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Minimal graphs in P̃SL2(R, τ )

Abigail Folha Carlos Peñafiel

Abstract

In this paper we study the existence and non-existence of vertical

and horizontal graphs in the space P̃SL2(R, τ). We prove that there

is no entire horizontal minimal graph. On the other hand, there are

entire vertical minimal graphs having prescribed continuous bound-

ary values.

1 Introduction

The space P̃SL2(R, τ) is a family of simply connected homogeneous tri-

dimensional manifold having four dimensional isometry group, indexed by

τ . When τ = 0, P̃SL2(R, τ) is the product space M× R, where M is the

hyperbolic two dimensional space. The aim of this article is to extend

some results on M× R about minimal graphs to the family P̃SL2(R, τ).
First, we give a notion of horizontal graph. Using some minimal surfaces

on P̃SL2(R, τ) invariant by one-paremter isometry group, we prove that

there is no entire horizontal minimal graph. The non-existence of such

graphs on M× R was proved by R. Sa Earp [5, Theorem 1.1]. Moreover,

we prove that there is no horizontal minimal graph over bounded domains

whose boundary satisfies a geometric condition, see Theorem 5.4.
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Also, we deal with vertical graphs. In R3, Bernstein’s Theorem says

that complete minimal graphs are planes. After that, B. Nelli and H.

Rosenrberg proved that in M × R, there is an entire vertical minimal

graph having prescribed boundary values, see [3, Theorem 4]. We extend

this result to P̃SL2(R, τ) using some Scherk type surfaces, see Theorem

6.1.

The paper is organized as follows. Section 2 is devoted to fix some nota-

tions which will be used along the text. In Section 3, we give some prop-

erties of the space P̃SL2(R, τ). We describe the isometries of P̃SL2(R, τ)
and we give some geometric information of an inversion on P̃SL2(R, τ).
In Section 4, we define horizontal and vertical graphs. In Section 5, we

prove the non-existence of entire horizontal minimal graph as well as the

non-existence of horizontal minimal graphs defined over some bounded

domains. Finally, in Section 6 we prove the existence and uniqueness of

entire minimal graphs having prescribed continuous boundary value.

2 Notation

We will fix some notations which will be used on this work.

• H2 denotes the half-plane model for the two dimensional hyperbolic

plane.

• D2 denotes the disk model for the two dimensional hyperbolic plane.

• β(x1, x2) ⊂ H2, x1 < x2 denotes the complete geodesic in the hy-

perbolic plane joining (x1, 0) and (x2, 0)

• γ(x1) ⊂ H2 denotes the complete geodesic {(x1, y) ∈ H2}.

• Λ(x1, x2) = {(x, 0) ∈ ∂∞H2;x1 ≤ x ≤ x2}

• Υ(x1, x2) = {(x, 0) ∈ ∂∞H2;x ≤ x1 or x ≥ x2}

• Γ(x1) = {(x, 0) ∈ ∂∞H2;x ≥ x1}
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• βθ(x1, x2) denotes the equidistant curve to β(x1, x2) making angle

θ, 0 < θ < π with the positive semi x-axis at the point (x2, 0). Ob-

serve that for 0 < θ < π/2, βθ(x1, x2) is contained at the unbounded

region whose boundary is β(x1, x2) ∪ Υ(x1, x2). For π/2 < θ < π,

βθ(x1, x2) is contained at the unbounded region whose boundary is

β(x1, x2) ∪ Λ(x1, x2).

• γθ(x1) is the equidistant curve to γ(x1) making angle θ, 0 < θ < π,

with the positive semi x-axis.

• D1(x1, x2) denotes the unbounded domain whose boundary is

β(x1, x2) ∪ Λ(x1, x2).

• D2(x1, x2) := H2 − (D1(x1, x2) ∪ β(x1, x2)).

3 The space P̃SL2(R, τ)

The group PSL2(R) is the isometry group of the hyperbolic plane M.

