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On the study of Existence of solutions

for a class of equations with critical

Sobolev exponent on compact

Riemannian Manifold

Carlos Rodrigues da Silva

Abstract

We study the existence of solutions for a class of non-linear dif-

ferential equation with critical Sobolev’s exponent on the compact

riemannian manifold (Mn, g), n > 6. We show that the equation

(1)

∆u + a(x)u = f(x)u2
∗−1 + h(x)uq, (1)

where 0 < q < 1, has solution u > 0, if a, f, h ∈ C∞ satisfies

some growth condition. The equation (1) were studied by [5] in the

euclidean case (for 0 < q < 2∗ − 1) and by [7] in the Riemannian

context (for 1 < q < 2∗ − 1).

1 Introduction

The study of the theory of nonlinear differential equations on Rieman-

nian manifolds, has began in 1960 with the so-called Yamabe problem. At
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a time when little was known about the methods of attacking a non-linear

equation, the Yamabe problem came to light of a geometric idea and from

time sealed a merger of the areas of geometry and differential equations.

Let (M, g) be a compact riemannian manifold of dimension n, n ≥ 3.

Given g̃ = u4/(n−2)g some conformal metrical to the metric g, is well

known that the scalar curvatures R and R̃ of the metrics g and g̃,

respectively, satisfy the law of transformation

∆u +
n− 2

4(n− 1)
Ru =

n− 2

4(n− 1)
R̃u2

∗−1

where ∆ denote the Laplacian operator associated to g.

In 1960, Yamabe [16] announced that for every compact Riemannian

manifold (M, g) there exist a metric g̃ conformal to g for which R̃ is

constant. In another words, this mean that for every compact riemannian

manifold (M, g) there exist u ∈ C∞(M), u > 0 on M and λ ∈ R such

that

∆u +
n− 2

4(n− 1)
Ru = λu2

∗−1. (Y )

In 1968, Trüdinger [15] found an error in the work of Yamabe, which

generated a race to solve what became known as the Yamabe problem,

today it is completely positively resolved, that is, the assertion of Yamabe

is true.

The main step towards the resolution of the Yamabe problem was given

in 1976 by Aubin in his classic article [1]. In [1] Aubin showed that the

statement was true since the manifold satisfy a condition on an invariant

(called Yamabe invariant). Then he used tests functions, locally defined,

to show that non locally conformal flat manifolds, of dimension n > 6,

satisfying this condition. Finally, the problem was completely solved by

R. Schoen [13].

Several disturbances were considered in the Yamabe Problem, all of

analytical characters, both in the sense of equation (with the addition of

other factors) and in the sense of the operator (the Laplacian changed

for the p-Laplacian), and all (at least those listed in this study) using the



On the study of Existence of solutions for a class of equations 225

idea of estimating the corresponding functional by functions uλ, defined

by Aubin. We can cite some articles, such as [2], [3], [6], [7], [8] and [12] .

This work aims to study with problems related to the equation (Y ), al-

though, as we shall see, with different methods from those used by Yam-

abe, these results were obtained in [14]. The equation (1) was studied

simultaneously by Djadli [7] (in the Riemannian context), where he con-

sidered the case 1 < q < 2∗ − 1, and by Gonçalves and Alves [5] (in the

Euclidean context), where they considered the case 0 < q < 2∗ − 1. In

both cases, they have used the Aubin’s functions to perform a condition

that, like [1], was needed to be imposed. Here we use the methods of [7]

and [5] to study the case 0 < q < 1, in the riemannian setting.

The Main Theorem is

Theorem 1.1. Let (M, g) be a compact n−dimensional riemannian man-

ifold with n > 6. Then the equation ∆u + a(x)u = f(x)u2
∗−1 +

h(x)uq, where 0 < q < 1, admits a regular positive solution u, if

(h1) , (h2) and (h3), holds.

The conditions (h1), (h2) and (h3) will be presented and discussed in

the next section.

2 The equation and the conditions

Let (M, g) be a compact n−dimensional riemannian manifold, where

n ≥ 3. Consider the equation (1)

∆u + a(x)u = f(x)u2
∗−1 + h(x)uq,

where 0 < q < 1.

Suppose that a(x) is such that there is λ > 0 satisfying

1

2

∫
M

(|∇u|2 + au2)dV ≥ λ∥u∥2H2
1

∀ u ∈ H2
1 .

