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The boundary term from the Analytic
Torsion of a cone over a m-dimensional

sphere

L. Hartmann®

Abstract

We present a direct proof that the Anomaly Boundary term of
J. Briining and X. Ma [BM1, BM2] generalizes to the cases of the

cone over a m-dimensional sphere.

1 Introduction

The Analytic torsion was defined by D. B. Ray and I. M. Singer [RS]
answering the question as to how describe the Reidemeister torsion, which
is a manifold invariant, in analytic terms. In the same article, they con-
jectured the equality of both torsion in the case of a closed Riemannian
manifold. A few years latter, J. Cheeger [Che0] and W. Miiller [Mul]
proved this conjecture with different approaches. J. Cheeger used surgery
theory to reduced to the case of spheres and W. Miiller used Hodge’s com-
binatory theory. This equality between the two torsions is the celebrated
Cheeger-Miiller theorem. After that many generalizations of this theorem

arises (see [BZ] and references therein). A natural question about the
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Cheeger-Miiller theorem is your extension to manifolds with boundary.
W. Liick [Luc] studied this situation, but in the case that the metric of
the manifold has a product structure near the boundary and he proved
a Cheeger-Miiller theorem with this additional hypothesis. In this for-
mula, the Analytic torsion is equal to the Reidemeister torsion plus the
Euler characteristic of the boundary. Recently, J. Briining and X. Ma
[BM1, BM2] proved the extension of Cheeger-Miiller theorem for mani-
folds with boundary. In this situation, a new term appears in the equality
of the two torsions, and this term is called anomaly boundary term. An-
other possible extension of Cheeger-Miiller theorem is for manifolds with
conical singularities. Manifolds with conical singularities was studied by
J. Cheeger [Chel, Che2, Che3]. Recently, many authors presented new
informations for this problem. In [HS1], M. Spreafico and the author, pre-
sented a qualitative result about the extension of Cheeger-Miiller theorem
for a cone over a sphere of dimension 1, 2 and 3, and we conjectured that
the anomaly boundary term presented by Briining and Ma is the same
in the case of the cone over a sphere. This conjecture was answered for
a general closed Riemannian manifold by the author and M. Spreafico in
[HS2] and independently by B. Vertman in [Ver], but in both cases the
proofs are by an indirect argument. The main motivation of this paper
is present another approach of this fact with a direct argument, i.e, we
calculate the Analytic torsion over a m-dimensional sphere and prove that
the contribution of the boundary in the analytic torsion is the anomaly
boundary term of Briining and Ma. Recently, the author and M. Spreafico
proved the extension of Cheeger-Miiller theorem for the even dimension
cone over a closed Riemannian manifold [HS3]. The odd dimensional case
is still open.

The paper is organized as follows. In section 2 we present the funda-
mental terminology and notation, in section 3 we discuss the Laplacian
operator in a finite metric cone, in section 4 we present all facts about the
calculation of the Analytic torsion of a finite metric cone and in the last

section, we prove the following main results of this paper.
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Theorem 1.1. If 5’8251 al is the odd dimensional sphere (of radius sin «),

with the standard induced FEuclidean metric, then the Anomaly Boundary

contribution in the Analytic Torsion of C}S> 2P~ 1 s the Anomaly Bound-

sin «v

ary term of Briining and Ma, namely Apn(0C; S 2P 1). In this case, the

sin «v

formula for the Analytic torsion reads

logTabS(ClSzp 1)— logVol(ClSZP 1)+ABM(8ClS2p 1),

s « Ritege? s @

where

k

2p-1y (2p—1)! (=Dk=720H1 . ok41
Asm(9C1S5n 0 ) =305— 1 E:(p TR D e S .
=0

Theorem 1.2. If Sffl . 1s the even dimensional sphere (of radius sin ),

with the standard induced Euclidean metric, then the Anomaly Boundary

contribution in the Analytic Torsion of C}S; P s the Anomaly Boundary

sin

term of Briining and Ma, namely Ay (0C;S: 2P 1) ie.,

sin2? o &= ! J ] h2sm (h=3) o
Apm(9C1SZ ) = 3 Z )! Z ( ) —i+h
j:O h=0 ‘7

2 Preliminary

In this section we will recall some basic results in Riemannian Geometry,
Hodge de Rham theory, Global Analysis and the definitions of the main
objects we will deal with in this work. All the results are contained in

[Che2, HS2, RS].

2.1 Some Riemannian geometry and Hodge theory

Let (W, g) be an orientable compact connected Riemannian manifold of
dimension m without boundary, where g denotes the Riemannian struc-
ture. We denote by TW the tangent bundle over W, and by T*W the
dual bundle.
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Let p: m (W) — O(k,R) be a representation of the fundamental group
of W in the real orthogonal group of dimension k, and let £, = W x p R*
be the associated vector bundle over W with fibre R* and group O(k,R).
We denote by Q(W, E,) be the graded linear space of g-smooth forms
on W with values in E,, namely Q(W,E,) = QW) ® E,. The ex-
terior differential on W defines the exterior differential on Q4(W, E,),
d: Q(W,E,) — QITY (W, E,) and g defines the Hodge operator on W,
and hence on QI(W, E,), x : Q4(W, E,) — Q™ 9(W, E,). Using the inner
product (_,_) in E,, an inner product on Q¢(W, E,) is defined by

(w,) = /W<°" Ax). 1)

The closure of Q9(W; E,) with respect to this inner product is the
Hilbert space of L? g-forms on W with values in E,. The de Rham complex
with this product is an elliptic complex. The dual of the exterior deriva-
tive df, defined by (a,dB) = (d'a, f), satisfies df = (—1)™a+m+1 x dx.
The Laplace operator is A = (d + d")2. Tt satisfies: 1) *A = Ax, 2)
A is self adjoint, and 3) Aw = 0 if and only if dw = dfw = 0. Let
HIW; E,) = {w € QO (W; E,) | Aw = 0}, be the space of the g-harmonic

forms with values in E,. Then, we have the Hodge decomposition
QUW, Ey) = HIW, Ep) & dQV~ (W, E,) @ d'QT™ (W, Ep).  (2)

This induces a decomposition of the eigenspace of a given eigenvalue

A # 0 of Al into the spaces of closed forms and coclosed forms: 8/(\q) =

8&?) @E(Q) where

cl ,ccl?