Such isometry group can be identified with the unit tangent bundle T1M
as follows. Fix a point (p0, v0) ∈ T1M, for each (p, v) ∈ T1M there is

a unique isometry g ∈ PSL2(R) such that g(p, v) = (p0, v0). Thus we

have identified each isometry g with a point (p, v) in T1M. Furthermore,

the space T1M is diffeomorphic to the product M × S1 (where S1 is the

unit circle). With this identification, let τ ∈ R, the space PSL(R, τ) is

the total space of a fibration over M whose fibers are circles and whose

fibration has bundle curvature τ . Let P̃SL2(R, τ) be the universal cover

of PSL(R, τ). For each fixed τ , the space P̃SL2(R, τ) is a homogenous

Riemannian manifold having 4-dimensional isometry group, this manifold

is one of the eight Thurston’s geometries, for more details see [1].

We consider the following Riemannian submersion π from the space

P̃SL2(R, τ) into the hyperbolic space M. In Euclidean coordinates, this

Riemannian submersion is given by

π : P̃SL2(R, τ) → M
(x, y, t) 7→ (x, y),
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and the induced metric on P̃SL2(R, τ) is

g := ds2 = λ2(dx2 + dy2) +

(
2τ

(
λy

λ
dx− λx

λ
dy

)
+ dt

)2

,

where, either λ = 2(1 − (x2 + y2))−1 when M = D2 or λ = y−1, when

M = H2.

For each p ∈ M, the fiber π−1(p) is difeomorphic to the real line. The

unitary vector field tangent to π−1(p) is called the vertical vector field and

denoted by E3. Since translation along the fibers are isometries, E3 is a

Killing field. Also we call a field X an horizontal field, if X is orthogonal

to E3.

The hyperbolic space M has metric dσ = λ2(dx2 + dy2), thus an or-

thonomal frame is given by {e1 = λ−1∂x, e2 = λ−1∂y}. Denoting by E1

and E2 the horizontal lifts of e1 and e2, respectively, an orthonormal frame

in P̃SL2(R, τ) is given by {E1, E2, E3}, where

E1 = λ−1∂x − 2τλ−2λy∂t

E2 = λ−1∂y + 2τλ−2λx∂t

E3 = ∂t

for more details see [1].

We can consider the half-plane model or the disk model for the hyper-

bolic plane M. For each model of M we obtain a model for P̃SL2(R, τ).
When we take the disk model for M we call the correspondent model for

P̃SL2(R, τ), the cylinder model. On the other hand, if we consider the

half-plane model for the space M, we call the correspondent model for

P̃SL2(R, τ), the half-space model.

When τ ̸= 0, the space P̃SL2(R, τ) is not a product space, so, without

no further assumptions the horizontal lift π−1(α) ⊂ P̃SL2(R, τ) of a curve

α ⊂ M is not necessarily contained in a slice M×{t0} ⊂ P̃SL2(R, τ). The
next lemma describe which are the curves in M whose horizontal lift is

contained in a slice.
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Lemma 3.1. Let α be a connected curve in M and denote by α̃ its hori-

zontal lift to P̃SL2(R, τ). Assume that α̃ lie in some slice {t = t0}, then

1. α is contained in a complete geodesic passing through the origin

(0, 0) of D2, if we consider the disk model.

2. α is contained in {x = x0} for some x0 ∈ R, if we consider the

half-plane model H2.

Proof. Let α(s) = (x(s), y(s)) ⊂ M be a connected curve with s ∈ I, I is

an open interval. Its horizontal lift α̃(s) = (x(s), y(s), t(s)) has velocity

vector α̃′(s) which in the orthonormal frame is given by

α̃′(s) = λx′E1 + λy′E2 + [t′ + 2τλ−1(x′λy − y′λx)]E3

Since α̃ is the horizontal lift of α, we must have g(α̃′, E3) = 0, that is

t′ = 2τλ−1(y′λx − x′λy) (3.1)

We describe the solutions of this ordinary differential equation (ODE) for

each model of M.

1. For the disk model M = D2, the solution to the ODE (3.1) is

t(s) = t0 +

∫ s

s0

2τλ(µ)[x(µ)y′(µ)− x′(µ)y(µ)]dµ

We obtain

t(s) = t0 +

∫
α
2τλ(xdy − ydx)

In order to α̃ be contained in {t = t0} we should have xdy−ydx = 0,

that is, y(s) = ±ax(s), a > 0, s ∈ I.