Let λo = 1
2 infu∈H2

1 u̸≡0

∫
M (|∇u|2+au2)dV

∥u∥2
H2
1

.
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Remark 1: In the sequence we will use the notations (h1), (h2) and (h3)

to designate three different hipotheses.

The first one, (h1), refers to the function a(x):

(h1) λo > 0.

In order to define the two other hypotheses, (h2) and (h3), we need

some considerations.

According to Hebey and M. Vaugon [11] there is C > 0 such that

∀ u ∈ H2
1 (M),(∫

M
|u|2∗dV

)1/2∗

≤ K(n, 2)

(∫
M

|∇u|2dV
)1/2

+ C

(∫
M
u2dV

)1/2

(2)

where K(n, 2) is the best constant for the inequality (2).

Let Co = inf {C > 0 such that (2) holds ∀ u ∈ H2
1}.

Therefore (see [9])(∫
M

|u|2∗dV
)1/2∗

≤ K(n, 2)

(∫
M

|∇u|2dV
)1/2

+ Co

(∫
M
u2dV

)1/2

(3)

From this(∫
M

|u|2∗dV
)1/2∗

≤ C1∥u∥H2
1
, ∀ u ∈ H2

1 , (4)

where C1 = max {K(n, 2), Co}.

Thus, we obtain ∀ u ∈ H2
1 ,∫

M
f(u+)2

∗
dV ≤ sup

M
|f |

∫
M

|u|2∗dV ≤ sup
M

|f |(C1)
2∗∥u∥2∗H2

1
(5)

where u+ = max {u, 0}.

Analogously, by (4) and by Hölder’s inequality∫
M
h(u+)q+1dV ≤ sup

M
|h|

∫
M

|u|q+1dV

≤ sup
M

|h|vol(M)[2
∗−(q+1)]/2∗

(∫
M

|u|2∗dV
)(q+1)/2∗

≤ sup
M

|h|C2∥u∥(q+1)

H2
1

(6)
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where C2 = vol(M)[2
∗−(q+1)]/2∗(C1)

(q+1) and vol(M) = volume ofM.

Taking α =
C2. sup |h|
q + 1

and β =
(C1)

2∗ . sup |f |
2∗

, we can consider

the second hypotheses:

(h2) f > 0 and h > 0 such that

α

[
α(1− q)

β(2∗ − 2)

](q−1)/[2∗−(q+1)]

+ β

[
α(1− q)

β(2∗ − 2)

](2∗−2)/[2∗−(q+1)]

< λo.

To define the last hypotheses, let us consider xo ∈ M such that

f(xo) = max
M

f . Thus, the third condition is:

(h3)
2R(xo)

n− 4
− 8(n− 1)a(xo)

(n− 2)(n− 4)
>

∆f(xo)

f(xo)

where R(x) is the scalar curvature of g at x.

Remark 2: From now on we will consider n > 6.

3 Auxiliary lemmas

To proof the Theorem 1 we need some considerations and two lemmas.

Lemma 3.1. Let 0 < q < 1, 2∗ = 2n/(n− 2), A > 0 and B > 0. For

each

k ∈ N let consider A(k), B(k) and C(k) real numbers such that A(k) −→
A,

B(k) −→ B and C(k) −→ 0, when k → ∞, with C(k) > 0, ∀ k ∈ N.
Define

F (t, k) = A(k).t2 − B(k).t2
∗ − C(k).tq+1.

Then for a large enough k, there exist tk > 0 such that

F (tk, k) = max
t≥0

F (t, k) > 0
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with the aditional property that, if to =

(
2A

2∗B

)1/(2∗−2)

, then tk −→

to when k → ∞.

Moreover, if A(k) = A+O(1/k), B(k) = B + O(1/k) and C(k) =

O(1/k), then

tk = to +O(1/k).

Proof of Lemma 1:

Take a big enough k such that A(k), B(k) > 0.

Hence, lim
t→∞

F (t, k) = −∞. Therefore there is tk ≥ 0 such that

F (tk, k) = max
t≥0

F (t, k).

On the other hand,

F (t, k) = t2
[
A(k) − B(k).t2

∗−2 − C(k).tq−1
]
.

Let us define

g(t, k) = B(k).t2
∗−2 + C(k).tq−1.

