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The boundary term from the Analytic

Torsion of a cone over a m-dimensional

sphere

L. Hartmann

Abstract

We present a direct proof that the Anomaly Boundary term of

J. Brüning and X. Ma [BM1, BM2] generalizes to the cases of the

cone over a m-dimensional sphere.

1 Introduction

The Analytic torsion was defined by D. B. Ray and I. M. Singer [RS]

answering the question as to how describe the Reidemeister torsion, which

is a manifold invariant, in analytic terms. In the same article, they con-

jectured the equality of both torsion in the case of a closed Riemannian

manifold. A few years latter, J. Cheeger [Che0] and W. Müller [Mul]

proved this conjecture with different approaches. J. Cheeger used surgery

theory to reduced to the case of spheres and W. Müller used Hodge’s com-

binatory theory. This equality between the two torsions is the celebrated

Cheeger-Müller theorem. After that many generalizations of this theorem

arises (see [BZ] and references therein). A natural question about the
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Cheeger-Müller theorem is your extension to manifolds with boundary.

W. Lück [Luc] studied this situation, but in the case that the metric of

the manifold has a product structure near the boundary and he proved

a Cheeger-Müller theorem with this additional hypothesis. In this for-

mula, the Analytic torsion is equal to the Reidemeister torsion plus the

Euler characteristic of the boundary. Recently, J. Brüning and X. Ma

[BM1, BM2] proved the extension of Cheeger-Müller theorem for mani-

folds with boundary. In this situation, a new term appears in the equality

of the two torsions, and this term is called anomaly boundary term. An-

other possible extension of Cheeger-Müller theorem is for manifolds with

conical singularities. Manifolds with conical singularities was studied by

J. Cheeger [Che1, Che2, Che3]. Recently, many authors presented new

informations for this problem. In [HS1], M. Spreafico and the author, pre-

sented a qualitative result about the extension of Cheeger-Müller theorem

for a cone over a sphere of dimension 1, 2 and 3, and we conjectured that

the anomaly boundary term presented by Brüning and Ma is the same

in the case of the cone over a sphere. This conjecture was answered for

a general closed Riemannian manifold by the author and M. Spreafico in

[HS2] and independently by B. Vertman in [Ver], but in both cases the

proofs are by an indirect argument. The main motivation of this paper

is present another approach of this fact with a direct argument, i.e, we

calculate the Analytic torsion over a m-dimensional sphere and prove that

the contribution of the boundary in the analytic torsion is the anomaly

boundary term of Brüning and Ma. Recently, the author and M. Spreafico

proved the extension of Cheeger-Müller theorem for the even dimension

cone over a closed Riemannian manifold [HS3]. The odd dimensional case

is still open.

The paper is organized as follows. In section 2 we present the funda-

mental terminology and notation, in section 3 we discuss the Laplacian

operator in a finite metric cone, in section 4 we present all facts about the

calculation of the Analytic torsion of a finite metric cone and in the last

section, we prove the following main results of this paper.
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Theorem 1.1. If S2p−1
sinα is the odd dimensional sphere (of radius sinα),

with the standard induced Euclidean metric, then the Anomaly Boundary

contribution in the Analytic Torsion of ClS
2p−1
sinα is the Anomaly Bound-

ary term of Brüning and Ma, namely ABM(∂ClS
2p−1
sinα ). In this case, the

formula for the Analytic torsion reads

log Tabs(ClS
2p−1
sinα ) =

1

2
logVol(ClS

2p−1
sinα ) +ABM(∂ClS

2p−1
sinα ),

where

ABM(∂ClS
2p−1
sinα ) = (2p−1)!

4p(p−1)!

p−1∑
k=0

1
(p−1−k)!(2k+1)

k∑
j=0

(−1)k−j2j+1

(k−j)!(2j+1)!! sin
2k+1 α.

Theorem 1.2. If S2p
sinα is the even dimensional sphere (of radius sinα),

with the standard induced Euclidean metric, then the Anomaly Boundary

contribution in the Analytic Torsion of ClS
2p
sinα is the Anomaly Boundary

term of Brüning and Ma, namely ABM(∂ClS
2p−1
sinα ), i.e.,

ABM(∂ClS
2p
sinα) =

sin2p α

8

p−1∑
j=0

1

j!(p− j)!

j∑
h=0

(
j

h

)
(−1)h2 sin2(h−j) α

p− j + h
.

2 Preliminary

In this section we will recall some basic results in Riemannian Geometry,

Hodge de Rham theory, Global Analysis and the definitions of the main

objects we will deal with in this work. All the results are contained in

[Che2, HS2, RS].

2.1 Some Riemannian geometry and Hodge theory

Let (W, g) be an orientable compact connected Riemannian manifold of

dimension m without boundary, where g denotes the Riemannian struc-

ture. We denote by TW the tangent bundle over W , and by T ∗W the

dual bundle.
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Let ρ : π1(W ) → O(k,R) be a representation of the fundamental group

of W in the real orthogonal group of dimension k, and let Eρ = W̃ ×ρ Rk

be the associated vector bundle over W with fibre Rk and group O(k,R).
We denote by Ω(W,Eρ) be the graded linear space of q-smooth forms

on W with values in Eρ, namely Ω(W,Eρ) = Ω(W ) ⊗ Eρ. The ex-

terior differential on W defines the exterior differential on Ωq(W,Eρ),

d : Ωq(W,Eρ) → Ωq+1(W,Eρ) and g defines the Hodge operator on W ,

and hence on Ωq(W,Eρ), ⋆ : Ωq(W,Eρ) → Ωm−q(W,Eρ). Using the inner

product ⟨ , ⟩ in Eρ, an inner product on Ωq(W,Eρ) is defined by

(ω, η) =

∫
W
⟨ω ∧ ⋆η⟩. (1)

The closure of Ωq(W ;Eρ) with respect to this inner product is the

Hilbert space of L2 q-forms onW with values in Eρ. The de Rham complex

with this product is an elliptic complex. The dual of the exterior deriva-

tive d†, defined by (α, dβ) = (d†α, β), satisfies d† = (−1)mq+m+1 ⋆ d⋆.

The Laplace operator is ∆ = (d + d†)2. It satisfies: 1) ⋆∆ = ∆⋆, 2)

∆ is self adjoint, and 3) ∆ω = 0 if and only if dω = d†ω = 0. Let

Hq(W ;Eρ) = {ω ∈ Ω(q)(W ;Eρ) | ∆ω = 0}, be the space of the q-harmonic

forms with values in Eρ. Then, we have the Hodge decomposition

Ωq(W,Eρ) = Hq(W,Eρ)⊕ dΩq−1(W,Eρ)⊕ d†Ωq+1(W,Eρ). (2)

This induces a decomposition of the eigenspace of a given eigenvalue

λ ̸= 0 of ∆(q) into the spaces of closed forms and coclosed forms: E(q)
λ =

E(q)
λ,cl ⊕ E(q)

λ,ccl, where

E(q)
λ,cl = {ω ∈ Ωq(W,Eρ) | ∆ω = λω, dω = 0},

E(q)
λ,ccl = {ω ∈ Ωq(W,Eρ) | ∆ω = λω, d†ω = 0}.

The exact forms and coexact forms are defined by

E(q)
λ,ex = {ω ∈ Ωq(W,Eρ) | ∆ω = λω, ω = dα},

E(q)
λ,cex = {ω ∈ Ωq(W,Eρ) | ∆ω = λω, ω = d†α}.
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Note that, if λ ̸= 0, then E(q)
λ,cl = E(q)

λ,ex, and E(q)
λ,ccl = E(q)

λ,cex, and we have an

isometry

ϕ :E(q)
λ,cl → E(q−1)

λ,cex , ϕ : ω 7→ 1√
λ
d†ω, (3)

whose inverse is 1√
λ
d. Also, the restriction of the Hodge star defines an

isometry

⋆ :d†Ω(q+1)(W ) → dΩ(m−q−1)(W ),

and that composed with the previous one gives the isometries:

1√
λ
d⋆ : E(q)

λ,cl → E(m−q+1)
λ,cex ,

1√
λ
d†⋆ : E(q)

λ,ccl → E(m−q−1)
λ,ex . (4)

2.2 Manifolds with boundary

Let M be an orientable compact connected riemannian n-manifold with

boundary ∂M . Following [RS], let ∂x denotes the outward pointing unit

normal vector to the boundary, and dx the corresponding one form. The

smooth forms on M near the boundary decompose as ω = ωtan + ωnorm,

where ωnorm is the orthogonal projection on the subspace generated by dx

and ωtan is in Ω(∂M). We write ω = ω1 + dx ∧ ω2, where ωj ∈ Ω(∂M),

and

⋆ ω2 = dx ∧ ⋆ω. (5)

Define absolute boundary conditions by

Babs(ω) = ωnorm|∂M = ω2|∂M = 0

and relative boundary conditions by

Brel(ω) = ωtan|∂M = ω1|∂M = 0.