2. For the half-plane model M = H2, the solution to the ODE (3.1) is

t(s) = t0 +

∫ s

s0

2τλ(µ)x′(µ)dµ

In order to α̃ stays in the slice {t = t0} we should have x′(s) ≡ 0,

that is, x(s) = constant, s ∈ I. ■
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Now we construct an isometry between the two models of P̃SL2(R, τ).
Let P̃SL(2,H2)(R, τ) denotes the half-space model for the space P̃SL2(R, τ)
and let P̃SL(2,D2)(R, τ) denotes the cylinder model for the space P̃SL2(R, τ).
We consider the isometry ϕ : D2 → H2 given by

ϕ(x, y) =

(
−2y

(1− x2)2 + y2
,
1− x2 − y2

(1− x)2 + y2

)
,

we will construct an isometry

J(x, y) : P̃SL(2,D2)(R, τ) → P̃SL(2,H2)(R, τ)

having the form J(x, y, t) = (ϕ(x, y), h(x, y, t)). In order to obtain such

isometry, observe that the orthonormal frame {E1, E2, E3} of P̃SL(2,D2)(R, τ)
should be send on an orthonormal frame {V1, V2, V3} of P̃SL(2,H2)(R, τ),
that is, for any point (x, y, t) ∈ P̃SL(2,D2)(R, τ) the frame

V1 = D(x,y,t)J(E1)

V2 = D(x,y,t)J(E2)

V3 = D(x,y,t)J(E3)

is an orthonormal frame of P̃SL(2,H2)(R, τ), where D(x,y,t)J(Ei), i = 1, 2, 3

denotes the derivative of J at the point (x, y, t). Direct computations

imply that h(x, y, t) = t+ f(x, y) and f satisfies the second order partial

differential equation

xfx(x, y) + yfy(x, y) +
8τy

(1− x)2 + y2
= 0.

Using polar coordinates, we obtain (up to a constant)

f(x, y) = −8τ arctan

(
y

1− x

)
.

Thus, we have the following Lemma.

Lemma 3.2. The diffeomorphism

J : P̃SL(2,D2)(R, τ) → P̃SL(2,H2)(R, τ)
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given by

J(x, y, t) =

(
−2y

(1− x2)2 + y2
,
1− x2 − y2

(1− x)2 + y2
, t− 8τ arctan

(
y

1− x

))
is an isometry between P̃SL(2,D2)(R, τ) and P̃SL(2,H2)(R, τ).

3.1 Isometries of P̃SL2(R, τ)

We identify the Euclidean space R2 with the set of complex numbers

C, that is, z = x + iy ≈ (x, y). With this identification, every point

(x, y, t) ∈ P̃SL2(R, τ) can be written in the form (z, t), where z is a

complex number. The behavior of the isometries of P̃SL2(R, τ) is given

in the following proposition.

Proposition 3.1. [7, Theorem 9] The isometries of P̃SL2(R, τ) are given
by:

1. In the half-space model for P̃SL2(R, τ)

F (z, t) = (f(z), t− 2τ arg f ′ + c)

or

G(z, t) = (−f(z),−t+ 2τ arg f ′ + c)

where f is a positive isometry of H2 and c is a real number.

2. In the cylinder model for P̃SL2(R, τ)

F (z, t) = (f(z), t− 2τ arg f ′ + c)

or

G(z, t) = (f(z),−t+ 2τ arg f ′ + c)

where f is a positive isometry of D2 and c is a real number.

This proposition motivates the following definition.

Definition 3.3. With the same notation of Proposition 3.1, an isome-

try F (z, t) is called parabolic, hyperbolic or elliptic if f is a parabolic,

hyperbolic or elliptic isometry of the hyperbolic space M, respectively.
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3.2 The inversion in P̃SL2(R, τ)

Now we use the Proposition 3.1 to understand the behavior of the isom-

etry in P̃SL2(R, τ) generated by an inversion in H2.