Since 2∗ − 2 > 0, q − 1 < 0 and B(k), C(k) > 0 we have that

lim
t→0+

g(t, k) = +∞ and lim
t→∞

g(t, k) = +∞.

Then, there exist sk > 0, such that

g(sk, k) = min
t>0

g(t, k) > 0,

where sk is given by g
′
(sk, k) = 0, namely,

B(k) (2∗ − 2) (sk)
2∗−3 = (1− q)C(k)(sk)

q−2

and then,
sk =

[
(1− q)C(k)

(2∗ − 2)B(k)

]1/[2∗−(q+1)]

.

Whence

g(sk, k) =B(k)

[
(1− q)C(k)

(2∗ − 2)B(k)

](2∗−2)/[2∗−(q+1)]

+ C(k)

[
(1− q)C(k)

(2∗ − 2)B(k)

](q−1)/[2∗−(q+1)]

=[B(k)](1−q)/[2∗−(q+1)][C(K)](2
∗−2)/[2∗−(q+1)]R
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where R =

[
(1− q)

(2∗ − 2)

](2∗−2)/[2∗−(q+1)]

+

[
(1− q)

(2∗ − 2)

](q−1)/[2∗−(q+1)]

> 0.

And with this, as B(k) −→ B > 0 and C(k) −→ 0, when k → ∞,

we obtain

lim
k→∞

g(sk, k) = 0.

Thus, as A(k) −→ A > 0, when k → ∞, we have that, for a large

enough k,

g(sk, k) < A(k).

Therefore,

sup
t≥0

F (t, k) ≥ F (sk, k) = (sk)
2 [A(k)− g(sk, k)] > 0.

Since F (0, k) = 0, we have that F (tk, k) = sup
t≥0

F (t, k) >

0 with tk > 0.

Now, as 0 < q < 1 < 2 < 2∗, for a small t we have that F (t, k) < 0,

what tell us that there is ϵ > 0 such that tk > ϵ for big k.

Analogously, as lim
t→∞

F (t, k) = −∞, there exist T > 0 such that

tk < T for big k.

Then, under a subsequence, tk −→ to, for some to > 0.

On the other hand, as

0 = F
′
(tk, k) = 2A(k)tk − 2∗B(k).(tk)

2∗−1 − (q + 1)C(k).(tk)
q,

A(k) −→ A > 0, B(k) −→ B > 0, C(k) −→ 0 and tk −→ to, obtemos

2Ato = 2∗B(to)
2∗−1. Therefore,

to =

(
2A

2∗B

)1/(2∗−2)

.

To prove the second part of the lemma, we can suppose that tk = to+θk,

where θk −→ 0 when k → ∞.

Now, as 2A(k) = 2∗B(k).(tk)
2∗−2 + (q + 1)C(k).(tk)

q−1



230 C. Rodrigues

and by using that A(k) = A + O(1/k), B(k) = B + O(1/k), C(k) =

O(1/k) and the fact that (tk) is bounded, we obtain

2A = 2∗B.(tk)
2∗−2 + O(1/k).

Consequently,

2A + O(1/k) = 2∗B.(to + θk)
2∗−2 = 2∗B.(to)

2∗−2

(
1 +

θk
to

)2∗−2

.

As 2A = 2∗B(to)
2∗−2 and

(
1 +

θk
to

)2∗−2

= 1 +
2∗ − 2

to
θk + o(θk)

we obtain

θk = O(1/k).

Let consider the functional

J : H2
1 −→ R given by

J(u)=
1

2

∫
M

(|∇u|2 + au2)dV − 1

2∗

∫
M
f(u+)2

∗
dV − 1

q + 1

∫
M
h(u+)q+1dV .

(7)

Thus, J ∈ C1(H2
1 ) and

〈
J

′
(u), v

〉
=

∫
M

(∇u∇v + auv)dV −
∫
M
f(u+)2

∗−1vdV −
∫
M
h(u+)qvdV ,

(8)

for u, v ∈ H2
1 .

Lemma 3.2. Assume that f > 0 , h > 0 and (h3). Then there is

uo ≥ 0, uo ̸≡ 0 such that

0 < sup
t≥0

J(tuo) <
1

nK(n, 2)n(sup f)(n−2)/2
.

