure 2 illustrates an example of how to sort the permutation π =

[0 3 2 1 10 11 6 5 4 7 8 912]. Algorithm 1 first obtains the reduced permu-

tation. Now, Algorithm 1 performs a while loop: a reversal is applied,

followed by a reduction where every 0 node that only contains leaves as

children is removed. Given a cotree of gl(π), for every internal node u,

and N(u) the set of its neighbors, we define the layer of u, named lu by

the following iterative construction:

1. i = 1;

2. if layer of each node is given, then stop. Otherwise at step i obtain

T (π);

3. give layer i to each node that has only leaves as children;
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4. return to Item 2 with respect to T (π) relabeled without nodes with

layers already given.

The layer lu, corresponds to the lu-th step the while loop is performed

when u is eliminated by reduction in Algorithm 1. Thereby, we define

the layer of π, named l(π), by the maximum layer among the set I of all

internal nodes of the cotree of π: l(π) = max
u∈I

lu. Note that for a given

permutation π, we can determine l(π) in polynomial time in the cotree.
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Figure 2: Steps to sort π = [0 3 2 1 10 11 6 5 4 7 8 912]. Each reversal ap-

plied over a reduced permutation corresponds to a rmb applied over a

original permutation.

Lemma 3.1. Given a separable permutation π, Algorithm 1 returns l(π)

operations to sort π.

Theorem 3.2. Given a separable permutation π, we have drmb(π) ≤ l(π).
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4 Improving the upper bound by rmb’s

In this work we have developed an algorithm to sort the class of separa-

ble permutations with respect to rmb, which generalizes three well-known

rearrangement operations. Some questions arise: Is it possible to extend

in some sense our strategy for any permutation? Is it possible to develop

another strategy to achieve the exact distance for the separable permuta-

tions?

Regarding the former question, a possible strategy to guarantee an up-

per bound by rmb for a non separable permutation could be transforming

it into a separable permutation eliminating every P4 by a rmb operation,

and after that applying Algorithm 1 to sort the new permutation. But,

as Figure 3 illustrates, a rmb to eliminate a P4 may create a new P4.

Although it happens in general, we can ask for classes of permutations

that do not create a new P4. Furthermore, for which permutations the

strategy to transform them into separable permutations and afterwards

apply Algorithm 1 leads us to an optimal sorting sequence?

Figure 3: Eliminating the P4 corresponding to 15 5 20 10, by the rmb

that inverts between 15 and 5 keeping the non-reversible block elements

between 3 and the one just before 5, we create the P4 corresponding to

5 3 15 4.

Regarding the later question, we consider another graph, let Ad(π) =

(V,A) denote the adjacency directed graph of π, defined by: V = {π1, · · · , πn},
and the directed set of arcs A = {(i − 1, i) : i = 2, · · · , n}. Note that for
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any permutation of length n the adjacency graph is a path of length n.

Keeping the vertices in the same order as the elements corresponding to

the permutation, we can partition the arc set into four kinds of arcs: i)

left straights, Ls, an arc (πi, πi−1) whenever πi−1 = πi + 1, ii) left curves,

Lc, an arc (πi, πj) whenever j < i− 1 and πj = πi + 1, iii) right straights,

Rs, an arc (πi−1, πi) whenever πi = πi−1 + 1 and iv) right curves, Rc, an

arc (πi, πj) whenever j > i+ 1 and πj = πi + 1.

The identity permutation is the unique permutation where all arcs are

right straights, therefore our goal is to transform any path configuration

into the path where all arcs are right straights.

Proposition 4.1. If any π such that Rc = ∅, then drmb(π) ≤ 1.

Proof. Since π has no right curve arc, we can succeed a rmb by trans-

forming each consecutive left straight arcs into consecutive right straight

arcs by inverting such interval; each consecutive right straights is either

not considered in the rmb if those elements are the firsts or the lasts of

the permutation, or is considered as a non-reversible block; and each left

curve arc (a, b) we transform into a right straight by inverting from b until

a considering the non-reversible blocks the corresponding intervals of right

straights between a and b. Note that such elements between b and a yield

consecutive right straight arcs, therefore such rmb does not change the

arcs that are already right straights. ■

Proposition 4.1 suggests us to transform a permutation in each step

into another one by reducing the maximum number of right arcs. So,

one more question arises: how can we maximize the number of right arcs

considering shuffling arcs of different kinds?
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