Recall that for each x1 > 0, β(−x1, x1) is the complete geodesic in H2

joining the points (−x1, 0) and (x1, 0). The inversion Ix1 : H2 → H2 with

respect to β(−x1, x1) is given by

Ix1(z) =
x21
z

= −
(
−x21

z

)
:= −hx1(z).

where hx1 is a positive isometry of H2.

The isometry Ix1 maps the complete geodesic γ(x1) = {(x1, y), y > 0} in
H2 in the complete geodesic β(0, x1) joining the points z = 0 and z = x1

at the asymptotic boundary of H2. Moreover, the image by Ix1 of the

equidistant curve γθ(x1) which makes angle θ with the positive x-axis is

the equidistant curve βπ−θ(0, x1).

u ox1

c

e

y

beta

Figure 1: The inversion around β(−x1, x1) takes γθ(x1) in βπ−θ(0, x1).

Lemma 3.4. The argument of hx1 is

arg(h′x1
)(z) = arctan(Θ(z)), where Θ(z) =

−2xy

x2 − y2
. (3.2)

Proof. Observe that

h′x1
(z) =

x21(x
2 − y2 − 2ixy)

|z|4
.
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Thus the argument of h′x1
(z) is the arc whose tangent is

Θ(z) =
−2xy

x2 − y2
. ■

Let Lx1 denote the isometry in P̃SL2(R, τ) generated by Ix1 . Let us

identifyH2 withH2×{t = 0} in P̃SL(2,H2)(R, τ). The next lemma explains

how is the image of γθ(x1) under the isometry Lx1 .

Lemma 3.5. Fix θ0 ∈ (0, π/2) and x1 > 0. The image of γθ0(x1) under

Lx1 is an arc joining the points (0, 0, 0) and (0, x1,−4τθ0) whose projection

on H2 is the curve βθ0(0, x1).

Proof. First, observe that

Θ|γθ0 (x1)(z) =
−2x2 tan θ0 + 2xx1 tan θ0

x2(1− tan2 θ) + x1 tan2 θ(2x− x1)
,

so

lim
x→x1

Θ|γθ0 (x1)(z) = 0 and lim
x→+∞

Θ|γθ0 (x1)(z) = − tan 2θ0. (3.3)

Moreover,

π ◦ Lx1(γθ0(x1)) = Ix1(γθ0(x1)) = βθ0(0, x1). ■

4 Graphs in P̃SL2(R, τ)

In this section we will give the definitions of vertical and horizontal

graphs.

Given a domain Ω ⊂ M, a section of the Riemannian submersion π is a

map

s : Ω ⊂ M −→ P̃SL2(R, τ)

such that π ◦ s = idM|Ω, where idM|Ω is the identity map on M restrict to

Ω.

Definition 4.1. (Vertical graph) A vertical graph in P̃SL2(R, τ) is the

image of a section of the Riemannian submersion π : P̃SL2(R, τ) −→ M.
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Figure 2: Vertical graph.

Given a domain Ω ⊂ M we also denote by Ω its lift to M × {0}. With

this identification, given a function u : Ω → R, the set

Σ(u) = {(x, y, u(x, y)) ∈ P̃SL2(R, τ); (x, y) ∈ Ω},

is a vertical graph which we call the vertical graph of u. Reciprocally,

given a vertical graph S, we can find a function u : Ω → R over a domain

Ω ⊂ M× {0} such that S = Σ(u).

If the vertical graph Σ(u) has constant mean curvature (CMC) H, u

satisfies the following second order elliptic partial differential equation

LH(u) := divH2

(
α

W
e1 +

β

W
e2

)
− 2H = 0, (4.1)

where H is the mean curvature function with respect to the upward point-

ing normal vector, W =
√

1 + α2 + β2,

• α =
ux
λ

+ 2τ
λy

λ2
,

• β =
uy
λ

− 2τ
λx

λ2
.