Note that, if ω ∈ Ωq(M), then Babs(ω) = 0 if and only if Brel(⋆ω) = 0,

Brel(ω) = 0 implies Brel(dω) = 0, and Babs(ω) = 0 implies Babs(d
†ω) = 0.

Let B(ω) = B(ω) ⊕ B((d + d†)(ω)). Then the operator ∆ = (d + d†)2
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with boundary conditions B(ω) = 0 is self adjoint, and if B(ω) = 0, then

∆ω = 0 if and only if (d+ d†)ω = 0. Note that B correspond to

Babs(ω) = 0 if and only if

{
ωnorm|∂M = 0,

(dω)norm|∂M = 0,
(6)

Brel(ω) = 0 if and only if

{
ωtan|∂M = 0,

(d†ω)tan|∂M = 0,
(7)

Let

Hq
abs(M,Eρ) = {ω ∈ Ωq(M,Eρ) | ∆(q)ω = 0, Babs(ω) = 0},

Hq
rel(M,Eρ) = {ω ∈ Ωq(M,Eρ) | ∆(q)ω = 0, Brel(ω) = 0},

be the spaces of harmonic forms with boundary conditions. Then the

Hodge decomposition reads

Ωq
abs(M,Eρ) = Hq

abs(M,Eρ)⊕ dΩq−1
abs (M,Eρ)⊕ d†Ωq+1

abs (M,Eρ),

Ωq
rel(M,Eρ) = Hq

rel(M,Eρ)⊕ dΩq−1
rel (M,Eρ)⊕ d†Ωq+1

rel (M,Eρ).

2.3 Analytic torsion

The analytic torsion is defined starting with a manifold (M, g) without

boundary , as previously, with twisted coefficients in Eρ. The operator

∆(q) is symmetric, positive and has pure point spectrum. The zeta func-

tion of the Laplace operator ∆(q) on q-forms in Ωq(M,Eρ) is defined by

the meromorphic extension (analytic at s = 0) of the series

ζ(s,∆(q)) =
∑

λ∈Sp+∆(q)

λ−s,

convergent for Re(s) > n
2 , and where Sp+ denotes the positive part of the

spectrum. If ∂M = ∅, the analytic torsion of (M, g) is

log T ((M, g); ρ) =
1

2

n∑
q=1

(−1)qqζ ′(0,∆(q)). (8)

If M has a boundary, we denote by Tabs((M, g); ρ) the number defined

by equation (8) with ∆ satisfying absolute BC, and by Trel((M, g); ρ) the

number defined by the same equation with ∆ satisfying relative BC.
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2.4 The Cheeger-Müller theorem for manifolds with bound-

ary

Using recent works of J. Brüning and X. Ma [BM1, BM2], and classic

the work of W. Lück [Luc], the Cheeger-Müller theorem for an oriented

compact connected Riemannian n-manifold (M, g) with boundary reads

[BM2, Theorem 3.4] (see [HS1, Section 6] or [HS2, Section 2.3] for details

on our notation)

log Tabs((M, g); ρ) = log τR((M, g); ρ) +
rk(ρ)

4
χ(∂M) log 2

+ rk(ρ)ABM,abs(∂M),

log Trel((M, g); ρ) = log τR((M,∂M, g); ρ) +
rk(ρ)

4
χ(∂M) log 2

+ rk(ρ)ABM,rel(∂M),

where ρ is an orthogonal representation of the fundamental group, and

where the boundary anomaly term of Brüning and Ma is defined as follows.

Using the notation of [BM1] (see [HS2, Section 2.2] for more details) for

Z/2 graded algebras, we identify an antisymmetric endomorphism ϕ of

a finite dimensional vector space V (over a field of characteristic zero)

with the element ϕ̂ = 1
2

∑n
j,k=1⟨ϕ(vj), vk⟩v̂j ∧ v̂k, of Λ̂2V . For the elements

⟨ϕ(vj), vk⟩ are the entries of the tensor representing ϕ in the base {vk}, and
this is an antisymmetric matrix. Now assume that r is an antisymmetric

endomorphism of V with values in Λ2V . Then, (Rjk = ⟨r(vj), vk⟩) is a

tensor of two forms in Λ2V . We extend the above construction identifying

R with the element

R̂ =
1

2

n∑
j,k=1

⟨r(vj), vk⟩ ∧ v̂j ∧ v̂k,

of Λ2V ∧ Λ̂2V . This can be generalized to higher dimensions. In partic-

ular, all the construction can be done taking the dual V ∗ instead of V .

Accordingly to [BM1], we define the following forms (where i : ∂M → M
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denotes the inclusion)

S =
1

2

n−1∑
k=1

(i∗ω − i∗ω0)0k ∧ ê∗k

î∗Ω =
1

2

n−1∑
k,h=1

i∗Ωk,h ∧ ê∗k ∧ ê∗h, Θ̂ =
1

2

n−1∑
k,h=1

Θk,h ∧ ê∗k ∧ ê∗h.

Here, ω and ω0 are the connection one forms associated to the metrics

g and g0, respectively, where g0 is a suitable deformation of g that is

a product near the boundary. Ω is the curvature two form of g, Θ is

the curvature two form of the boundary (with the metric induced by the

inclusion), and {ek}n−1
k=0 is an orthonormal base of TM (with respect to

the metric g). Then, setting

B =
1

2

∫ 1

0

∫ B

e−
1
2
Θ̂−u2S2

∞∑
k=1

1

Γ
(
k
2 + 1

)uk−1Skdu,

the Anomaly Boundary term is

ABM,abs(∂M) = (−1)n+1ABM,rel(∂M) =
1

2

∫
∂M

B.

3 The spectrum of the Laplacian on forms on the

finite metric cone

Let (W, g̃) be an orientable compact connected Riemannian manifold of

finite dimension m without boundary and with Riemannian structure g̃.

The metric cone CW is the space (0,+∞)×W with the metric

g = dx⊗ dx+ x2g̃. (9)

The finite metric cone is C(0,l]W = {(x, p) ∈ CW | 0 < x ≤ l} with the

Riemannian metric g and the completed finite metric cone over W is the

compact space ClW = C(0,l](W ). The boundary of ClW is the subspace

{l} × W of ClW which is isometric to W with the metric l2g̃. We will
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call (W, g̃) the section of the cone and operations on the section will be

denoted with tilde.

In [Che1, Che2, Che3], J. Cheeger extended all the Hodge theory and

the Laplace operator for this spaces, in particular all results of section 2.1

are valid. Given a local coordinate system y on W , then (x, y) is a local

coordinate system on the cone. We present the explicit form of ⋆, d† and

∆. If ω ∈ Ωq(C(0,l]W ), set

ω(x, y) = f1(x)ω1(y) + f2(x)dx ∧ ω2(y),

with smooth functions f1 and f2, and ωj ∈ Ω(W ), then

⋆ω(x, y) = xm−2q+2f2(x)⋆̃ω2(y) + (−1)qxm−2qf1(x)dx ∧ ⋆̃ω1(y), (10)

dω(x, y) =f1(x)d̃ω1(y) + ∂xf1(x)dx ∧ ω1(y)− f2(x)dx ∧ dω2(y),

d†ω(x, y) =x−2f1(x)d̃
†ω1(y)−

(
(m− 2q + 2)x−1f2(x) + ∂xf2(x)

)
ω2(y)

− x−2f2(x)dx ∧ d̃†ω2(y),

(11)

∆ω(x, y) =
(
−∂2

xf1(x)− (m− 2q)x−1∂xf1(x)
)
ω1(y) + x−2f1(x)∆̃ω1(y)

− 2x−1f2(x)d̃ω2(y) + dx ∧
(
x−2f2(x)∆̃ω2(y) + ω2(y)

(
−∂2

xf2(x)

− (m− 2q + 2)x−1∂xf2(x) +(m− 2q + 2)x−2f2(x)
)

−2x−3f1(x)d̃
†ω1(y)

)
.

(12)

The Laplace operator on forms on the space ClW was studied by [BS1].

The definitions of this operator starts with the formal differential operator

defined by equation (12) acting on Ωq
abs/rel(C(0,l]W ) . This define a unique

self adjoint semi bounded operator with pure point spectrum ∆abs/rel act-

ing on L2(ClW,Ω(q)ClW ), such that ∆abs/relω = Lω, if ω ∈ dom∆abs/rel.