£ = {w e Q(W,E,) | Aw = \w, dw = 0},
g)(\(,]c)cl = {w € Qq(Wa Ep) ’ Aw = )\W, dTw = 0}

The exact forms and coexact forms are defined by

£D = {we QUW,E,) | Aw = \w, w = da},
D = {w € QUW, B,) | Aw = o, w = da}.
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Note that, if A\ # 0, then S>(\(21 =9 and €9 = £9 and we have an

Aex’? A,ccl A,cex?

isometry
1

VA

whose inverse is %d. Also, the restriction of the Hodge star defines an

¢:E0 = &8 6w —=dlw, (3)

A,cex

isometry
* :d QD (W) = aQm—a= (W),
and that composed with the previous one gives the isometries:

1 ) m—q+1) 1 (a) (m—q—1)
ﬁd* : 8)(\?01 - g)(\,cexq ’ ﬁdT* : g)\(,]ccl - gA,ex R (4)

2.2 Manifolds with boundary

Let M be an orientable compact connected riemannian n-manifold with
boundary OM. Following [RS], let 9, denotes the outward pointing unit
normal vector to the boundary, and dx the corresponding one form. The
smooth forms on M near the boundary decompose as w = wian + Wnorms
where wyorm is the orthogonal projection on the subspace generated by dx
and weay is in Q(OM). We write w = w + dz A wy, where w; € Q(OM),
and

*wy = dxr A *W. (5)

Define absolute boundary conditions by
Babs(w) = Wnorm|on = walan =0
and relative boundary conditions by
Biel(w) = wianlom = wiloamr = 0.

Note that, if w € Q4(M), then Bps(w) = 0 if and only if Bre(xw) = 0,
Biel(w) = 0 implies Byei(dw) = 0, and Byps(w) = 0 implies Baps(diw) = 0.
Let B(w) = B(w) ® B((d + d")(w)). Then the operator A = (d 4 df)?
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with boundary conditions B(w) = 0 is self adjoint, and if B(w) = 0, then
Aw = 0 if and only if (d 4+ d")w = 0. Note that B correspond to

norm - 07

Baps(w) =0 if and only if w lon (©)
(dw)normlﬁM = 07

Brei(w) =0 if and only if wtanlonr = 0, 1)

) (dTw)tan|8M = 0,

Let
%st( ) = {w € Q(I(M’ EP) | A(q)w = OvBabS(w) = O}a
H (M E,)) = {we Q(M,E,) | AWy =0, By (w) = 0},

rel

be the spaces of harmonic forms with boundary conditions. Then the

Hodge decomposition reads

Qabs(]M E) Habs( )®ngbs1(M E )GBdTQngl(M E )
Qq

4 (M, E,) =HL (M p)eadm "M, E,) & d' QTN (M, E,).

rel

2.3 Analytic torsion

The analytic torsion is defined starting with a manifold (M, g) without
boundary , as previously, with twisted coefficients in E,. The operator
A ig symmetric, positive and has pure point spectrum. The zeta func-
tion of the Laplace operator A on ¢-forms in Q4(M, E,) is defined by
the meromorphic extension (analytic at s = 0) of the series

((5,A@) =" A,
AESP, AW
convergent for Re(s) > %, and where Sp, denotes the positive part of the
spectrum. If M = (), the analytic torsion of (M, g) is
1 n
log (M. 9)ip) = 5 >_(~1)ac(0, A1), (5)
q=1

If M has a boundary, we denote by T,ps((M, g); p) the number defined
by equation (8) with A satisfying absolute BC, and by Tye((M, g); p) the
number defined by the same equation with A satisfying relative BC.
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2.4 The Cheeger-Miiller theorem for manifolds with bound-
ary

Using recent works of J. Briining and X. Ma [BM1, BM2], and classic
the work of W. Liick [Luc|, the Cheeger-Miiller theorem for an oriented
compact connected Riemannian n-manifold (M, g) with boundary reads
[BM2, Theorem 3.4] (see [HS1, Section 6] or [HS2, Section 2.3] for details

on our notation)

log Tons (M, g); p) =1log Tr(

(M.9):p) + Sy (@01)log 2
+I‘k( )ABM abs 8M)

rk
log Tra1((M, g); p) =log Tr((M,0M, g); p) + Z(lmx(aM) log 2

+ rk(p)ABM,rel(aM)a

where p is an orthogonal representation of the fundamental group, and
where the boundary anomaly term of Briining and Ma is defined as follows.
Using the notation of [BM1] (see [HS2, Section 2.2] for more details) for
Z,/2 graded algebras, we identify an antisymmetric endomorphism ¢ of
a finite dimensional vector space V (over a field of characteristic zero)
with the element ¢ = 3 > i k=1(0(v5), vg) 0 Ay, of A2V. For the elements
(¢(v5), vg) are the entries of the tensor representing ¢ in the base {vj }, and
this is an antisymmetric matrix. Now assume that r is an antisymmetric
endomorphism of V' with values in A2V. Then, (Rji = (r(vj),vg)) is a
tensor of two forms in A?V. We extend the above construction identifying

R with the element

n

A 1 . .
R = 3 Z (r(vj),vE) A0j A Oy,

J,k=1

of A2V A A2V. This can be generalized to higher dimensions. In partic-
ular, all the construction can be done taking the dual V* instead of V.
Accordingly to [BM1], we define the following forms (where i : OM — M
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denotes the inclusion)

1 .
8:52(1 w — W) ok N €5
k=1
1 n—1 1 n—1
Q== P Qn A EEA 6L, 6=- Opn AErAér.
2 kN € N €p 5 Z ko /N € N €p
kh=1 kh=1

Here, w and wy are the connection one forms associated to the metrics
g and gg, respectively, where g is a suitable deformation of g that is
a product near the boundary. €2 is the curvature two form of g, © is
the curvature two form of the boundary (with the metric induced by the
inclusion), and {e;}}_} is an orthonormal base of TM (with respect to

the metric g). Then, setting

// 030 7232 1 wF 1Sk dy,
F( +1)

the Anomaly Boundary term is

1
ABM,abs(OM) = (—1)”+1ABM,rel(3M) = 2/3 B.
M

3 The spectrum of the Laplacian on forms on the

finite metric cone

Let (W, g) be an orientable compact connected Riemannian manifold of
finite dimension m without boundary and with Riemannian structure g.

The metric cone CW is the space (0,+00) x W with the metric
g = dr ® dx + 2%3. (9)

The finite metric cone is CoyW = {(x,p) € CW | 0 < x <[} with the
Riemannian metric g and the completed finite metric cone over W is the
compact space C;W = W. The boundary of C;W is the subspace
{I} x W of C;W which is isometric to W with the metric [2g. We will
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call (W, g) the section of the cone and operations on the section will be
denoted with tilde.