Now we define horizontal graphs.
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Definition 4.2. (Horizontal graph) Let Ω ⊂ {(x, 0, t) ∈ ∂∞H2 ×R} be a

domain and y = f(x, t) be a smooth positive function, that is f(x, t) > 0

for all (x, t) ∈ Ω. The horizontal graph of f , denoted by Σ(f), is the set

defined by

Σ(f) := {(x, f(x, t), t) ∈ P̃SL2(R, τ); (x, t) ∈ Ω}.
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Figure 3: Horizontal graph.

Denote by N the unit normal vector to Σ(f) such that g(N,E2) > 0 and

by H the mean curvature of Σ(f) with respect to N . The mean curvature

equation for horizontal graphs is given in the following lemma.

Lemma 4.3. Suppose the H is the mean curvature function of a horizon-

tal graph Σ(f). Then, the function f satisfies the equation

2HW 3

f2
= (f2+f2

t )fxx−2(fxft−2τf)fxt+((1+4τ2)+f2
x)ftt+f(1+f2

x)+2τfxft,

where W =

√
f2 + f2

t + f2

(
fx +

2τft
f

)2

.

5 Horizontal graphs

In this section, we deal with non-existence of horizontal graphs. First,

we will use a family of minimal surfaces invariant by hyperbolic isometries
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to show that there is no entire horizontal graph. After that, we will con-

sider horizontal minimal graphs defined over domains bounded by Jordan

curves. Using a family of minimal surfaces invariant by parabolic isome-

tries, we prove that for some Jordan curves such a horizontal graph cannot

exist.

We recall that the space H2 in Euclidean coordinates is given by

H2 = {(x, y) ∈ R2; y > 0}

endowed with the metric

dσ2 = λ2(dx2 + dy2)

where λ = y−1. Changing for polar coordinates having pole at the point

(x1, 0), that is {
(x− x1) = eφ cos θ,

y = eφ sin θ,

where −∞ < φ < +∞ and 0 < θ < π, the metric is given by

1

sin2(θ)

(
dφ2 + dθ2

)
.

In this polar coordinates system, γ(x1) is given by {θ = π/2}. Recall

we have denoted by D1(x1, x2) the unbounded domain whose boundary is

β(x1, x2) ∪ Λ(x1, x2) and D2(x1, x2) = H2 − (D1(x1, x2) ∪ β(x1, x2)).

For each x1 > 0, we denote by Ωθ(x1) the region in H2 having boundary

γθ(x1) ∪ Γ(x1), where Γ(x1) = {(x, 0);x > x1}.
Now, we give the geometric description of a family of complete minimal

vertical graphs which are invariant by one parameter family of hyperbolic

isometries in P̃SL(2,H2)(R, τ). This family was studied in [4], where the

second author construct families of mean curvature surfaces invariant by

one parameter group of isometries. For completeness, we describe a family

which we will use to prove the non-existence of entire minimal horizontal

graphs.
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Proposition 5.1. Let d be a real number. Consider the functions

u+d (θ) =

∫ θ

0

d
√

1 + 4τ2 cos2(ν)√
1− d2 sin2(ν)

dν − 2τθ, 0 < θ < arcsin d−1 (5.1)

and

u−d (θ) = −
∫ θ

0

d
√

1 + 4τ2 cos2(ν)√
1− d2 sin2(ν)

dν − 2τθ, 0 < θ < arcsin d−1. (5.2)

The vertical graphs of u+d (θ) and u−d (θ) are vertical minimal graphs which

are invariant by hyperbolic translations along γ(x1) (recall that the polar

coordinates is centered at (x1, 0)). Furthermore:

1. If d > 1, u+d (θ) and u−d (θ) give rise to a complete minimal surface

Sd(x1) whose vertical projection on H2 is Ωarcsin(1/d)(x1).

Defining

h(d) :=

∫ arcsin(d−1)

0

d
√

1 + 4τ2 cos2(ν)√
1− d2 sin2(ν)

dν − 2τ arcsin(d−1),

we have

lim
d→∞

h(d) =
π

2

√
1 + 4τ2, lim

d→1+
h(d) = +∞.

Moreover the surface Sd(x1) is symmetric with respect to the slice

{H2 × h(d)} The asymptotic boundary of Sd(x1) is the union of

{(x, 0, t); t = 0 or t = 2h(d), x ≥ x1} and the vertical segment

joining the end points of these arcs.