All the solutions of the eigenvalues equation for L is presented in [Che2].

In particular, imposing the boundary conditions we obtain the spectrum
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of ∆abs/rel. More precisely, let Jν be the Bessel function of index ν. Define

αq =
1

2
(1 + 2q −m), and µq,n =

√
λq,n + α2

q ,

where λq,n is the eigenvalue of a q co-exact eigenform of W .

Lemma 3.1. The positive part of the spectrum of the Laplace operator

on forms on ClW , with absolute boundary conditions on ∂ClW is:

Sp+∆
(q)
abs =

{
mcex,q,n : ĵ2µq,n,αq ,k/l

2
}∞

n,k=1
∪
{
mcex,q−1,n : ĵ2µq−1,n,αq−1,k/l

2
}∞

n,k=1

∪
{
mcex,q−1,n : j2µq−1,n,k/l

2
}∞

n,k=1
∪
{
mq−2,n : j2µq−2,n,k/l

2
}∞

n,k=1

∪
{
mhar,q,0 : ĵ

2
|αq |,αq ,k

/l2
}∞

k=1
∪
{
mhar,q−1,0 : ĵ

2
|αq−1|,αq ,k

/l2
}∞

k=1
.

With relative boundary conditions:

Sp+∆
(q)
rel =

{
mcex,q,n : j−2s

µq,n,k
/l−2s

}∞

n,k=1
∪
{
mcex,q−1,n : j−2s

µq−1,n,k
/l−2s

}∞

n,k=1

∪
{
mcex,q−1,n : ĵ−2s

µq−1,n,−αq−1,k
/l−2s

}∞

n,k=1

∪
{
mcex,q−2,n : ĵ−2s

µq−1,n,−αq−2,k
/l−2s

}∞

n,k=1

∪
{
mhar,q : j|αq |,k/l

−2s
}∞
k=1

∪
{
mhar,q−1 : j|αq−1|,k/l

−2s
}∞
k=1

,

where the jµ,k are the zeros of the Bessel function Jµ(x), the ĵµ,c,k are the

zeros of the function Ĵµ,c(x) = cJµ(x) + xJ ′
µ(x), c ∈ R.

Proof. See [HS2] ■

For the harmonic forms of ∆abs/rel we have,

Lemma 3.2. If dimW = 2p− 1 is odd. Then

Hq
abs(ClW ) =

Hq(W ), 0 ≤ q ≤ p− 1,

{0}, p ≤ q ≤ 2p.

Hq
rel(ClW ) =

{0}, 0 ≤ q ≤ p− 1,{
x2αq−1dx ∧ φ(q−1), φ(q−1) ∈ Hq−1(W )

}
, p ≤ q ≤ 2p.
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If dimW = 2p is even. Then

Hq
abs(ClW ) =

Hq(W ), 0 ≤ q ≤ p,

{0}, p+ 1 ≤ q ≤ 2p+ 1.

Hq
rel(ClW ) =

{0}, 0 ≤ q ≤ p,{
x2αq−1dx ∧ φ(q−1), φ(q−1) ∈ Hq−1(W )

}
, p+ 1 ≤ q ≤ 2p+ 1.

Proof. See [HS2] for the odd case. The even case follows by the same

argument. ■

Using the description of the spectrum of the Laplace operator on forms

∆
(q)
abs/rel given in the last section, we define the zeta function on q-forms

as in Section 2.3, by

ζ(s,∆
(q)
abs/rel) =

∑
λ∈Sp+∆

(q)
abs/rel

λ−s,

for Re(s) > m+1
2 . This function possibly have a simple pole in s = 0, but

A. Dar [Dar] proved

Theorem 3.1. The torsion zeta function with absolute/relative boundary

conditions, defined by

tabs/rel(s) =
1

2

m+1∑
q=1

(−1)qqζ(s,∆
(q)
abs/rel),

is regular in s = 0.

Then the analytic torsion of ClW is defined and

log Tabs/rel(ClW ) = t′abs/rel(0).

4 The analytic torsion of ClW

In this section we present all principal facts about the calculation of

the Analytic torsion of ClW . For more details see [HS2]. As the Poincaré
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Duality holds for the Analytic torsion of ClW , i.e,

log Tabs(ClW ) = (−1)dimW log Trel(ClW ),

for now on we use the absolute boundary conditions and we will omit the

subscript abs. With lemma 3.1, after some simplification, the torsion zeta

function is

t(s) =
l2s

2

p−2∑
q=0

(−1)q

 ∞∑
n,k=1

mcex,q,n

(
2j−2s

µq,n,k
− ĵ−2s

µq,n,αq ,k
− ĵ−2s

µq,n,−αq ,k

)
+ (−1)p−1 l

2s

2

 ∞∑
n,k=1

mcex,p−1,n

(
j−2s
µp−1,n,k

− (j′µp−1,n,k)
−2s
)

− l2s

2

p−1∑
q=0

(−1)qrkHq(∂ClW ;Q)
∞∑
k=1

(
j−2s
−αq−1,k

− j−2s
−αq ,k

)
.

when dimW = 2p− 1 is odd and

t(s) =
l2s

2

p−1∑
q=0

(−1)q
∞∑

n,k=1

mcex,q,n

(
ĵ−2s
µq,n,−αq ,k

− ĵ−2s
µq,n,αq ,k

)

+
l2s

2

p−1∑
q=0

(−1)q+1rkHq(∂ClW ;Q)
∞∑
k=1

(
j−2s
−αq−1,k

+ j−2s
−αq ,k

)
+ (−1)p+1 l

2s

4

∞∑
k=1

rkHp(∂ClW ;Q)

(
j−2s
1
2
,k

+ j−2s
− 1

2
,k

)
.

when dimW = 2p is even.

So the Analytic torsion of ClW is described by the following two the-

orems. For the proof of Theorem 4.1 see [HS2] and for the Theorem 4.2

see [HS4](compare with [Ver])

Theorem 4.1. If dimension of W is odd and equal to 2p− 1(p ≥ 1) then
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the Analytic torsion of ClW is

log T (ClW ) =
1

2
log T (W, l2g̃) +

1

2

p−1∑
q=0

(−1)qrq log
l

2(p− q)

+
1

2

p−1∑
q=0

(−1)q
p−1∑
j=1

Res0
s=0

Φodd
2j+1,q(s) Res1

s=j+ 1
2

ζcex

(
s, ∆̃(q) + α2

q

)
where the functions Φodd

2j+1,q(s) are some universal functions explicitly

known by some recursive relations, and ∆̃ is the Laplace operator on

forms on the section of the cone.

Theorem 4.2. If dimension of W is even and equal to 2p(p ≥ 1) then

the Analytic torsion of ClW is

log T (ClW ) =

p−1∑
q=0

(−1)q
rq
2
log

l2p−2q+1

2p− 2q + 1
+ (−1)p

rp
4
log l +

1

2
χ(W ) log 2

+
1

2

p−1∑
q=0

(−1)q+1A0,0,q(0) +

p−1∑
q=0

(−1)q+1rq log(2p− 2q − 1)!!

+
1

2

p−1∑
q=0

(−1)q
p∑

j=1

Res0
s=0

Φeven
2j,q (s)Res1

s=j
ζcex

(
s, ∆̃(q) + α2

q

)
,

where the functions Φeven
2j,q (s) are some universal functions explicitly known

by some recursive relations, ∆̃ is the Laplace operator on forms on the

section of the cone and

A0,0,q(s) =

∞∑
n=1

(
log

(
1− αq

µq,n

)
− log

(
1 +

αq

µq,n

))
mq,n

µ2s
q,n

.

5 The proof of Theorem 1.1 and Theorem 1.2

In order to prove Theorem 1.1 and Theorem 1.2 we define,

Definition 5.1. The Anomaly Boundary contribution in the analytic tor-

sion of a cone over a closed manifold W , denoted by log TAB(ClW ), is

1

2

p−1∑
q=0

(−1)q
p−1∑
j=1

Res0
s=0

Φodd
2j+1(s) Res1

s=j+ 1
2

ζcex

(
s, ∆̃(q) + α2

q

)
,
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if dimW = 2p− 1 and

1

2

p−1∑
q=0

(−1)q
p∑

j=1

Res0
s=0

Φeven
2j (s)Res1

s=j
ζcex

(
s, ∆̃(q) + α2

q

)
,

if dimW = 2p.