In [Chel, Che2, Che3|, J. Cheeger extended all the Hodge theory and
the Laplace operator for this spaces, in particular all results of section 2.1
are valid. Given a local coordinate system y on W, then (x,y) is a local
coordinate system on the cone. We present the explicit form of x, d' and
A Tfwe Qq(C(O’l]W), set

w(z,y) = fi(z)wi(y) + falx)de A wa(y),
with smooth functions f; and fo, and w; € Q(W), then
*w(w,y) = 2™ 22 fo (@) kwa (y) + (=1)a™ % fr(x)de AFwi(y),  (10)

dw(z,y) =f1(x)dw(y) + Ou f1r(z)dz Awi(y) — fo(z)da A dws(y),
d'w(z,y) =22 fi(z)d wi(y) — ((m = 2q+2)z7" fo(2) + O fo(2)) wa(y)

— 272 fo(x)dz A JTWQ(:U),
(11)

Au(,y) = (~2u(@) — (m — 20057 0,1 (@) wr(y) + 221 (2) B (1)
— 2271 fo(x)dwa(y) + dz A <x_2f2(az)ﬁw2(y) + wa(y) (—cﬁfg(x)
—(m—2q+ 2)m_18$f2(x) +(m —2q + 2)m_2f2(m))
—2f1373f1(33)6ﬂw1(y)> :
(12)
The Laplace operator on forms on the space C;W was studied by [BS1].
The definitions of this operator starts with the formal differential operator
defined by equation (12) acting on Q7 /rel(C(O,l]W) . This define a unique
self adjoint semi bounded operator with pure point spectrum Ay, /re1 act-
ing on L?(C;W, Q@C;W), such that Agbsreiw = Lw, if w € domA, b /rel-
All the solutions of the eigenvalues equation for £ is presented in [Che2].

In particular, imposing the boundary conditions we obtain the spectrum
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of Agps/rel- More precisely, let J, be the Bessel function of index v. Define

1
ag = 5(1 +2q—m), and pgn = \/m’

where )\, is the eigenvalue of a ¢ co-exact eigenform of W.

Lemma 3.1. The positive part of the spectrum of the Laplace operator

on forms on C;W, with absolute boundary conditions on 0C;W is:

(9) 52 2% 52 2%
Sp+AabS = {mcex’qvn : j“qvn:aq,k‘/l }n k=1 U {mceXﬂ—L" : ]Nq—l,nvaq—lvk/l }

n,k=1
(e 9] o0
.52 2 .52 2
U {mcex,q—l,n . ']qul,nyk/l }TL _ U {mq_27n ' ],U«q72,n:k/l }

k=1 n,k=1
00 0o
L2 2 .32 2
U {mhar,q,o : -7|aq\,aq,k/l }kzl U {mhar,fI*l,O : j|aq,1|,aq,k/l }k:I :

With relative boundary conditions:
(@) _ . ;—2s —25 % . —2s —25
Sp""Arel = Mheexgn - Jﬂqynvk/l n,k=1 YU Meexig—1in j#qfl,mk/l nk=1
o0
. —2s —2s
U {mcex,q—l,n . juqfl,n,—ﬂéqfl,k/l }n,kZI
o0
. —2s —2s
U {mcex,q—Q,n : ]Mq71,n7—aq72,k/l }n el

U {mhar,q : j|aq\,k/l72s};ozl U {mhar,q—l : j‘aq71|7k/lf2s}Z°:1 )

where the j, 1 are the zeros of the Bessel function Ju(z), the ju,gk are the
zeros of the function J, .(z) = ¢J,(z) + xJ)(r), ceR.

Proof. See [HS2] |
For the harmonic forms of A, el We have,

Lemma 3.2. If dimW = 2p — 1 is odd. Then

HI(W), 0<qg<p-—1,

{0}, p<q<2p.

{0}, 0<q¢g<p-—1,
f (W) =
{a20a = dz A plaD) ol e =l (W)}, p < q<2p.

H

rel
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If dim W = 2p is even. Then

HIW), 0<q<p,

HZ JLOW) =
’ {0}, p+1<qg<2p+1.
{0}, 0<q<p,
Hrcl(Cl ) =

{xQOCq_ldx A (p(q_l)’ 90(‘1_1) c qu—l(W)} , p+1<qg<2p+ 1

Proof. See [HS2] for the odd case. The even case follows by the same

argument. [ ]

Using the description of the spectrum of the Laplace operator on forms

(9)
A abs/rel

as in Section 2.3, by

given in the last section, we define the zeta function on g-forms

C( Aé(l]a)s/rel) = Z )\787

(@)
)\esp+Adb>/rel

for Re(s) > mTH This function possibly have a simple pole in s = 0, but
A. Dar [Dar| proved

Theorem 3.1. The torsion zeta function with absolute/relative boundary

conditions, defined by

75abs/1re1(3) = % Z( ) qg( abs/rel)

is regular in s = 0.

Then the analytic torsion of C;W is defined and

log Tabs/rel(ClW> = t/abs/rel(o)‘

4 The analytic torsion of C;W

In this section we present all principal facts about the calculation of
the Analytic torsion of C;W. For more details see [HS2]. As the Poincaré
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Duality holds for the Analytic torsion of C;W, i.e,
log Tans(CIW) = (1) W log T (C1W),

for now on we use the absolute boundary conditions and we will omit the
subscript abs. With lemma 3.1, after some simplification, the torsion zeta

function is
l25

p—2 00
- ) “_2
t(S) :? Z(_l)q Z Meex,q,n (2‘7ﬂq nk ‘]Mq ivamk qu,ia_aq7k>
q=0

n,k=1

12s 0
—1 .—9 . —92
+ (_1)]-7 7 Z Meex,p—1,n (‘]up—sl,n,k - (J;/Lp_lﬁn,k;) S)

n,k=1
le p—1 =
—92s -—25
- (_1)qu'Hq(801W; Q) Z (J ag-1,k J- aq>k) )
4=0 k=1

when dimW = 2p — 1 is odd and

128 p—1 "y
t<s> - Z Z Meex,qn (J#q ny—Qg,k jqu,aq,k)
q=0 n,k=1
12s p—1 o0
+ 5 Z( )q+1rk7-[ (0CW; Q) Z (]_aq Lk J_z;k)
q=0 k=1

+ (- 1)p+1lis S kA, (0CW; Q) (

C+ ]%1)
k=1

Tk
when dim W = 2p is even.

So the Analytic torsion of C;W is described by the following two the-
orems. For the proof of Theorem 4.1 see [HS2] and for the Theorem 4.2
see [HS4](compare with [Ver])

Theorem 4.1. If dimension of W is odd and equal to 2p — 1(p > 1) then
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the Analytic torsion of C;W is

p—1

1 - 1
log T(CW) = 5 log T(W, 12g) + 5 > (=1)rglog =0
= p—q
151 =
+ 3 Z Reso @g;‘il q (s) Resi Ceex (s, A 4 ag)
q=0 j=1 "7 S:j"'%

where the functions @g;lji_l q(s) are some universal functions explicitly
known by some recursive relations, and A is the Laplace operator on

forms on the section of the cone.