Proof of Lemma 2:

Consider, for each k ∈ N∗,

ψk(x) =


(
1

k
+

1− cos(ρr(x))

ρ2

)1−n
2

−
(
1

k
+

1− cos(ρδ)

ρ2

)1−n
2

if x ∈ Bδ(xo)

0 if x /∈ Bδ(xo)
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where r(x) = dg(x, xo) (the distance function from x to xo with respect

to the metric g), R(xo) = n(n− 1)ρ2, R(xo) is the scalar curvature of

g at xo, and Bδ(xo) is the geodesic ball with center at xo and radius

δ, δ is such that |ρ|δ ≤ π is smaller than the injectivity radius of

M . In the above expressions we use the convention that if R(xo) < 0,

cos(ρr) = cosh(iρr) and if R(xo) = 0,
1− cos(ρr)

ρ2
=

r2

2
.

We define also, for two positive real numbers ν and η such that

ν − η > 1

Iην =

∫ ∞

0
(1 + τ)−ντηdτ

that have the following properties

Iην+1 =
ν − η − 1

ν
Iην and Iη+1

ν+1 =
η + 1

ν − η − 1
Iην+1.

Moreover, if γ ∈ R+

lim
k→∞

[∫ γ

0
(τ +

1

k
)−ντηdτ − kν−η−1Iην

]
is a finite number, if ν−η−1 > 0.

Remark 3: In the following computations we will use that ωn =

2n−1ωn−1I
n
2
−1

n , where ωn−1 is the volume of the unitary ball in Rn,

and K(n, 2)2 =
4

n(n− 2)(ωn)2/n
(see [1] and [10]).

Let vk(x) =

[
n(n− 2)

k

](n−2)/4

ψk(x).

According to the Aubin’s development [1], Djadli [7] or Druet [8] we

have that
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∫
M

|∇vk|2dV =

[
n(n− 2)

k

](n−2)/2 ∫
M

|∇ψk|2dV

=

[
n(n− 2)

k

](n−2)/2 (n− 2)2

4
2n/2k(n−2)/2 ×

ωn−1I
n/2
n

{
1− n(n+ 2)ρ2

4(n− 4)

1

k
+ o(

1

k
)

}
= [n(n− 2)](n−2)/2 (n− 2)2

4
2n/2ωn−1I

n/2
n

{
1− n(n+ 2)ρ2

4(n− 4)

1

k

+o(
1

k
)

}
, (9)

∫
M
a(vk)

2dV =

[
n(n− 2)

k

](n−2)/2 ∫
M
a(ψk)

2dV

=

[
n(n− 2)

k

](n−2)/2 (n− 2)(n− 1)

n(n− 4)
2(n+2)/2k(n−2)/2 ×

ωn−1I
n/2
n

{
a(xo)

1

k
+ o(

1

k
)

}
= [n(n− 2)](n−2)/2 (n− 2)(n− 1)

n(n− 4)
2(n+2)/2 ×

ωn−1I
n/2
n

{
a(xo)

1

k
+ o(

1

k
)

}
, (10)

∫
M
f(vk)

2∗dV =

[
n(n− 2)

k

]n/2 ∫
M
f(ψk)

2∗dV

=

[
n(n− 2)

k

]n/2
2(n−2)/2kn/2 ×

ωn−1I
n
2
−1

n

{
f(xo)−

1

k

(
∆f(xo)

(n− 2)
+
f(xo)nρ

2

4

)
+ o(

1

k
)

}
= [n(n− 2)]n/2 2(n−2)/2ωn−1I

n
2
−1

n ×

f(xo)

{
1− 1

k

(
∆f(xo)

f(xo)(n− 2)
+
nρ2

4

)
+ o(

1

k
)

}
(11)
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and∫
M

(vk)
2∗dV =

[
n(n− 2)

k

]n/2 ∫
M

(ψk)
2∗dV

=

[
n(n− 2)

k

]n/2
2(n−2)/2kn/2ωn−1I

n
2
−1

n

{
1− 1

k

nρ2

4
+ o(

1

k
)

}
= [n(n− 2)]n/2 2(n−2)/2ωn−1I

n
2
−1

n

{
1− 1

k

nρ2

4
+ o(

1

k
)

}
. (12)