Recall that we are considering the absolute BC case, we will calculate

the analytic torsion of ClW in the case W = S2p−1
sinα using the theorem

4.1 and the Anomaly Boundary contribution in the log T (ClS
2p
sinα). Our

strategy is by direct calculation, i.e, we will determine all terms necessary

for the proof of theorem 1.1 and 1.2. With this in mind, first we determine

the term log T (S2p−1
sinα , l2g̃) and then the Anomaly Boundary contribution,

which requires more work, and that will be developed in the following

subsections. In fact, the Anomaly Boundary contribution are similar in

dimension odd and dimension even. So, we will determine the odd case

and present the equations for the even case to be concise. Here we present

the underlying geometric setting. Let Sm
b be the sphere of radius b > 0

in Rm+1, Sm
b = {x ∈ Rm+1 | |x| = b} (we simply write Sm for Sm

1 ).

Let ClS
m
sinα denotes the cone of angle α over Sm

sinα in Rm+2. We embed

ClS
m
sinα in Rm+2 as the subset of the segments joining the origin to the

sphere Sm
l sinα × {(0, . . . , 0, l cosα)}. We parametrize the cone by

ClS
m
sinα =



x1 = r sinα sin θm sin θm−1 · · · sin θ3 sin θ2 cos θ1

x2 = r sinα sin θm sin θm−1 · · · sin θ3 sin θ2 sin θ1

x3 = r sinα sin θm sin θm−1 · · · sin θ3 cos θ2
...

xm+1 = r sinα cos θm

xm+2 = r cosα

with r ∈ [0, l], θ1 ∈ [0, 2π], θ2, . . . , θm ∈ [0, π], and where α is a fixed

positive real number and 0 < 1
ν = sinα ≤ 1. The induced metric is
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(r > 0)

gE = dr ⊗ dr + r2gSm
sinα

= dr ⊗ dr + r2 sin2 α

m−1∑
i=1

 m∏
j=i+1

sin2 θj

 dθi ⊗ dθi + dθm ⊗ dθm

 ,

and
√

|detgE | = (r sinα)m(sin θm)m−1(sin θm−1)
m−2 · · · (sin θ3)2(sin θ2).

5.1 The Analytic torsion of an odd dimensional sphere

Proposition 5.1.

log T (S2p−1
sinα , l2g̃) = logVol(ClS

2p−1
sinα )−

p−1∑
q=0

(−1)qrq log
l

2(p− q)
.

Proof. By the Cheeger-Müller Theorem, log T (S2p−1
sinα , l2g̃) = log τ(S2p−1

sinα , l2g̃),

and a simple calculation shows that log τ(S2p−1
sinα , l2g̃) = logVol(S2p−1

l sinα) (for

more details see [MS]), and this proves the proposition since, if W has

metric g̃ and dimension m, then

Vol(ClW ) =

∫
ClW

√
det(x2g)dx∧dvolg̃ =

∫ l

0
xm
∫
W

dvolg̃ =
lm+1

m+ 1
Vol(W ),

and

Vol(Sm
b ) =

2π
m+1

2 bm

Γ
(
m+1
2

) . ■

5.2 The anomaly boundary contribution

Assuming that the formula for the anomaly boundary term ABM(∂ClW )

of Brüning and Ma [BM1] is valid in the case of ClS
m
sinα, we computed in

[HS1] (note the slight different notation), by applying the definition given

equation (2.11) of [HS2], that

ABM(∂ClS
2p−1
sinα ) =

p−1∑
j=0

2p−j

j!(2(p− j)− 1)!!

j∑
h=0

(
j

h

)
(−1)hν−2(p−j+h)+1

(2(p− j + h)− 1)

(2p− 1)!

4p(p− 1)!
,

ABM(∂ClS
2p
sinα) =

1

8ν2p

p−1∑
j=0

1

j!(p− j)!

j∑
h=0

(
j

h

)
(−1)h2ν2(j−h)

p− j + h
.
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Our purpose now is to prove that

log TAB(ClS
2p−1
sinα ) = ABM(∂ClS

2p−1
sinα ) and log TAB(ClS

2p
sinα) = ABM(∂ClS

2p
sinα).

(13)

For it is convenient to rewrite the second terms as follows:

ABM(∂ClS
2p−1
sinα ) =

p−1∑
j=0

2p−j

j!(2(p−j)−1)!!

j∑
h=0

(
j

h

)
(−1)hν−2(p−j+h)+1

(2(p−j+h)−1)
(2p−1)!
4p(p−1)!

= (2p−1)!
4p(p−1)!

p−1∑
k=0

1
(p−1−k)!(2k+1)

k∑
j=0

(−1)k−j2j+1

(k−j)!(2j+1)!!
1

ν2k+1 ,

ABM,abs(∂ClS
2p
sinα) =

1
8ν2p

p−1∑
j=0

1
j!(p−j)!

j∑
h=0

(
j

h

)
(−1)h2ν2(j−h)

p−j+h

= 1
2p!

p−1∑
k=0

1
2(k+1)

k∑
j=0

(−1)k−j

(
p

p− 1− j

)(
p− 1− j

k − j

)
1

ν2(k+1) .

5.3 The eigenvalues of the Laplacian over ClS
m
sinα

Let ∆ be the self adjoint extension of the formal Laplace operator on

ClS
m
sinα as defined in section 3. Then, the positive part of the spectrum

of ∆ (with absolute BC) is given in Lemma 3.1, once we know the eigen-

values of the restriction of the Laplacian on the section and their coexact

multiplicity, according to Lemma 3.1. These information are available by

work of Ikeda and Taniguchi [IT]. The eigenvalues of the Laplacian on

q-forms on S2p−1
sinα are
λ0,n = ν2n(n+ 2p− 2),

λq,n = ν2(n+ q)(n+ 2p− q − 2), 1 ≤ q < p− 2,

λp−2,n = ν2((n− 1 + p)2 − 1),

λp−1,n = ν2(n− 1 + p)2,
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with coexact multiplicty

mcex,0,n =
2

(2p− 2)!

p∏
j=2

(n− 1 + j)(2p+ n− 1− j),

mcex,q,n =
2

q!(2p− q − 2)!

p∏
j=1,

j ̸=q+1

(n− 1 + j)(2p+ n− 1− j), 1 ≤ q < p− 2,

mcex,p−2,n =
2

(p− 2)!p!

p∏
j=1

j ̸=p−1

(n− 1 + j)(2p+ n− 1− j),

mcex,p−1,n =
2

[(p− 1)!]2

p−1∏
j=1

(n− 1 + j)(2p+ n− 1− j),

thus the indices µq,n are
µ0,n =

√
ν2(n(n+ 2p− 2)) + (p− 1)2,

µq,n =
√

ν2(n+ q)(n+ 2p− q − 2) + α2
q , 1 ≤ q < p− 2,

µp−2,n =
√
ν2((n− 1 + p)2 − 1) + 1,

µp−1,n = ν(n− 1 + p).

And, the eigenvalues of the Laplacian on q-forms on S2p
sinα are

λ0,n = ν2(n+ 1)(n+ 2p),

λq,n = ν2(n+ q)(n+ 2p+ 1− q), 1 ≤ q < p− 1,

λp−1,n = ν2(n+ p)(n+ p+ 1),

with coexact multiplicty

mcex,0,n =
2(n+ 1) + 2p− 1

2p− 1

(
2p+ n− 1

n+ 1

)
,

mcex,q,n =
2n+ 2p+ 1

2p+ n− q − 1

(
2p+ n

n+ q

)(
p+ n− 1

n

)
, 1 ≤ q < p− 1,

mcex,p−1,n =
2p+ 2n+ 1

2p+ n+ 1

(
p+ n− 1

n

)(
2p+ n+ 1

p

)
,
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thus the indices µq,n are
µ0,n =

√
ν2(n+ 1)(n+ 2p) + (p− 1

2)
2,

µq,n =
√
ν2(n+ q)(n+ 2p+ 1− q) + α2

q , 1 ≤ q < p− 1,

µp−1,n =
√

ν2(n+ p)(n+ p+ 1) + 1
4 .

5.4 Some combinatorics

Let Uq,S2p−1 = {mcex,q,n : λq,n,S2p−1} denotes the sequence of the eigen-

values of the coexact q-forms of the Laplace operator over the sphere of

dimension 2p− 1 and radius 1. Let a1, . . . , am be a finite sequence of real

numbers. Then,

m∏
j=1

(x+ aj) =

m∑
j=0

em−j(a1, . . . , am)xj

where the e1, . . . , em are elementary symmetric polynomials in a1, . . . , am.

Let define the numbers:

dqj := (j − q − 1)(2p− q − j − 1),

for q = 0, . . . , p− 1, j ̸= q + 1, and

dq := (dq1, d
q
2, . . . , d̂

q
q+1, . . . , d

q
p),

where, as usual, the hat means the underling term is delated.