Theorem 4.2. If dimension of W is even and equal to 2p(p > 1) then
the Analytic torsion of C;W is

log T(C 5 1)1 15g 1T 1P 10g 1 4+ X log 2
og T'( ZW)—;(— ) 5 Ogm+(_ ) o8 +§X(W) 0g
1p—1 p—1
+ 5 (=1)% A 0,4(0) + Z( )%y, log(2p — 2 — D!
q=0 q=0
1224
+ 5 Z ZRes %;eqn Resl Ceex (s A 4 2) ,
q=0

where the functions ®57%'(s) are some universal functions explicitly known
by some recursive relations, A is the Laplace operator on forms on the

section of the cone and

o
(6% o m
Aaag(s) = 3= (1og (120 ) g (120 ) ) B
’ i qn

n=1

5 The proof of Theorem 1.1 and Theorem 1.2

In order to prove Theorem 1.1 and Theorem 1.2 we define,

Definition 5.1. The Anomaly Boundary contribution in the analytic tor-

sion of a cone over a closed manifold W, denoted by log Tag(CiW), is

%Z( ZRGSO ®2j+1( s) Resy Ccex< s, A 4 o )

q:O ] 1 - 5=, ]+2
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if dimW =2p —1 and

1224 _
5 Z( Z Resg @e"en )Res'l Ceex (s, A 4 a?[) ,
4=0 =1 *7° o
if dim W = 2p.

Recall that we are considering the absolute BC case, we will calculate
the analytic torsion of C;W in the case W = Sszlfl al using the theorem
4.1 and the Anomaly Boundary contribution in the log T(CZSSf; o). Our
strategy is by direct calculation, i.e, we will determine all terms necessary
for the proof of theorem 1.1 and 1.2. With this in mind, first we determine
the term log T(‘S’Szfrj1 al, 123) and then the Anomaly Boundary contribution,
which requires more work, and that will be developed in the following
subsections. In fact, the Anomaly Boundary contribution are similar in
dimension odd and dimension even. So, we will determine the odd case
and present the equations for the even case to be concise. Here we present
the underlying geometric setting. Let S;" be the sphere of radius b > 0
in R §m = {z € R™! | |z| = b} (we simply write S™ for ST").
Let C;S™ . denotes the cone of angle o over S in R™"2. We embed
c ST

o in R™+2 as the subset of the segments joining the origin to the

sphere SJ%. ., X {(0,...,0,lcos)}. We parametrize the cone by

;

r1 = rsinasinb,,sinb,,_1---sinf3sinfs cos 01
9 = rsinasinb,,sin,,_q ---sinf3sin by sin 61
r3 = rsinasinb,,siné,,_q---sinfscos by
Ci1S8 o =
Tmt+1 = rsinacosby,
Tmea = TCOSQ

with » € [0,1], 61 € [0,27], Oo,...,0,, € [0,7], and where « is a fixed

positive real number and 0 < % = sina < 1. The induced metric is
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(r>0)

gE—dr®dr—|—7“ gsm

m—1 m
=dr @dr +r’sin®a H sin20j df; ® db; + db,, @ db, | ,
i=1 \j=i+1

and +/|detgg| = (rsina)™(sin 0,,)™ 1 (sin 6, _1)™ 2 - - - (sin 03)?(sin Oy).

5.1 The Analytic torsion of an odd dimensional sphere

Proposition 5.1.

p—1
l
log T(,Sfff1 al, 12§) = log Vol(C; 521’;1 al Z 1)%r,log )
= 2(p—q)
Proof. By the Cheeger-Miiller Theorem, log T(Si’f1 al, 125) = log T(SMI; al, J),
and a simple calculation shows that log T(Sffl al, 12G) = log Vol(SffinL) (for

more details see [MS]), and this proves the proposition since, if W has

metric g and dimension m, then

m+1
Vol(C/W / Vdet(z2g)dzAdvoly = / / dvolg = 71V01(W),
oW

and I
2w 2 b™
T (=5)

5.2 The anomaly boundary contribution

Assuming that the formula for the anomaly boundary term Ay (OC; W)
of Briining and Ma [BM1] is valid in the case of C};ST

o o We computed in

[HS1] (note the slight different notation), by applying the definition given
equation (2.11) of [HS2], that

p—1 p—j

Apm(0CSI) =
= OJ'(2(p j) =1 'h

J
|
1 2 h2y2(] h)
Ap(9C,S2 < > .
BM( l s1na) 81/2ij 'h — p— ]+h

. h 72(p j+h)+1 (2]7_1)
0<> 200 —j+h)—1) 4r(p— 1)V
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Our purpose now is to prove that

log Tap(C1S2P 1) = Apm(9CS2P 1) and log Tag(CiS2P ) = Apm(9C,S2P ).

(13)

For it is convenient to rewrite the second terms as follows:

p—1 J .
1 2p—J I\ (=) 20—+ +1 (95 1)
Apn(9CIS o) = Y sram=n D <h> Qop—G+h)=1) 27 (p-1)!

Jj=0 h=0
. 2p 1 Z Z 1 k—joj+1 1
T 4r(p-1)! (p—1- k)'(2k+1) =25+ 1)1 2R F 1
= J ] (—=1)h2 2(j—h)
2p _ 1 1 — v
Amtas(OCiS0) = g D 73 D (h) Tph
Jj=0 h=0

p—1 k .
- L Z p P=1l=JYy_1
il pm p-1-j)\ k—j )

5.3 The eigenvalues of the Laplacian over C;S7 ,

Let A be the self adjoint extension of the formal Laplace operator on
C, S

o ., as defined in section 3. Then, the positive part of the spectrum

of A (with absolute BC) is given in Lemma 3.1, once we know the eigen-
values of the restriction of the Laplacian on the section and their coexact
multiplicity, according to Lemma 3.1. These information are available by
work of Ikeda and Taniguchi [IT]. The eigenvalues of the Laplacian on

2p—1
g-forms on S=P~

sin are

Ao = VQn(n +2p —2),
An=vn+q)(n+2p—q—2), 1<qg<p-2,
Ap—2n =1*((n—1+4p)*—1),

)\pfl,n = VQ(n —1 +p)2,
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with coexact multiplicty

2 £ , .
mcex,O,n:W (n—1+])(2p+n—1—]),
P ils
9 p
mcex,q,n: | o | (n_1+])(2p+n_1_])71§q<p_27
J#q+1
92 p
Meex,p—2,n (p_2)'p| H (n—l—i—j)(Qp—i—n—l—j),
j=1
J#p—1
2
Meex,p—1,n = W H(n -1 +])(2p+n -1 *j),
i

thus the indices pi4,, are

pon = \/v2(n(n+2p—2)) + (p— 1),

Pgn = \/1/2(n+q)(n+2p—q—2)+a§, 1<g<p-2,
20 = VP2 (N = 1+p)? = 1) +1,

frp—1n =v(n —1+p).