By using (12), we obtain that

∥vk∥−2
2∗ =

(∫
M

(vk)
2∗dV

)−2/2∗

=

(∫
M

(vk)
2∗dV

)(2−n)/n

= [n(n− 2)](2−n)/2
[
2(n−2)/2ωn−1I

n
2
−1

n

](2−n)/n
×{

1 +
1

k

(n− 2)ρ2

4
+ o(

1

k
)

}
(13)

by using (9) and (10)∫
M

[|∇vk|2 + a(vk)
2]dV = [n(n− 2)](n−2)/2 2n/2

(n− 2)2

4
ωn−1I

n/2
n

{
1 +

1

k
×(

a(xo)8(n− 1)

n(n− 2)(n− 4)
− n(n+ 2)ρ2

4(n− 4)

)
+ o(

1

k
)

}
. (14)

By (13), (14) and the Remark 3 we obtain that∫
M

[|∇vk|2 + a(vk)
2]dV

∥vk∥22∗
=

1

K(n, 2)2

{
1 +

1

k

(
a(xo)8(n− 1)

n(n− 2)(n− 4)
− n(n+ 2)ρ2

4(n− 4)

+
(n− 2)

4
ρ2
)

+ o(
1

k
)

}
. (15)

Analogously, we can obtain that∫
M
f(vk)

2∗dV

∥vk∥2
∗

2∗
= f(xo) − 1

k

∆f(xo)

(n− 2)
+ o(

1

k
). (16)
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Statement 1 ∫
M
h(vk)

q+1dV

∥vk∥q+1
2∗

−→ 0 when k → ∞.

Indeed, by (12)

∥vk∥q+1
2∗ =

[∫
M

(vk)
2∗dV

](q+1)/2∗

=
[
[n(n− 2)]n/2 2(n−2)/2ωn−1I

n
2
−1

n

](q+1)/2∗

×{
1− 1

k

nρ2

4
+ o(

1

k
)
}(q+1)/2∗

k→∞−→
[
[n(n− 2)]n/2 2(n−2)/2ωn−1I

n
2
−1

n

](q+1)/2∗

. (17)

Namely,
(
∥vk∥q+1

2∗

)−1
is bounded in R.

On the other hand,

(vk)
q+1 =

[
n(n− 2)

k

](q+1)(n−2)/4

(ψk)
q+1 k→∞−→ 0 a.e. in M

and (vk)
q+1 is bounded in L2∗/(q+1), since by (12)∫

M
[(vk)

q+1]2
∗/(q+1)dV =

∫
M

(vk)
2∗dV

k→∞−→ [n(n− 2)]n/2 2(n−2)/2ωn−1I
n
2
−1

n .

Therefore, (see [4])

(vk)
q+1 ⇀ 0 in L2∗/(q+1).

What give us∫
M
h(vk)

q+1dV −→ 0 when k → ∞. (18)

Consequently, by (17) and (18) we obtain the Statement 1. 2

Now we can estimate
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J

(
t

vk
∥vk∥2∗

)
=

t2

2

∫
M

[|∇vk|2 + a(vk)
2]dV

∥vk∥22∗

− t
2∗

2∗

∫
M
f(vk)

2∗dV

∥vk∥2
∗

2∗
− tq+1

q + 1

∫
M
h(vk)

q+1dV

∥vk∥q+1
2∗

.

Taking for each k ∈ N∗

A(k) =
1

2

∫
M

[|∇vk|2 + a(vk)
2]dV

∥vk∥22∗
,

B(k) =
1

2∗

∫
M
f(vk)

2∗dV

∥vk∥2
∗

2∗

and

C(k) =
1

q + 1

∫
M
h(vk)

q+1dV

∥vk∥q+1
2∗

we obtain, by (15), (16) and from Statement 1, that

A(k)
k→∞−→ A =

1

2K(n, 2)2
> 0,

B(k)
k→∞−→ B =

f(xo)

2∗
> 0

and

C(k)
k→∞−→ 0 with C(k) > 0.