Lemma 5.1. The sequence Up−1 is a totally regular sequence of spectral

type(see [Spr] for the definition) with infinite order, exponent and genus:

e(Up−1) = g(Up−1) = 2p− 1, and

ζ(s, Up−1) =
2ν−s

(p− 1)!2

p−1∑
j=0

ep−1−j(d
p−1)ζR(s− 2j).

Proof. The first part of the statement follows from Lemma 5.2 in [HS2].

In order to prove the formula, note that ζ(s, Up−1) = ν−sζ
(
s
2 , Up−1,S2p−1

)
,
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where

ζ
(s
2
, Up−1,S2p−1

)
=

∞∑
n=1

mcex,p−1,n

λ
s
2

p−1,n,S2p−1

=
∞∑
n=1

mcex,p−1,n

(n+ p− 1)s
.

Shifting n to n− p+1, and observing that the numbers 1, . . . , p− 1 are

roots of the polynomial
∑p−1

j=0 ep−1−j(d
p−1)n2j , we obtain

ζ(s, Up−1) = ν−s
∞∑
n=p

mcex,p−1,n−p+1

ns
=

2ν−s

(p− 1)!2

∞∑
n=p

∏p−1
j=1 n

2 − (p− j)2

ns

=
2ν−s

(p− 1)!2

p−1∑
j=0

ep−1−j(d
p−1)ζR(s− 2j). ■

Note that, using the formula of the lemma, ζ(s, Up−1) has an expansion

near s = 2k + 1, with k = 0, 1, . . . , p− 1, of the following type:

ζ(s, Up−1) =
2

ν2k+1(p− 1)!2
ep−1−k(d

p−1)
1

s− 2k − 1
+ Lp−1,2k+1(s),

where the Lp−1,2k+1(s) are regular function for k = 0, 1, . . . , p− 1.

Corollary 5.1. The function ζ(s, Up−1) has simple poles at s = 2k + 1,

for k = 0, 1, . . . , p− 1, with residues

Res1
s=2k+1

ζ(s, Up−1) =
2

ν2k+1(p− 1)!2
ep−1−k(d

p−1).

Lemma 5.2. The sequence Uq is a totally regular sequence of spectral

type with infinite order, exponent and genus: e(Uq) = g(Uq) = 2p−1, and

(where i =
√
−1)

ζ(s, Uq) =
2ν−s

q!(2p− q − 2)!

∞∑
t=0

(
− s

2

t

) p−1∑
j=0

ep−1−j(d
q)z

(
s+ 2t− 2j

2
, iαq

)
α2t
q

ν2t
.

The function ζ(s, Uq) has simple poles at s = 2(p − k) − 1, with k =

0, 1, 2, . . ..
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Proof. The first statement follows by Lemma 5.2 [HS2]. For the second

one, consider the sequence Hq,h =
{
mcex,q,n :

√
λq,n,S2p−1 + h

}∞
n=1

. Then

ζ(s, Uq) = ν−sζ(s,H
q,

α2
q

ν2

), and

ζ(s,Hq,h) =
∞∑
n=1

mcex,q,n

(λq,n,S2p−1 + h)
s
2

=

∞∑
n=1

∞∑
t=0

(
− s

2

t

)
mcex,q,n

λ
s
2
+t

q,n,S2p−1

ht

=

∞∑
t=0

(
− s

2

t

)
ζ(s+ 2t,Hq,0)h

t.

Next observe that the zeta function associated to the sequence Hq,0 is

ζ(2s,Hq,0) = ζ(s, Uq,S2p−1) =
∞∑
n=1

mcex,q,n

λs
q,n,S2p−1

=

∞∑
n=p

mq,n−p+1

λs
q,n−p+1,S2p−1

=
2

q!(2p− q − 2)!

∞∑
n=p

∏p
j=1,

j ̸=q+1

(n2 − (p− j)2)

(n2 − α2
q)

.

Recall that α2
q = dqp, and note that

p−1∑
j=0

ep−j−1(d
q)(n2 − α2

q)
j =

p−1∑
j=0

ep−j−1(d
q)(n2 − dqp)

j =

p∏
j=1,

j ̸=q+1

(n2 − dqp + dqj)

=

p∏
j=1,

j ̸=q+1

(n2 − (p− j)2),

and that the numbers n = 1, 2, . . . ,−αq are roots of this polynomial.

Therefore, we can write

ζ(2s,Hq,0) =
2

q!(2p−q−2)!

p−1∑
j=0

ep−1−j(d
q)

(
z(s− j, iαq)−

p−q−2∑
n=1

(n2 − α2
q)

−s+j

)

= 2
q!(2p−q−2)!

p−1∑
j=0

ep−1−j(d
q)z(s− j, iαq),

and

z(s− j, iαq) =

∞∑
n=1

1

(n2 − α2
q)

s−j
.
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Expanding the binomial, z(s, a) =
∑∞

k=0

(−s
k

)
a2kζR(2s+2k), and hence

z(s, a) has simple poles at s = 1
2 − k, k = 0, 1, 2, . . . . Since

ζ(2s,Hq,0) =
2

q!(2p− q − 2)!

p−1∑
j=0

ep−1−j(d
q)z(s− j, iαq),

ζ(2s,Hq,0) has simple poles at s = 1
2 + p− 1− k, k = 0, 1, 2, . . . , ζ(s,Hq,0)

has simple poles at s = 2(p − k) − 1, k = 0, 1, 2, . . ., and this completes

the proof. ■

Corollary 5.2. The function ζ(s, Uq) has simple poles at s = 2k + 1, for

k = 0, 1, . . . , p− 1, with residues

Res1
s=2k+1

ζ(s, Uq) =
2ν−2k−1

q!(2p−q−2)!

p−1−k∑
t=0

1
ν2t

(
−2k+1

2

t

) p−1∑
j=k+t

ep−1−j(d
q)

(
−1

2

j − k − t

)
α2(j−k)
q .

Proof. Since the value of the residue of the Riemann zeta function at s = 1

is 1,

Res1
s= 1

2
−k

z(s− j, a) = Res1
s= 1

2
−j−k

z(s, a) =

(
−1

2 + j + k

j + k

)
a2j+2k

2
,

for k = 0, 1, 2, . . .. Considering ζ(2s,Hq,0), we have, for k = 0, 1, . . . , p−1,

Res1
s= 1

2
+k

ζ(2s,Hq,0) =
2

q!(2p−q−2)!

p−1∑
j=k

ep−1−j(d
q)(−1)j−k

(
−1

2 + j − k

j − k

)
α2j−2k
q

2
,

and the thesis follows.

■

The result contained in the next lemma follows by geometric reasons.

However, we present here a purely combinatoric proof.

Lemma 5.3. For all 0 ≤ q ≤ p− 1, ζ(0, Uq,S2p−1) = (−1)q+1.

Proof. Consider the function

ζt,c(s) =

∞∑
n=1

1

(n(n+ 2t))s−c
=

∞∑
n=t+1

1

(n2 − t2)s−c
.
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Since

z(s− c, it) =

∞∑
n=1

1

(n2 − t2)s−c
=

∞∑
j=0

(
−s+ c

j

)
(−1)jt2jζR(2s+ 2j − 2c),

we have when s = 0, that z(−c, it) = (−1)ct2cζR(0) = (−1)c+1 t2c

2 , and

hence

ζt,c(s) = z(s− c, it)−
t∑

n=1

1

(n2 − t2)s−c
,

and for c = 0 and s = 0 ζt,0(0) = −1
2 − t. Next, consider c > 0, then:

ζt,c(0) = (−1)c+1 t
2c

2
−

t−1∑
n=1

(n2 − t2)c.

For q = 0, . . . , p− 1, we have

ζ(s, Uq,S2p−1) =

∞∑
n=1

mcex,q,n

λq,n,S2p−1

=

∞∑
n=1

mcex,q,n

((n+ q)(n+ 2p− q − 2))s

=
∞∑

n=q+1

mcex,q,n−q

(n(n− 2αq))s
.

Recalling the relation given in Section 5.4

mcex,q,n−q =
2

q!(2p− q − 2)!

p∏
j=1,

j ̸=q+1

(n− q − 1 + j)(n+ 2p− q − 1− j)

=
2

q!(2p− q − 2)!

p∏
j=1,

j ̸=q+1

n(n− 2αq) + dqj

=
2

q!(2p− q − 2)!

p−1∑
j=0

ep−1−j(d
q)(n(n− 2αq))

j .