And, the eigenvalues of the Laplacian on ¢-forms on 55251 ., are

Aon =3 (n+1)(n + 2p),
Agn =1 (n+q¢)(n+2p+1—¢q), 1<qg<p-—1,
Ap—1n =13 (n+p)(n+p+1),

with coexact multiplicty

2(n+1)+2p—1(2p—|—n—1>

Meex,0,n =

2p—1 n+1
2 2 1 /2 —1
mcean:& pn pEn 71§q<p_17
= 2p+n—qg—1\n+gq n
2o+2n+1/p+n—1\/2p+n+1
Meex,p— = a5 . 1 )
cex,p—1,n 2p+n+1 n P
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thus the indices pi4,, are

Hon = \/v2(n+ )(n+2p) + (p — 3)%
fign = \/I/Q(n+q)(n+2p—|—1—q)+a§, 1<g<p-—1,
Pp—1m = \/l/z(n—l—p)(n—l-p—i- 1)+ %.

5.4 Some combinatorics

Let U, g2p-1 = {Mcex,qn : Agn,s20-1} denotes the sequence of the eigen-
values of the coexact g-forms of the Laplace operator over the sphere of
dimension 2p — 1 and radius 1. Let a1, ..., a, be a finite sequence of real

numbers. Then,

m m )
H(x +aj) = Z em—j(at,...,am)z’
j=1 =0

where the ey, ..., e, are elementary symmetric polynomials in aq, ..., an.

Let define the numbers:
di =G —q-12p—q—j—1),
forq=0,....,p—1,j#q+ 1, and
d? = (df,d,....dl,,,....dY),
where, as usual, the hat means the underling term is delated.

Lemma 5.1. The sequence U,_1 is a totally regular sequence of spectral
type(see [Spr] for the definition) with infinite order, exponent and genus:
e(Up-1) = g(Up—1) =2p—1, and

o K
(s, Up-1) = (1)1_/71)'2 > ep1j(d)Cr(s — 25).
2

Proof. The first part of the statement follows from Lemma 5.2 in [HS2].
In order to prove the formula, note that {(s,Up—1) = v=5¢ (%, Up_]_,SZp—l),
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where

o [e.e]

S . mcex,p 1,n ~Meex,p—1,n
C<§’Up71,52p_1) _Z Z n_|_p_1

n= 1>\p 1nS2p1 n=1

Shifting n to n — p+ 1, and observing that the numbers 1,...,p—1 are
roots of the polynomial Z?;é ep—1—j(dP~1)n% | we obtain

o) _ [ee) p—1 2 2\ 2
_ s\ Meexp—ln—ptl _ 207" j=1" — P —J)
é‘(su Up—l) =V Z ns - (p _ 1)'2 Z ns
n=p n=p
—S
,112261’ 15 (@ )Cr(s = 29). .

Note that, using the formula of the lemma, (s, Up—1) has an expansion
near s = 2k + 1, with k =0,1,...,p — 1, of the following type:

2 1
§(s,Up-1) = s, — 1@ ) 5oy + Lo-12en(s),
v2+l(p —1)! s—2k—1

where the L, 1 25+1(s) are regular function for £ =0,1,...,p— 1.

Corollary 5.1. The function ((s,U,_1) has simple poles at s = 2k + 1,
for k=0,1,...,p— 1, with residues

2
)= e (dP.
oot 00Ut = e, e 14

Lemma 5.2. The sequence U, is a totally regular sequence of spectral
type with infinite order, exponent and genus: e(U,) = g(U,) = 2p—1, and

(where i = \/—1)

25 > /os\ P2 s+ 2t —2j a2t
— 2 (A9 ; -9
(s, Uq) q(2p— q—2)! ; ( ¢ ) jz:%ep_l_j(d )z ( 9 ,zoaq) 2t

The function ((s,U,) has simple poles at s = 2(p — k) — 1, with k =
0,1,2,. ...
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Proof. The first statement follows by Lemma 5.2 [HS2]. For the second

one, consider the sequence H,j = {mcex’%n D/ Agn,s20-1 + h}:;o:l. Then

C(S) Uq) = V_SC(‘S?Hq’ﬁ)a and

o] Meex.qn oo 00 _% Meexqn - ¢
H,p)= g = —h
¢(s, Hg,n) (A 1+ h): ZZ( t > 5+t

n=1 \"\q;n,5?P n=1t=0 )\q,n g2p—1
> /s

=> ( t2>C(s +2t, Hy)h
t=0

Next observe that the zeta function associated to the sequence H, is

[e.9] [e.9]

mce ,q,Mn mq7n_p+1
C(2S,Hq,0):C(S,U%Szpﬂ):§ SR, = :E SO
n=1"qn,8?~1  n=p “¢n—p+1,52r-1

N
4 2)! ) #ﬁ(nz ~a2)
n=p q

q'(2p—q—

Recall that o2 = df, and note that

p—1 p—1 P
Y e d)(n® —ag) =) epja(@)(n® -y = [[ (n* —dj+df)
=0 =0 =1,
J#a+1
p
= [ @*-@-5%,
]: b
J#q+1
and that the numbers n = 1,2,..., -, are roots of this polynomial.

Therefore, we can write

p—1 p—q—2
¢(2s,Hqp) = m Zep_l_j(dq) (Z(S — Jyioy) — Z n? — a sﬂ)

j=0 n=1
p—1

= G D er1-i(dD) (s — jiay),
7=0

and
oo

. 1
2(s — j,iag) = Z a2y

n=1 q
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Expanding the binomial, z(s,a) = Y50 (3°)a**(r(2s + 2k), and hence

z(s,a) has simple poles at s = % —k, k=0,1,2,.... Since
2 !
_ (4 i
Cl@s Hun) = gy g =gy & ool )3le — i)

¢(2s, Hy ) has simple poles at s = % +p—1—-Fk, k=0,1,2,...,((s,Hyp)
has simple poles at s = 2(p — k) — 1, k = 0,1,2,..., and this completes
the proof. [

Corollary 5.2. The function ((s, U,) has simple poles at s = 2k + 1, for
k=0,1,...,p— 1, with residues

. __2p72k- 1 2 (9 2 J—
B, <600 = Geay ; - < t >j§t il )<J —k— t> S

Proof. Since the value of the residue of the Riemann zeta function at s = 1

is 1,

—3+i+ k) a2k

Res; z(s —j,a) = Res; z(s,a)z( itk 5

s:%—k s:%—j—k

for k =0,1,2,.... Considering ((2s, H;0), we have, for k =0,1,...,p—1,

(=L — k) a2
R 2s, H (d?)( 1)~

and the thesis follows.