Then, using Lemma 1, there is tk > 0, for a big enough k, such that
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0 < sup
t≥0

J

(
t

vk
∥vk∥2∗

)
= J

(
tk

vk
∥vk∥2∗

)
=

(tk)
2

2K(n, 2)2
− (tk)

2∗f(xo)

2∗
+

1

k

{
(tk)

2

2K(n, 2)2

[
a(xo)8(n− 1)

n(n− 2)(n− 4)

− n(n+ 2)ρ2

4(n− 4)
+

(n− 2)ρ2

4

]
+

(tk)
2∗∆f(xo)

2∗(n− 2)

}
+ o(

1

k
)

− (tk)
q+1

q + 1

∫
M
h(vk)

q+1dV

∥vk∥q+1
2∗

<
(tk)

2

2K(n, 2)2
− (tk)

2∗f(xo)

2∗

+
1

k

{
(tk)

2

2K(n, 2)2

[
a(xo)8(n− 1)

n(n− 2)(n− 4)
− n(n+ 2)ρ2

4(n− 4)
+

(n− 2)ρ2

4

]
+

(tk)
2∗∆f(xo)

2∗(n− 2)

}
+ o(

1

k
).

By using that R(xo) = n(n− 1)ρ2, we obtain

0 < sup
t≥0

J

(
t

vk
∥vk∥2∗

)
<

(tk)
2

2K(n, 2)2
− (tk)

2∗f(xo)

2∗
− 1

k

{
(tk)

2R(xo)

n(n− 4)K(n, 2)2

− a(xo)4(n− 1)(tk)
2

n(n− 2)(n− 4)K(n, 2)2
− ∆f(xo)(tk)

2∗

2n

}
+ o(

1

k
).

Now,

A(k) =
1

2K(n, 2)2
+ O(

1

k
),

B(k) =
f(xo)

2∗
+ O(

1

k
)

and

C(k) = O(
1

k
)

we have that

tk = to + O(
1

k
),

where
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to =

(
2A

2∗B

)1/(2∗−2)

.

Thus,

(tk)
2R(xo)

n(n− 4)K(n, 2)2
− a(xo)4(n− 1)(tk)

2

n(n− 2)(n− 4)K(n, 2)2
− ∆f(xo)(tk)

2∗

2n

=
(to)

2R(xo)

n(n− 4)K(n, 2)2
− a(xo)4(n− 1)(to)

2

n(n− 2)(n− 4)K(n, 2)2
− ∆f(xo)(to)

2∗

2n
+ O(

1

k
).

And, as

to =

(
1

f(xo)K(n, 2)2

)1/(2∗−2)

,

(to)
2R(xo)

n(n− 4)K(n, 2)2
− a(xo)4(n− 1)(to)

2

n(n− 2)(n− 4)K(n, 2)2
− ∆f(xo)(to)

2∗

2n
> 0

if, and only if,

R(xo)

n(n− 4)K(n, 2)2
− a(xo)4(n− 1)

n(n− 2)(n− 4)K(n, 2)2
− ∆f(xo)

2nf(xo)K(n, 2)2
> 0

or, equivalently

2R(xo)

(n− 4)
− a(xo)8(n− 1)

(n− 2)(n− 4)
>

∆f(xo)

f(xo)
.

Then,

0 < sup
t≥0

J

(
t

vk
∥vk∥2∗

)
<

(tk)
2

2K(n, 2)2
− (tk)

2∗f(xo)

2∗
− 1

k

{
(to)

2R(xo)

n(n− 4)K(n, 2)2

− a(xo)4(n− 1)(to)
2

n(n− 2)(n− 4)K(n, 2)2
− ∆f(xo)(to)

2∗

2n

}
+ o(

1

k
).

Thus, by (h3) and for a big enough k

− 1

k

{
(to)

2R(xo)

n(n− 4)K(n, 2)2
− a(xo)4(n− 1)(to)

2

n(n− 2)(n− 4)K(n, 2)2
− ∆f(xo)(to)

2∗

2n

}
+ o(

1

k
) < 0.
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Therefore,

0 < sup
t≥0

J

(
t

vk
∥vk∥2∗

)
<

(tk)
2

2K(n, 2)2
− (tk)

2∗f(xo)

2∗

≤ (to)
2

2K(n, 2)2
− (to)

2∗f(xo)

2∗

=
1

nK(n, 2)n(sup f)(n−2)/2

it concludes the proof of the lemma.

4 Proof of the Main result

Using the estimates we can now prove the Theorem 1.