Thus

ζ(s, Uq,S2p−1) = 2
q!(2p−q−2)!

p−1∑
j=0

ep−j−1(d
q)

(
ζ−αq ,j(s)−

q∑
n=1

1
(n(n−2αq))s−j

)

= 2
q!(2p−i−2)!

p−1∑
j=0

ep−j−1(d
q)ζ−αq ,j(s).
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where
p−1∑
j=0

ep−j−1(d
q)

1

(n(n+ 2p− 2q − 2))s−j
= 0,

for 1 ≤ n ≤ q, by [WY]. For s = 0, we obtain

ζ(0, Uq,S2p−1) =
2

q!(2p− q − 2)!

p−1∑
j=0

ep−j−1(d
q)ζ−αq ,j(0)

=
2

q!(2p− q − 2)!

(
ep−1(d

q)

(
−1

2
− ((p− q − 2) + 1)

)

+

p−1∑
j=1

ep−j−1(d
q)

(
(−1)j+1α

2j
q

2
−

p−q−2∑
n=1

(n2 − α2
q)

j

)
=

2

q!(2p− q − 2)!
(−ep−1(d

q)

+

p−1∑
j=0

ep−j−1(d
q)

(
(−1)j+1α

2j
q

2
−

p−q−2∑
n=1

(n2 − α2
q)

j

)
=

2

q!(2p− q − 2)!

(
(−1)q+1 q!(2p− q − 2)!

2

+

p−1∑
j=0

ep−j−1(d
q)

(
(−1)j+1α

2j
q

2
−

p−q−2∑
n=1

(n2 − α2
q)

j

) .

To conclude the proof, note that the second term vanishes. For first,

as showed in the proof of Lemma 5.2, the numbers n = 1, 2, . . . ,−αq are

roots of the polynomial
∑p−1

j=0 ep−j−1(d
q)(n2 − α2

q)
j , and second:

p−1∑
j=0

ep−j−1(d
q)(−1)jα2j

q =

p−1∑
j=0

ep−j−1(d
q)(−dqp)

j =

p∏
j=1,

j ̸=q+1

(−dqp + dqj)

= −
p∏

j=1,
j ̸=i+1

(p− j)2 = 0. ■
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5.5 The proof that ABM(∂ClS
2p−1
sinα ) = log TAB(ClS

2p−1
sinα )

We need some notation. Set

D(q, k, t) = 2
q!(2p−q−2)!

(
−2k+1

2

t

) p−1∑
l=k+t

ep−1−l(d
q)(−1)l−k

(
−1

2 − k − t+ l

l − k − t

)
α2(l−k)
q ,

F (q, k) =Res0
s=0

Φodd
2k+1,q(s), 1 ≤ k ≤ p− 1, 0 ≤ q ≤ p− 1.

Then, by Corollary 5.2, the residues of ζ(s, Uq), for 0 ≤ q ≤ p− 2, are

Res1
s=2k+1

ζ(s, Uq) =
1

ν2k+1

p−1−k∑
t=0

1

ν2t
D(q, k, t),

for k = 0, . . . , p− 1, and when q = p− 1:

Res1
s=2k+1

ζ(s, Up−1) =
1

ν2k+1
D(p− 1, k, 0),

with k = 0, . . . , p− 1. Now, for 0 ≤ q ≤ p− 1, it is easy to see that

Res0
s=0

Φodd
2k+1,q(s) Res1

s=2k+1
ζ(s, Uq) =

F (q, k)

ν2k+1

p−1−k∑
t=0

1

ν2t
D(q, k, t),

and hence

tq(ν) =
1

2

p−1∑
k=0

Res0
s=0

Φodd
2k+1,q(s) Res1

s=2k+1
ζ(s, Uq) =

1

2

p−1∑
k=0

F (q, k)

ν2k+1

p−1−k∑
t=0

1

ν2t
D(q, k, t).

On the other side, set:

ABM(ClS
2p−1
sinα ) =

p−1∑
k=0

1

ν2k+1
Q̃p(k), Q̃p(k) =

k∑
j=0

Nj(p, k),

where

Nj(p, k) =
(2p− 1)!

4p(p− 1)!

1

(p− 1− k)!(2k + 1)

(−1)k−j2j+1

(k − j)!(2j + 1)!!
.

Lemma 5.4. 1
2

∑p−1
q=0(−1)qtq(ν) is an odd polynomial in 1

ν .
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Proof. This follows by rearrangement of the finite sum:

1

2

p−1∑
q=0

(−1)qtq(ν) =
1

4

p−1∑
q=0

(−1)q
p−1∑
k=0

F (q, k)

p−1−k∑
t=0

1

ν2(t+k)+1
D(q, k, t)

=
1

4

p−1∑
k=0

1

ν2k+1

p−1∑
q=0

(−1)q
k∑

j=0

F (q, j)D(q, j, k − j)

=
1

4

p−1∑
k=0

1

ν2k+1

k∑
j=0

p−1∑
q=0

(−1)qF (q, j)D(q, j, k − j). ■

Then, set:

1

2

p−1∑
q=0

(−1)qtq(ν) =

p−1∑
k=0

1

ν2k+1
Qp(k), Qp(k) =

k∑
j=0

Mj(p, k),

where

Mj(p, k) =

p−1∑
q=0

(−1)qF (q, j)D(q, j, k − j)

=

p−1∑
q=0

(−1)q
2F (q, j)

4(2p− 2)!

(
2p− 2

q

)(
−1

2 − j

k − j

)
α−2j
q

p−1∑
l=k

ep−1−l(d
q)α2l

q

(
−1

2

l − k

)
.

This shows that all we need to prove the equality is the identity: Mj(p, k) =

Nj(p, k). This is in the next two lemmas. Before, we need some further

notation and combinatorics. First, recall that if

fh(x) = eh
(
x2 − (p− 1)2, x2 − (p− 2)2, . . . , x2 − 12, x2

)
,

then fh(αq) = eh(d
q), and fh(x), for h ≥ 1, is a polynomial of the following

type:

fh(x) =
∑

0≤j1≤j2≤...≤jh≤p−1

(x2 − j21)(x
2 − j22) . . . (x

2 − j2h) =

(
p

h

)
x2h +

h−1∑
s=0

chsx
2s.

(14)

Second, we have the following four identities. The first three can be

found in [GZ], 0.151.4, 0.154.5 and 0.154.6 (see [Kra] for the proof). The

fourth is in [GR], equation (5.3).
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n∑
k=0

(−1)k

(2n)!

(
2n

k

)
=
(−1)n

(2n)!

(
2n− 1

n

)
=

(−1)n

2(2n)!

(
2n

n

)
, (15)

n∑
k=0

(−1)n
(
n

k

)
(α+ k)n =(−1)nn!, (16)

N∑
k=0

(−1)n
(
N

k

)
(α+ k)n−1 =0, (17)

n∑
l=0

(
n+ 1

l + 1

)(
−1

2

l − k

)
=

(
n+ 1

2

n− k

)
=

(2n+ 1)!!

2n−k(n− k)!(2k + 1)!!
. (18)

with 1 ≤ n ≤ N and α ∈ R.

Lemma 5.5. For 0 ≤ k ≤ p− 1, we have that M0(p, k) = N0(p, k).

Proof. Since j = 0,

M0(p, k) =

p−1∑
q=0

(−1)q
2F (q, 0)

4(2p− 2)!

(
2p− 2

q

)(
−1

2

k

) p−1∑
l=k

ep−1−l(d
q)α2l

q

(
−1

2

l − k

)
,

N0(p, k) =
(2p− 1)!

22p−1(p− 1)!

1

(p− 1− k)!(2k + 1)

(−1)k

k!
.

Consider first k ̸= 0. Then,

M0(p, k) =

(
−1

2

k

) p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−1∑
l=k

fp−1−l(αq)α
2l
q

(
−1

2

l − k

)

=

(
−1

2

k

) p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−1∑
l=k

(
p

p− 1− l

)
α2p−2−2l
q α2l

q

(
−1

2

l − k

)

+

(
−1

2

k

) p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−2∑
l=k

p−2−l∑
s=0

cp−1−l
s α2s

q α2l
q

(
−1

2

l − k

)

=

(
−1

2

k

) p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

)
α2p−2
q

p−1∑
l=k

(
p

p− 1− l

)(
−1

2

l − k

)

+

p−2∑
l=k

p−2−l∑
s=0

cp−1−l
s

(
−1

2

k

)(
−1

2

l − k

) p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

)
α2s+2l
q .
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Using the identity in equation (17), the second term in the last line

vanishes since 2s+ 2l < 2p− 2. Thus,

M0(p, k) =

(
−1

2

k

) p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

)
α2p−2
q

p−1∑
l=k

(
p

p− 1− l

)(
−1

2

l − k

)

=
1

2

(
−1

2

k

) p−1∑
l=k

(
p

p− 1− l

)(
−1

2

l − k

)
=

1

2

(
−1

2

k

)(
p

k + 1

)
(k + 1)!

p!