The result contained in the next lemma follows by geometric reasons.

However, we present here a purely combinatoric proof.
Lemma 5.3. For all 0 < ¢ <p—1, {(0,U, g2p-1) = (—1)7"1.

Proof. Consider the function

o0

= 1
Gel) =X e = 2

n:l n=t+1
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Since
> 1 > —Ss+c s
Ao eit) =) e~ 2 < j ><—1>Jt%<2s +2j - 2),
n=1 §=0
we have when s = 0, that z(—c,it) = (—=1)%¢Cg(0) = <_1)C+1t27c’ and

hence

Gre(s) = 2(s — ¢ it) = Y 2;

_ #2\s—c’
l(n t)sc

and for ¢ = 0 and s = 0 (;0(0) = —3 — t. Next, consider ¢ > 0, then:

t20
Gel0) = (-1 = 32— 2"
n=1
For ¢ =0,...,p—1, we have
C(S,U 52 _1) = _eexgn cex,q,n
q,52p nz::l )\qm,szp—l nz::l (n+q)(n+2p—q—2))*
(o]

=3 _Meex,qn—gq

n=q+1 (n(n - 2aq))s

Recalling the relation given in Section 5.4

2

mcex,q,n_q:m m—g—14+j)n+2p—qg—1-)

—

J=1,
J7#q+1
o I
= n(n — 2aq) + d?
¢'(2p—q—2)! 27 I
JFq+1
2 pi .
= o 2 13 (d) (n(n — 2a,))’.
q(2p —q—2)! =
Thus
p—1 q
((s,Ups2-1) = grmpeg=ayi Z%ep—j—l(dq) (C—aq,j(s) - 221 W)
J= n=

p—1

= q!(2pzi72)! Z ep—j—1(d?)C—aq,j(5)-

J=0
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where
p—1
1

Z ep—j-1(d") (n(n+2p—2q—2))3 0

J=0

for 1 <n <gq, by [WY]. For s = 0, we obtain

C(O,Uq752p—1) = 'Zep j— 1 C an(O)

1 n=1
2
N (2p— q—2)! (epa(d)
2  p—q—2
q J+104qj _ 2 9\j
+Zep —j— 1 d ) 2 Z (TL Oéq)
n=1
— 2 (_1)q+1q!(2p_q_2)!
!(2p— q—2)! 2
25 —q—2
+Ze (d?) )a+10‘qj _pi (n? — a2)i
p—j— 1 9 n th
n=1

To conclude the proof, note that the second term vanishes. For first,
as showed in the proof of Lemma 5.2, the numbers n = 1,2,..., -4 are

roots of the polynomial Z?;é ep—j—1(d9)(n* — a2)’, and second:

p

p—1
> epjo1(d?)(~1 Ja2J—Zep il H —d% + d?)
j=0

)

] +1
p
-1l e .

J
J#l +1
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5.5 The proof that Apy(9C;S7 ") = log Tap(C1S2)
We need some notation. Set

2 Zerl - —5—k—t+1\ 944
D(q,k t) '(2p(]2< ) Z Ep—1— ldq ) ( 2l_k_t )O[q( )7

I=k+t
F(q,k) =Reso B4, (s), 1<k<p-1, 0<qg<p—1.
s=

Then, by Corollary 5.2, the residues of ((s,U,), for 0 < ¢ < p— 2, are

p—1—k 1
R Uyg) — k,t),
e 2€ks+11<(5 V2k:+1 ; 2t D(g,
for k=0,...,p—1, and when ¢ =p — 1:
Resl C(Sv Upfl) = D(p - ]-a k‘,O),

s=2k+1 p2ktl

with £k =0,...,p— 1. Now, for 0 < ¢ <p—1, it is easy to see that

p 1-k
1
Resg P934 R U,) —-D(q,k,1),
82%0 2k+1,q( )s 26k5+11<(8 V2k+1 tz% L2t Q7
and hence
-1 p—1—k
1%~ F(q, k) 1
Resg D34 R U, == ’ — k,t
Z eSO 2k+1q )5:2614;84,1_1 C(& q) 2 k:() 2k+1 o 2t (Qv )
On the other side, set:
k
1 -
Apnm(CrS2 1 Z %HQP Qp(k) =Y Ni(p, k),
j=0
where
(2p —1)! 1 (—1)k—di+l

NileR) = o =i T Ik + 1) (k= )1(2) + DI

Lemma 5.4. 3 Z ( 1)7,(v) is an odd polynomial in L.
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Proof. This follows by rearrangement of the finite sum:

p—1—k

|
—
‘T
—
“B
,_.

P

1 1
5O () = 5 qZF (k) Y i (k)
q=0 q:O = t=0
152 1 p—1 k
:ZZV%—H qZF D(g, 5,k —j)
k=0 7=0
1 p—1 1 k p—1
= Z L2k+1 Z(_l)qF(qmj)D((L]ak _]) n
k=0 =0 q=0
Then, set
1 p—1 p—1 1 k
32 (D) =Dy @Qulk). Qulk) =D M;(p. k)
q=0 k=0 =0
where
p—1
M;(p,k) =Y (=1)7F(q,5)D(q, . k — j)
q=0
p—1 . 1
2F(q,5) (2p—2 oz ~1i
=N (e D) j 2 )
q:o( I Zep -l Ik

This shows that all we need to prove the equality is the identity: M;(p, k) =
Nj(p, k). This is in the next two lemmas. Before, we need some further

notation and combinatorics. First, recall that if

fh(:z:) = Ch (xQ_( _1) :‘C _( —2)2,...,l’2—12,l’2),
then fj,(aq) = en(d?), and fp(z), for h > 1, is a polynomial of the following
type:

D= 3 @i - =i = (D)o e

0<j1 << <jn<p-1
(14)

Second, we have the following four identities. The first three can be
found in [GZ], 0.151.4, 0.154.5 and 0.154.6 (see [Kra] for the proof). The
fourth is in [GR], equation (5.3).
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SR ) -G () = G () o

S (-1 <Z> (o + k)" =(—1)"nl, (16)
k=0
S (Vi byt <o, a7)
k
k=0

" /n+1 —% n—i—% (2n+ 1N
Z = = vk . (18)
s I+1)\l—k n—k 2n=F(n — k)1(2k + D!

with 1 <n < N and o € R.

Lemma 5.5. For 0 < k < p— 1, we have that My(p, k) = No(p, k).