For u ∈ H2
1 , by (h1), (5) and (6), we have that

J(u) ≥ λo∥u∥2H2
1

− sup f(C1)
2∗

2∗
∥u∥2∗H2

1
− suph(C2)

q + 1
∥u∥q+1

H2
1

= λo∥u∥2H2
1

− α∥u∥q+1
H2

1
− β∥u∥2∗H2

1

= ∥u∥2H2
1

[
λo − α∥u∥q−1

H2
1

− β∥u∥2∗−2
H2

1

]
.

Let

Q(s) = αsq−1 + βs2
∗−2, s > 0.

As

lim
s→0+

Q(s) = +∞ and lim
s→∞

Q(s) = +∞,

there is so > 0 such that

Q(so) = min
s>0

Q(s).

Then,

Q
′
(so) = 0

where

so =

[
α(1− q)

β(2∗ − 2)

]1/[2∗−(q+1)]

.
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Thus, by (h2)

Q(so) = α

[
α(1− q)

β(2∗ − 2)

](q−1)/[2∗−(q+1)]

+β

[
α(1− q)

β(2∗ − 2)

](2∗−2)/[2∗−(q+1)]

< λo.

Therefore,

J(u) ≥ (so)
2 [λo − Q(so)] = η > 0,

when

∥u∥H2
1

= so = ρ > 0.

Since for any uo ≥ 0, uo ̸≡ 0,

lim
t→∞

J(tuo) = −∞

taking uo like in the Lemma 2, we can take a big enough to such that

J(touo) < 0.

Taking

v = touo and B =
{
b ∈ C([0, 1], H2

1 ) such that b(0) = 0 and b(1) = v
}
,

we have satisfied the hypotheses of the Mountain Pass Theorem. Then

there is a sequence (uj) ∈ H2
1 such that

J(uj) −→ c (19)

and

J
′
(uj) −→ 0 strongly in

(
H2

1

)′
(20)

where c = inf
b∈B

sup
0≤t≤1

J(b(t)).

And, by Lemma 2

0 < c <
1

nK(n, 2)n(sup f)(n−2)/2
. (21)

Statement 2 (uj) is bounded in H2
1 .

Indeed, as

J(uj) = c + o(1) (22)
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and 〈
J

′
(uj), uj

〉
= ∥uj∥H2

1
o(1) (23)

it follows by (7), (8), (22) and (23) that

J(uj)−
1

2

〈
J

′
(uj), uj

〉
=

1

2

∫
M

(|∇uj |2 + a(uj)
2)dV − 1

2∗

∫
M
f((uj)

+)2
∗
dV

− 1

q + 1

∫
M
h((uj)

+)q+1dV − 1

2

∫
M

(|∇uj |2 + a(uj)
2)dV

+
1

2

∫
M
f((uj)

+)2
∗
dV +

1

2

∫
M
h((uj)

+)q+1dV

=
1

n

∫
M
f((uj)

+)2
∗
dV +

q − 1

2(q + 1)

∫
M
h((uj)

+)q+1dV

=C + ∥uj∥H2
1
.o(1)

where C represents a positive constant.

The above expression give us that

1

n

∫
M
f((uj)

+)2
∗
dV =

(1− q)

2(q + 1)

∫
M
h((uj)

+)q+1dV + C + ∥uj∥H2
1
o(1).

As 2∗ > q + 1 and M is compact, given ϵ > 0 there is Cϵ > 0

such that

h(x)tq+1 ≤ ϵt2
∗
+ Cϵ, ∀ x ∈ M and ∀ t ≥ 0. (24)

Therefore,

inf f

n

∫
M

((uj)
+)2

∗
dV ≤ (1− q)ϵ

2(q + 1)

∫
M

((uj)
+)2

∗
dV + C + ∥uj∥H2

1
o(1).

Namely,[
inf f

n
− (1− q)ϵ

2(q + 1)

] ∫
M

((uj)
+)2

∗
dV ≤ C + ∥uj∥H2

1
o(1).