(2p− 1)!!

(2k + 1)!!

2k+1

2p

=
(−1)k

k!

1

(p− k − 1)!

(2p− 1)!

(2k + 1)

1

22p−1(p− 1)!
= N0(p, k).

Next, consider k = 0. Then,

M0(p, 0) =

p−2∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−1∑
l=0

fp−1−l(αq)α
2l
q

(
−1

2

l

)
+

1

2

=

p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−1∑
l=0

fp−1−l(αq)α
2l
q

(
−1

2

l

)
− 1 +

1

2

=

p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−1∑
l=0

(
p

p− 1− l

)
α2p−2
q

(
−1

2

l

)

+

p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

)
cp−1
0 − 1

2

=

p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−1∑
l=0

(
p

p− 1− l

)
α2p−2
q

(
−1

2

l

)

+
(−1)p−1

2(2p− 2)!

(
2p− 2

p− 1

)
(−1)p−1(p− 1)!(p− 1)!− 1

2

=

p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−1∑
l=0

(
p

p− 1− l

)
α2p−2
q

(
−1

2

l

)
+

1

2
− 1

2

=

p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

)
α2p−2
q

p−1∑
l=0

(
p

p− 1− l

)(
−1

2

l

)
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=
1

2

p−1∑
l=0

(
p

p− 1− l

)(
−1

2

l

)
=

1

2p
(2p− 1)!!

(p− 1)!

=
2p− 1

22p−1

(
2p− 2

p− 1

)
= N0(p, 0) ■

The next two results have the objective to find a presentation of F (q, j),

for that we need to describe the functions Φodd
2j+1,q(s). These functions

appears on the calculation of the derivative in zero of zeta functions of

double sequences, they are defined by

Φodd
2j+1,q(s) =

∫ ∞

0
ts−1 1

2πi

∫
ΛΘ,c

e−λt

−λ
ϕodd
2j+1,q(λ),

for 0 ≤ j, q ≤ p − 1. The functions ϕodd
j,q (λ) are defined using terms from

the uniform expansions of Bessel functions (for more details see Lemma

5.4 and Lemma 5.10 from [HS2]). In fact, ϕodd
j,q (λ) are polynomials in λ

with ϕodd
j,q (0) = 0, for all j, q ∈ N.

Lemma 5.6. For all j and all 0 ≤ q ≤ p−2, the functions ϕodd
j,q (w) satisfy

the following recurrence relations (where w = 1√
1−λ

)

ϕodd
2j−1,q(λ) = w2j−2α2j−2

q ϕq,1(w) +

j−2∑
t=1

K2j−1,t(w)α
2t
q + 2ϕodd

2j−1,p−1(w)

ϕodd
2j,q(λ) = −(w2j − 1)α2j

q

j
+

j−1∑
t=1

K2j,t(w)α
2t
q + 2ϕodd

2j,p−1(w),

where the Kj,t(w) are polynomials in w.

Proof. The proof is by induction on j. For j = 1,

ϕodd
1,q (w) =− w + w3 = 2ϕodd

1,p−1(w)

ϕodd
2,q (w) =− (w2 − 1)α2

q + (−w2

2
− 2w4 − 3w6

2
)

=− (w2 − 1)α2
q + 2ϕodd

2,p−1(w).
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Assuming the formulas hold for 1 ≤ k ≤ j − 2. Then, by definition

of the functions ϕodd
j,q (λ) and l(λ) in the proof of Lemma 5.4 and Lemma

5.10, we have that

l+2s−1(w) + l−2s−1(w) = 2l̇2s−1(w) + w2s−2α2s−2
q ϕodd

q,1 (w) +

s−2∑
t=1

K2s−1,t(w)α
2t
q ,

l+2s(w) + l−2s(w) = 2l̇2s(w)−
w2sα2s

q

s
+

s−1∑
t=1

K2s,t(w)α
2t
q ,

l+2s−1(w)− l−2s−1(w) =
2

2s− 1
α2s−1
q w2s−1 + αq

s−2∑
t=0

D2s−1,t(w)α
2t
q ,

l+2s(w)− l−2s(w) = −α2s−1
q w2s−1ϕodd

q,1 (w) + αq

s−2∑
t=0

D2s,t(w)α
2t
q ,

for all s = 1, 2, . . . , j − 1, and where the Ds,t are polynomials in w. We

proceed as in the proof of Lemma 5.6[HS2]. For the odd index we have:

l+2j−1(w)− l−2j−1(w) = 2αqU2j−2(w)

−
2j−2∑
k=1

2j − 1− k

2j − 1
Vk(w)(l

+
2j−1−k(w)− l−2j−1−k(w))

+

2j−2∑
k=1

2j − 1− k

2j − 1
wαqUk−1(w)(l

+
2j−1−k(w) + l−2j−1−k(w)),

=2αqU2j−2(w)−
j−1∑
k=1

2j − 1− 2k

2j − 1
V2k(w)(l

+
2j−1−2k(w)− l−2j−1−2k(w))

−
j−1∑
k=1

2j − 1− 2k

2j − 1
wαqU2k−1(w)(l

+
2j−1−2k(w) + l−2j−1−2k(w))

−
j−1∑
k=1

2j − 2k

2j − 1
V2k−1(w)(l

+
2j−2k(w)− l−2j−2k(w))

−
j−1∑
k=1

2j − 2k

2j − 1
wαqU2k−2(w)(l

+
2j−2k(w) + l−2j−2k(w))

=
2

2j − 1
α2j−1
q w2j−1 + αq

j−2∑
t=0

D2j−1,t(w)α
2t
q ,
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and this gives

ϕ2j−1,q(w) =− 2U2j−1(w) + 2V2j−1(w) +

2j−2∑
k=1

2j − 1− k

2j − 1
(2Uk(w)l2j−1−k(w))

−
j−1∑
k=1

2j − 1− 2k

2j − 1

(
V2k(w)(l

+
2j−1−2k(w) + l−2j−1−2k(w))

)

−
j−1∑
k=1

2j − 1− 2k

2j − 1

(
wαqU2k−1(w)(l

+
2j−1−2k(w)− l−2j−1−2k(w))

)

−
j−1∑
k=1

2j − 2k

2j − 1

(
V2k−1(w)(l

+
2j−2k(w) + l−2j−2k(w))

)

−
j−1∑
k=1

2j − 2k

2j − 1

(
wαqU2k−2(w)(l

+
2j−2k(w)− l−2j−2k(w))

)

=w2j−2α2j−2
q ϕodd

1,q (w) +

j−2∑
t=1

K2j−1,t(w)α
2t
q + 2ϕodd

2j−1,p−1(w).

For the even index, using the result proved for the odd index, we get

l+2j(w)− l−2j(w) =2αqU2j−1(w)−
j−1∑
k=1

2j − 2k

2j
V2k(w)(l

+
2j−2k(w)− l−2j−2k(w))

−
j−1∑
k=1

2j − 2k

2j
wαqU2k−1(w)(l

+
2j−2k(w) + l−2j−2k(w))

−
j−1∑
k=1

2j − 2k + 1

2j
V2k−1(w)(l

+
2j−2k+1(w)− l−2j−2k+1(w))

−
j−1∑
k=1

2j − 2k + 1

2j
wαqU2k−2(w)(l

+
2j−2k+1(w) + l−2j−2k+1(w))

=− α2j−1
q w2j−1ϕodd

1,q (w) + αq

j−2∑
t=0

D2j,t(w)α
2t
q ,

and proceeding as before, this gives the last formula in the thesis. ■
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Corollary 5.3. For all j and all 0 ≤ q ≤ p− 2, the Laurent expansion of

the functions Φodd
2j+1,q(s) at s = 0 has coefficients: for 1 ≤ j ≤ p− 1

Res0
s=0

Φodd
2j+1,q(s) =

2

2j + 1
α2j
q +

j−1∑
t=1

k2j+1,q,tα
2t
q + 2Res0

z=0
Φodd
2j+1,p−1(s),

Res1
s=0

Φodd
2j+1,q(s) = 0,

Res0
s=0

Φodd
2j+1,p−1(s) = 2

2j+1∑
k=1

k2j+1,p−1,k

k+j∑
t=2

1

2t− 1
,

Res1
s=0

Φodd
2j+1,p−1(s) = 0,

where the kj,q,t are real numbers, and for j = 0,

Res0
s=0

Φodd
1,q (s) = 2Res0

s=0
Φodd
1,p−1(s) = 2, Res1

s=0
Φodd
1,q (s) = 0.