Proof. Since j =0,

i 2108 (o () o)

(2p —1)! 1 (—1)k
22 lp— D) (p—1—-k)2k+1) k! °

Consider first k£ # 0. Then,

Mo(p, k) = <_];> pE:l(—l)q(Qpl_2 <2pq 2) pr 1-1(ag) (l_—%k>

q=0 =k

(D 8erata ()56 ()

l

_% S 1 2p—2 S 1-1 2s 21 _%
_1)¢ p— E
(et ()T S @ ()

=k s=0

1

(5w ) S ()

-2 —1
. p=2p 1 <_%> ( _% > p (1) 1 (Qp - 2) o2s 2l
I=k s=0 ’ k L=k 0 (2p — 2)! q 1
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Using the identity in equation (17), the second term in the last line
vanishes since 2s + 2 < 2p — 2. Thus,

( p ) (k+ 1)1 (2p — 1)1 2k+1

2\ k kE+1 pl (2k+ 1)1 2p
_(=F 1 (2p—1)! 1 B
k! (p—kj—l)! (2k+1) 22p71(p_1)! _NO(pa k)
Next, consider k£ = 0. Then,
p—2 p—1 1
1 (2p—2 1N
M, p70 = _1)4 < > i« O[2l< 2> 4=
0( ) qzo( ) (2p IR 2)' q o fp 1 l( q) q I 5
p—1 p—1 1
1 2p — 2) <—> 1
= _1)¢ o ) _q. L
%( ) (2])_2)'( q ;fp 1 l( q) q I
-1 1
St AR Y
= -2\ ¢ J=z\p-1-1)" l

(—=1)P=t [2p—2
1

p—1 p— .
= (—1)"; -2 P N2 T2 1
=0 (2p —2)! q P p—1—1) 1 l 2

1

—1

St £ 1)

N |
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SOIINERES =

2p—1(2p—2
:22”1<p—1> = No(p,0)

The next two results have the objective to find a presentation of F'(q, j),
for that we need to describe the functions @‘2’?_‘&1 4(8). These functions
appears on the calculation of the derivative in zero of zeta functions of

double sequences, they are defined by
dd * 1 1 dd
o o s— o
@2j+1,q( ) /0 t 271 /Ae ¢2j+1,q( )

for 0 < j,q < p— 1. The functions gb%d()\) are defined using terms from
the uniform expansions of Bessel functions (for more details see Lemma
5.4 and Lemma 5.10 from [HS2]). In fact, (bf’dd( ) are polynomials in A
with d)Odd( ) =0, for all j,q € IN.

Lemma 5.6. For all j and all 0 < ¢ < p—2, the functions ¢°dd( ) satisfy

the following recurrence relations (where w = 117 )\)

¢339, J(N) = w2226, (w +ZK2] ()2 + 239, (w)

(w2j —1)a?
sy = L= her +ZK2N Jog! + 26555 1 (w),

where the K ;(w) are polynomials in w.

Proof. The proof is by induction on j. For j =1,

‘fff]d(w)——w—i-w —2¢j’(;d 1(w)
2 6
w 3w
gf}]d(w) =— (w? - 1)0[2 + (—? — 2wt — T)

= — (w? = 1)ag + 20851 (w).
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Assuming the formulas hold for 1 < k < j — 2. Then, by definition
of the functions gbOdd( ) and [(A) in the proof of Lemma 5.4 and Lemma
5.10, we have that

I3sy (w )+l2_s_1(w):2i25_1(w)+ 252 25 2 Odd +ZK28 1.t(w

w2s 25 s—1

+ZK23t

_ 2
I3 (w) =I5y (w) = aZs s 1+anD25 1t(w

13,(w) + Ly, (w) = 2lzs(w) —

25— 14
I3,(w) — oy (w) = —a2 T et (w) + ay Z Dy i(w)a2!
for all s =1,2,...,7 — 1, and where the D,; are polynomials in w. We

proceed as in the proof of Lemma 5.6[HS2]. For the odd index we have:

i1 (w) = ly;_y (w) = 204Uzj-2(w)

2j-2 .
2] —1—-k B
-2 “o 1 kW) () ~ Ly (w)
k=1
2j—2
27 —1-k B
+ Z 27 _ 1 waquﬂ(w)(% 1 k(w)+l2j 1p(w)),
k=1
912k
:20{qU2j72(’LU) *ZTVQk(w)(l;‘j_l_2k( ) l;] 1— 2k( ))
k=1

-1 ..
2j —1— 2%k )
- Z 97 _ worgUse—1 (W) (lg;_y oy, (w) + ly;_y oy (w))
k=

j —
225] Vi ()0 gy (0) = Iy gy ()

27 — 2k _
Z 2 — waqU?kﬂ(w)(l;j—zk(w) + 1o (w))
k=1
72

2
2]—1a?1] fwt 1+O‘42D2ﬂ Li(w)ag’,
t=0
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and this gives

25—2
2j —1—
P2j-1,9(w) = = 2Uzj-1(w) + 2Vaj1(w) + Z j 2Uk(W)l2j—1—k(w))

Jj—1 4
_ Z 25 231_ 12]<J (ng( )(lzj 1_op(w) + l2—j7172k(w)>)
k=1

S H L )ty ah(0) )

k=1

il
-3 22]j _2116 <V2k71(w)(l§j_2k(w) + l;j_Zk(w)))

J—1 .
—Z 2‘]._ 2k <waqU2k—2(w)(l;rj—2k;( ) = ly;_op(w )))

=w¥ 22 200 (w) + ) Koj 1 a(w)ad’ + 2055, (w).

For the even index, using the result proved for the odd index, we get

19 ok
ly;(w) =l (w) =20Usj—1 (w) — Z 92] Vor(w )(z;j_%(w)—l;j_%(w))

k=1

25— 2
- Z 2] waqUQk—l(w)(l;_ijk(w) + 1y o (w))

-1 .
2] —2k+1 _
- Z 7-‘/2k—1(w)(l;j—2k+1( w) — l2] 2k+1( w))
k=1 2]
9j—oky1
— Z TwaqU2k—2 (w)(l;jfzk+1(w) + l272k+1(W))
k=1

=— ozgjflw%*lgf)‘f%d(w) + aq Z ng,t(w)ozqt

and proceeding as before, this gives the last formula in the thesis. |
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Corollary 5.3. For all j and all 0 < ¢ < p — 2, the Laurent expansion of

the functions @g?j‘ll 4(8) at s =0 has coefficients: for 1 <j <p—1

j—1
JFZk?JH,q,tO‘ +QRQSO ‘1323+1p 1(8),

R q)odd
Si%o 2J+17q() 2j+1 Qg

odd o
Re%l (I)2j+1,q(8) — 07
S=

2j+1 k+j
Reso (I)QJ-HP 1 =2 Z k2j+l,p 1,k Z 2 _

odd o
Res; ©35%, ,1(s) =0,
s=0
where the k;,; are real numbers, and for j = 0,

Reso <P°dd( ) = 2Resg @i";d 1(s) =2, Resl <I>°dd( ) =0.
s=0

Proof. By Lemma 5.4 and Lemma 5.10,

2j+1

odd _ , 2k+2j+1
¢2j+1,q()\) = E Kajy1,q6w )
k=0

2j+1
odd _ 2k+2j+1
P9541,p—1(A) = Z Kaji1p-1pw
k=0

where w = \/11_—)\, and qﬁgﬁd_l 4(0) = 0, therefore szz_ol koji1.4% = 0. Us-
ing the formula in equation (9.6)[HS2] and the residues for the Gamma
function in equation (9.5)[HS2], we obtain

2j+1
odd

Re%l (I)2j+1,q(5) = E k2j41,4 = 0.