Taking a small enough ϵ such that

inf f

n
− (1− q)ϵ

2(q + 1)
> 0,
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We conclude that∫
M

((uj)
+)2

∗
dV ≤ C + ∥uj∥H2

1
o(1). (25)

Therefore, by (h1), (22), (24) and (25), we obtain

1

2
λo∥uj∥2H2

1
≤ 1

2

∫
M

(|∇uj |2 + a(uj)
2)dV

=
1

2∗

∫
M
f((uj)

+)2
∗
dV +

1

q + 1

∫
M
h((uj)

+)q+1dV + C

≤ C

∫
M

((uj)
+)2

∗
dV + C ≤ C + ∥uj∥H2

1
o(1)

and with which we conclude the Statement 2. 2

Then, by Statement 2, the compact embedded H2
1 ↪→ Ls for 1 ≤

s < 2∗ and the fact that H2
1 is reflexive, there is a subsequence

(uj) of (uj) (we will use the same notation here and for the sequence)

and u ∈ H2
1 such that

uj ⇀ u in H2
1 , (26)

uj −→ u in Ls, 1 ≤ s < 2∗ (27)

and

uj −→ u a.e. in M. (28)

Note that, by (28)

((uj)
+)2

∗−1 −→ (u+)2
∗−1 a.e. in M.

By the continuous embedded H2
1 ↪→ L2∗ and the Statement 2, we know

that

((uj)
+)2

∗−1 is bounded in L2∗/(2∗−1).

Then, (see [3]) under a subsequence

((uj)
+)2

∗−1 ⇀ (u+)2
∗−1. (29)

Analogously,
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((uj)
+)q −→ (u+)q a.e. in M and ((uj)

+)q is bounded in L1/q

(note that 0 < q < 1). This last conclusion follows by the embedded

H2
1 ↪→ L1 and by Statement 2.

Thus, taking a subsequence

((uj)
+)q ⇀ (u+)q in L1/q. (30)

Substituting (uj) in (3.7) we obtain ∀ v ∈ H2
1 ,〈

J
′
(uj), v

〉
=

∫
M

(∇uj .∇v + aujv)dV −
∫
M
f((uj)

+)2
∗−1vdV

−
∫
M
h((uj)

+)qvdV . (31)

Taking j → ∞, in (31), and using (20), (26), (27), (29 ) and (30),

we get∫
M

(∇u.∇v + auv)dV =

∫
M
f(u+)2

∗−1vdV +

∫
M
h(u+)qvdV , ∀v ∈ H2

1 .

Namely, u is a weak solution for equation

∆u + a(x)u = f(x)(u+)2
∗−1 + h(x)(u+)q.

As f > 0 and h > 0, by the weak comparison principle, we

conclude that u ≥ 0. Thus, u satisfies the equation

∆u + a(x)u = f(x)u2
∗−1 + h(x)uq.

By a Global Elliptic Regularity Theorem u ∈ C∞(M).

And, by the Strong Maximum Principle, u ≡ 0 or u > 0. Our

goal now is to show that u > 0.

Let us suppose that u ≡ 0.

By (22) we have that

1

2

∫
M

(|∇uj |2 + a(uj)
2)dV − 1

2∗

∫
M
f((uj)

+)2
∗
dV − 1

q + 1

∫
M
h((uj)

+)q+1dV

= c + o(1).
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Using (27) in the above equation, we obtain

lim
j→∞

1

2

∫
M

|∇uj |2dV − lim
j→∞

1

2∗

∫
M
f((uj)

+)2
∗
dV = c. (32)

By using (23) and the Statement 2

lim
j→∞

∫
M

|∇uj |2dV = lim
j→∞

∫
M
f((uj)

+)2
∗
dV = l ≥ 0. (33)

By (32) and (33)

l = nc. (34)

On the other hand, by (2)(∫
M
f((uj)

+)2
∗
dV

)1/2∗

≤ (sup f)1/2
∗
∥uj∥2∗

≤ (sup f)1/2
∗
K(n, 2)

(∫
M

|∇uj |2dV
)1/2

+ C

(∫
M

(uj)
2dV

)1/2

.

Taking j → ∞ in the above expression and using (27), (33) and

u ≡ 0, we obtain

l1/2
∗ ≤ (sup f)1/2

∗
K(n, 2)l1/2.

Thus,

l ≥ 1

K(n, 2)n(sup f)(n−2)/2
.

And, by (34)

c ≥ 1

nK(n, 2)n(sup f)(n−2)/2

what give us a contradiction with (21).

Therefore, u > 0 is a regular solution of equation (1), this concludes

the proof of Theorem 1.
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[4] BRÉZIS, H., Analyse Foncionnelle: Théorie et applications, Coll.
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