2. If d = 1, u+1 (θ) (u−1 (θ)) gives rise to a complete minimal verti-

cal graph S+
1 (x1) (S−

1 ) defined over Ωπ/2(x1). The function u+1 (θ)

(u−1 (θ)) goes to 0 (0) on Γ(x1) and goes to +∞ (−∞) on γ(x1). The

asymptotic boundary of this surface is given by Γ(x1) and the verti-

cal semi-lines in {(x, 0, t); t ≥ 0} ({(x, 0, t); t ≤ 0}) leaving from the

end points of Γ(x1). These surfaces are called Scherk type surfaces.

3. Finally, if 0 < d < 1, the vertical graphs of u+d and u−d are entire

minimal vertical graphs.
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Proof. 1. The functions u+d (θ) and u−d (θ) are defined for 0 < θ <

arcsin d−1. We have u−d (arcsin d
−1) = u+d (arcsin d

−1) − 2h(d) −
4τ arcsin d−1, and over the equidistant curve γarcsin 1/d(x1) the graphs

of u+d (θ) and u−d (θ) have vertical tangent planes. So, after a vertical

translation by−2h(d)−4τ arcsin d−1 of the graph of u−d (θ), the union

of these two graphs generates a minimal surface, which is denoted

by Sd(x1) and is symmetric with respect to the plane H2 × h(d).

Now let us study the behavior of h(d) when d goes to +∞. Making

a change of variables v = d sin ν − 1, we obtain

h(d) =

∫ 0

−1

√
d2(1 + 4τ2)− 4τ2(v + 1)2√

d2(1− (v + 1)2)− (v + 1)2(1− (v + 1)2)
dv

−2τ arcsin

(
1

d

)
.

Then, when d goes to +∞, we have

lim
d→∞

h(d) =
π

2

√
1 + 4τ2.

When d > 1 goes to 1, we have that lim
d→1+

h(d) = +∞. In fact, since

d > 1,

h(d) =

∫ arcsin( 1
d
)

0

d
√
1 + 4τ2 cos2(ν)√
1− d2 sin2(ν)

dν − 2τ arcsin

(
1

d

)
≥

∫ arcsin( 1
d
)

0

1√
1− d2 sin2(ν)

dν − 2τ arcsin

(
1

d

)
v = d sin θ

=

∫ 1

0

1√
d2 − v2

√
1− v2

dv − 2τ arcsin

(
1

d

)
,
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then, when d → 1+, we have

lim
d→1+

h(d) =

∫ 1

0

1√
d2 − v2

√
1− v2

dv − 2τ arcsin

(
1

d

)
=

∫ 1

0

1

1− v2
dv − 2τ arcsin

(
1

d

)
= −1

2
ln

(
1− v

v + 1

) ∣∣1
0 − 2τ arcsin

(
1

d

)
= +∞.

2. When d = 1,

u+1 (θ) =

∫ θ

0

√
1 + 4τ2 cos2(ν)√
1− sin2(ν)

dν − 2τθ, 0 ≤ θ <
π

2
.

By continuity, h(1) = lim
d→1+

h(d) = +∞. Then, u+1 (θ) takes bound-

ary values 0 on the asymptotic boundary Γ(x1) and u+1 (θ) goes to

+∞ when θ goes to π/2.

Similarly, u−1 (θ) takes boundary values 0 on the asymptotic bound-

ary Γ(x1) goes to −∞ when θ goes to π/2.

3. Finally, when 0 < d < 1, u+d and u+d define entire minimal vertical

graphs. ■

Corollary 5.1. Following the notation on Proposition 5.1, given d >

1, there exists a minimal surface Md(0, x1) having asymptotic boundary

R̃d(0, x1), where R̃d(0, x1) is the rectangle given by the union

{0 ≤ x ≤ x1, y = 0, t = 0 or t = 2h(d)} ∪ {x = 0 or x = x1, y = 0, 0 ≤
t ≤ 2h(d)}.
This surface is continuous up to its boundary. Furthermore,

lim
d→∞

h(d) =
π

2

√
1 + 4τ2, lim

d→1+
h(d) = +∞.