Proof. By Lemma 5.4 and Lemma 5.10,

ϕodd
2j+1,q(λ) =

2j+1∑
k=0

K2j+1,q,kw
2k+2j+1,

ϕodd
2j+1,p−1(λ) =

2j+1∑
k=0

K2j+1,p−1,kw
2k+2j+1

where w = 1√
1−λ

, and ϕodd
2j+1,q(0) = 0, therefore

∑2j−1
k=0 k2j+1,q,k = 0. Us-

ing the formula in equation (9.6)[HS2] and the residues for the Gamma

function in equation (9.5)[HS2], we obtain

Res1
s=0

Φodd
2j+1,q(s) =

2j+1∑
k=0

k2j+1,q,k = 0.

Using the same formulas of [HS2], but the result of Lemma 5.6, we prove

the formula for the finite part. The formula for j = 0 follows by explicit

knowledge of the coefficients k0,p−1,1. ■
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Note that, with this corollary F (q, 0) = 2 for 0 ≤ q ≤ p − 2, and

F (p− 1, 0) = 1.

Lemma 5.7. For 1 ≤ j ≤ p− 1, we have that Mj(p, k) = Nj(p, k).

Proof. Note that j ≤ k, and hence 1 ≤ j ≤ k ≤ p− 1. Recall that

F (q, j) =
2

2j + 1
α2j
q +

j−1∑
t=1

k2j+1,q,tα
2t
q + 2Res0

z=0
Φodd
2j+1,p−1(s),

by Corollary 5.3. Set k2j+1,q,0 = 2Res0z=0Φ2j+1,p−1(s). We split the

proof in three cases. First, for j = k < p− 1, we have

Mj(p, j) =

p−1∑
q=0

(−1)q
F (q, j)

2(2p− 2)!

(
2p− 2

q

) p−1∑
l=j

ep−1−l(d
q)α2l−2j

q

(
−1

2

l − j

)

=

p−1∑
q=0

(−1)q
α2j
q

(2j + 1)(2p− 2)!

(
2p− 2

q

) p−1∑
l=j

fp−1−l(αq)α
2l−2j
q

(
−1

2

l − j

)

+

j−1∑
t=0

k2j+1,q,t

p−1∑
q=0

(−1)q
α2t
q

(2p− 2)!

(
2p− 2

q

) p−1∑
l=j

fp−1−l(αq)α
2l−2j
q

(
−1

2

l − j

)

Using the formula in equation (14) for the functions fp−1−l(αq), we get

Mj(p, j) =

p−1∑
q=0

(−1)q 1
(2j+1)(2p−2)!

(
2p− 2

q

) p−1∑
l=j

(
p

p− 1− l

)
α2p−2−2l
q α2l

q

(
−1

2

l − j

)

+

p−1∑
q=0

(−1)q 1
(2j+1)(2p−2)!

(
2p− 2

q

) p−2∑
l=j

p−2−l∑
s=0

csα
2s+2l
q

(
−1

2

l − j

)

+

j−1∑
t=0

k2j+1,q,t

p−1∑
q=0

(−1)q 1
(2p−2)!

(
2p− 2

q

) p−1∑
l=j

(
p

p− 1− l

)
α2p−2+2t−2j
q

(
−1

2

l − j

)

+

j−1∑
t=0

k2j+1,q,t

p−1∑
q=0

(−1)q 1
(2p−2)!

(
2p− 2

q

) p−2∑
l=j

p−2−l∑
s=0

csα
2s+2l+2t−2j
q

(
−1

2

l − j

)

= 1
(2j+1)

p−1∑
q=0

(−1)q 1
(2p−2)!

(
2p− 2

q

)
α2p−2
q

p−1∑
l=j

(
p

p− 1− l

)(
−1

2

l − j

)
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= 1
2(2j+1)

p−1∑
l=j

(
p

p− 1− l

)(
−1

2

l − j

)
=

1

2(2j + 1)

1

(p− 1− j)!

(2p− 1)!!

(2j + 1)!!

2j+1

2p

=
1

(2j + 1)(p− 1− j)!

(2p− 1)!

(2j + 1)!!

2j

22p−1 (p− 1)!
= Nj(p, j),

where the first three terms in the first equation vanish because s+l < p−1

and t− j ≤ −1. The second case is j = k = p− 1. Then,

Mp−1(p, p− 1) =

p−1∑
q=0

(−1)q
F (q, p− 1)

2(2p− 2)!

(
2p− 2

q

)

=

p−1∑
q=0

(−1)q
α2p−2
q

(2p− 1)(2p− 2)!

(
2p− 2

q

)

+

p−2∑
t=0

k2j+1,p−1,t

p−2∑
q=0

(−1)q
α2t
q

2(2p− 2)!

(
2p− 2

q

)

+

p−2∑
t=0

k2j+1,p−1,t

2
(−1)p−1

α2t
p−1

2(2p− 2)!

(
2p− 2

p− 1

)

=
1

2(2p− 1)
+ k2j+1,p−1,0

p−1∑
q=0

(−1)q
1

2(2p− 2)!

(
2p− 2

q

)
− k2j+1,p−1,0(−1)p−1 1

2(2p− 2)!

(
2p− 2

p− 1

)
+

k2j+1,p−1,0

2
(−1)p−1 1

2(2p− 2)!

(
2p− 2

p− 1

)
=

1

2(2p− 1)
+

k2j+1,p−1,0

2

(−1)p−1

(p− 1)!(p− 1)!

− k2j+1,p−1,0

2

(−1)p−1

(p− 1)!(p− 1)!

=
1

2(2p− 1)
= Np−1(p, p− 1).

The last case is 1 ≤ j < k. Then,
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Mj(p, k) =

p−1∑
i=0

(−1)q
2F (q, j)

4(2p− 2)!

(
2p− 2

q

)(
−1

2 − j

k − j

)
α−2j
q

p−1∑
l=k

ep−1−l(d
q)α2l

q

(
−1

2

l − k

)
,

=

(
−1

2 − j

k − j

) p−1∑
q=0

(−1)q
1

(2j + 1)(2p− 2)!

(
2p− 2

q

) p−1∑
l=k

(
p

p− 1− l

)
α2p−2−2l
q α2l

q

(
−1

2

l − k

)

+

(
−1

2 − j

k − j

) p−1∑
q=0

(−1)q
1

(2j + 1)(2p− 2)!

(
2p− 2

q

) p−2∑
l=k

p−2−l∑
s=0

csα
2s+2l
q

(
−1

2

l − k

)

+

(
−1

2 − j

k − j

) j−1∑
t=0

k2j+1,q,t

p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−1∑
l=k

(
p

p− 1− l

)
α2p−2+2t−2j
q

(
−1

2

l − k

)

+

(
−1

2 − j

k − j

) j−1∑
t=0

k2j+1,q,t

p−1∑
q=0

(−1)q
1

(2p− 2)!

(
2p− 2

q

) p−2∑
l=k

p−2−l∑
s=0

csα
2s+2l+2t−2j
q

(
−1

2

l − k

)

=

(
−1

2 − j

k − j

) p−1∑
q=0

(−1)q
1

(2j + 1)(2p− 2)!

(
2p− 2

q

)
α2p−2
q

p−1∑
l=k

(
p

p− 1− l

)(
−1

2

l − k

)

=

(
−1

2 − j

k − j

)
1

2(2j + 1)

p−1∑
l=k

(
p

p− 1− l

)(
−1

2

l − k

)
=

(
−1

2 − j

k − j

)
1

2(2j + 1)

(2p− 1)!!

(p− 1− k)!(2k + 1)!!2p−k−1

=
(−1)k−j

(k − j)!

2j

2k
(2k − 1)!!

(2j − 1)!!

1

2(2j + 1)

(2p− 1)!!

(p− 1− k)!(2k + 1)!!2p−k−1

=
(−1)k−j

(k − j)!

2j

22p−1(p− 1)!

1

(2j + 1)!!

(2p− 1)!

(p− 1− k)!(2k + 1)
= Nj(p, k).

■

5.6 The proof that ABM(∂ClS
2p
sinα) = log TAB(ClS

2p
sinα)

The proof of this case follows with the same argument of the odd case,

the unique difference are the functions Φeven
2j (s). But with the same strat-

egy as previously, it is possible to prove that, for all j and all 0 ≤ q ≤ p−1,

the Laurent expansion of the functions Φeven
2j,q (s) at s = 0 has coefficients:

for 1 ≤ j ≤ p

Res0
s=0

Φeven
2j,q (s) = −α2j−1

q

j
+ αq

j−2∑
t=0

K2j,tα
2t
q , Res1

s=0
Φeven
2j,q (s) = 0,

where the K2j,t are real numbers. With this information we prove the

Theorem 1.2.
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