S=

Using the same formulas of [HS2], but the result of Lemma 5.6, we prove
the formula for the finite part. The formula for j = 0 follows by explicit
knowledge of the coefficients ko 1,1 n
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Note that, with this corollary F(q,0) = 2 for 0 < ¢ < p — 2, and

Flp—1,0)=1

Lemma 5.7. For 1 < j < p—1, we have that M;(p, k) = N;(p, k).

Proof. Note that j <k, and hence 1 < j <k < p— 1. Recall that

J—1
+Zk23+1,q,ta +2ReSO ‘1’2]+1p 1(8),

by Corollary 5.3. Set kzji1,40 = 2Resg.—0 Pajr1p-1(5). We split the

proof in three cases. First, for j = k < p — 1, we have

p—1 ] % — 2 p—1 1
q, - 20—29 -2
(D, Z 2p 3 = ] < . ) Z ep_1_1(d?)a2 =% (l >

q=0 I=j —J
p—1 2j p—1 1
2p —2 [ —5
q 20—2j 2
E g 1 (o) )
— 2J+1 (2p—2)!< q ) _.f” ileg)ay <l—J>
q= l=j
Jj—1 p—1 2t p—1 1
« 2p—2 s—2i{ —3%
+ k2j1+1,q.t g —1 ( > g Jp—1-1(ag)ay ™ 2
=0 T 2p 2\« = : o L=

Using the formula in equation (14) for the functions f,_1_;(cy), we get

p—1

2p—2 pz_i P o221 o —3
b2
(2+122)< > ( 1 >0‘q Qq < _ )
p 0 F+DEp ¢ )iz \p—1-d L=
2p 9 p—2p—2—1
25 21
T (_1)q(2j+1)%2p2)!< )Z > gt ( QJ)

=7 s=0

i1 2p — 2\ &~ -1
2p—2+42t—2j5
+Zk2j+1qtz (2p 21 ( >Z<p_1_ ) agh T j<l 2.)

l=j —J

¥
L

.e
Il
o

H-

l

s 2p — 2\ k2" 25421422 3
IS 3 S e DD SRR Y

l=j s=0 J

1

= 2p — 2 8 -3
_ 1 1 —2 2
S (7 ) ()
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_ pi p -5\ _ 1 1 (@p-nnt!
2(2j+1) —\p-1-1\l—j 202j+1) (p—1—5)! (25 + 1) 20
_ 1 (2p—1)! 2/

S 2i D1 ) (25 + )22 (p—1)!

= N;(p,j),

where the first three terms in the first equation vanish because s+ < p—1

and t — j < —1. The second case is j = k = p — 1. Then,

p—1
M, 1(p,p—1)= (_1)(]1;((3;)_—2)1!)(21’(1— 2)

_p_ g 0421%2 2p—2
=>_(-1) (2p—1)(2p—2)!< q )

0
p—2 2t
2p — 2
+ 2j+1,p— ltz 2p 2) < >

q

2

_l’_

2

k2j+1,p—1,t (—1)p! ozl (2]9 - 2>
| _

e 2(2p — 2)! 1

-1

1 % 1 2p — 2
- 4 kot B Y S
2(zp—1) 1’0q20( )2<2p—2>!< g )

1 2 — 2

—koiiqm 1o(—1)P ——
2j+1,p 170( ) 2(2]9 — 2)| p— 1 )

k2j+1,p-1,0 1 1 2p — 2
S 2(2p—2)!< 1)
__1 . kgjrip-10 (=11
2(2p—1) 2 (-Dp-1!
kajrip-1o  (Z1)P7)
2 (p-Dip-1!

1
=55 = Np-1(pp— 1)
2(2p—1)

The last case is 1 < j < k. Then,
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p—1 . 1 . p—1 1

2F(q,5) (2p—=2\(—32—7\ 2 2a( 73

, _ g 29 9) 2 j q 2
M;(p, k) 3 (-1) -2\ g L ;epflfl(d Jog k)

i=0
\ p-1 -1
B (7% 7‘]) p (—1)‘1;(2[)7 2) pz ( p )a2p7272la21( *% )
k=i )& R0\ ¢ )& \p-1-1)% TNk
1 ~ p—1 p—2p—2-1 1
—1_y 1 2p—2 25421
(2 ) 1 q+< ) syt
<k*j g( )(2J+1)(2P*2 q 12;2% k
1 N J-1 p—1 p—1 1
-1 , g 1 (2p—2 P 2p—242t-25 [ T2
+(kj)t§_%k2j“"”rzo( Y (2%2)!( g ; p-1-)% ok
1 N j-1 p—1 p—2p—2—1 1
-1 1 2p —2 2s42042t-25 [ T2
N 3 ) Kot o, 1) ( ) csa(” +2t—2j 2
(k’ J /= 2]+1yq'tq2:(:)( : -2\ ¢ /i ; ' L=k
1 —1
% j p _ 1 2p—2 a2p—2p p 7%
k—j q e -2\ ¢ )% o w1 N-k
p—1
% J 122 p _%
k= 2(2J+1) p—1-U/\l-k
(- (2p = 1!
k, 2(2J+1)( —1— k)!(2k + 1)li2r—F-1
(k2 2k 1 (2p — 1!
T k=28 (25 —1)12(25 + 1) (p— 1 — k)!(2k + 1)!12p—F—1
(—1)Fd 27 1 (2p—1)! _ N
Tkt lp -2+ (p—1—K)(2k+1) N;(p. b)-

5.6 The proof that Apy(9C;S? ) = log Tag(CiSZ )

sin sin

The proof of this case follows with the same argument of the odd case,
the unique difference are the functions ®57°"(s). But with the same strat-
egy as previously, it is possible to prove that, for all j and all 0 < ¢ < p—1,
the Laurent expansion of the functions ®577'(s) at s = 0 has coefficients:
for 1<j<p

2j—1 Jj—2
Resg g;e;(s) =——— 404 g ng,tagt, Resl @S}’eqn( s) =0,
s=0 J t=0

where the Koj; are real numbers. With this information we prove the
Theorem 1.2.
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