The projection of Md(0, x1) over H2 × {t = 0} is the region D1,θ(0, x1).

In the case d = 1, the Scherk type surface M+
1 (0, x1) takes zero value

on Λ(0, x1) and +∞ on the geodesic β(0, x1) and its projection on H2 is
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D1(0, x1). Similarly, the Scherk type surface M−
1 (0, x1) takes zero value

on Λ(0, x1) and −∞ on the geodesic β(0, x1) and its projection on H2 is

D1(0, x1).

Proof. The minimal surfaces Md(0, x1), M
+
1 (0, x1) and M−

1 (0, x1) are the

image of the complete surface Sd(x1), S
+
1 (x1) and S−

1 (x1), respectively,

described in Lemma 5.1 by the isometry L(x1). Lemmas 3.5 and 3.4

guaranty the asymptotic behavior.

y

t

x

d1

md

Figure 4: The surface Md(0, x1), d > 1 and its projection D1,θ(0, x1).

■

The geometric behavior of the family of minimal surfacesMd(0, x1), d >

1 allow us to prove the following result.

Theorem 5.2. There is no horizontal entire minimal graphs in

P̃SL(2,H2)(R, τ).

Proof. We argue by contradiction. Assume that there is an entire hori-

zontal minimal graph Σ. By the definition of horizontal graphs, we have

that

∂∞Σ ∩ ∂∞Md(0, x1) = ∅,

for all d > 1. We fix d > 1 and x1 > 0, then either Σ ∩Md(0, x1) = ∅ or

Σ ∩Md(0, x1) ̸= ∅.
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Let γ(x1/2) = {(x1/2, y, 0) ∈ P̃SL(2,H2)(R, τ); y > 0} be a complete

geodesic. Let Tξ(x, y, t) := ξ(x, y, 0)+(x1/2, 0, t) be a hyperbolic isometry

of P̃SL(2,H2)(R, τ) induced by hyperbolic translations along γ(x1/2) of

factor ξ.

If Σ ∩ Md(0, x1) = ∅, we apply the isometry Tξ, for ξ > 1. Observe

that π ◦Tξ(Md(0, x1)) ⊂ π ◦Tξ′(Md(0, x1)), for all ξ ≤ ξ′. Moreover, when

ξ goes to +∞, the projection π ◦ Tξ(Md(0, x1)) goes to H2. So, there

exists a ξ0 such that Tξ0(Md(0, x1)) has a first contact point with Σ, that

is, if ξ < ξ0, Σ ∩ Tξ(Md(0, x1)) = ∅ and Σ ∩ Tξ0(Md(0, x1)) ̸= ∅. Then

at all points on the intersection Σ ∩ Tξ0(Md(0, x1)) the surfaces Σ and

Tξ0(Md(0, x1)) are tangent. Applying the maximum principle, we would

conclude that Σ = Tξ0(Md(0, x1)). But this contradicts the fact that they

don’t have the same asymptotic boundary.

Similarly, if Σ ∩ Md(0, x1) ̸= ∅, we apply the isometry Tξ, for ξ < 1.

Observe that when ξ goes to 0, the projection π◦Tξ(Md(0, x1)) degenerates

at the point (x1/2, 0, 0). So, there exists a ξ0 such that Tξ0(Md(0, x1))

has a last contact point with Σ, that is, if ξ < ξ0, Σ ∩ Tξ(Md(0, x1)) =

∅ and Σ ∩ Tξ0(Md(0, x1)) ̸= ∅. Then, at all points on the intersection

Σ∩ Tξ0(Md(0, x1)) the surfaces Σ and Tξ0(Md(0, x1)) are tangent. Again,

we obtain a contradiction by the maximum principle. ■

Now we focus our attention in the family of vertical minimal graphs

which are invariant by parabolic isometries, such graphs are vertical graphs

of functions [4, Lemma 4.2]

vd(x, y) = vd(y) =
√
1 + 4τ2 arcsin(dy), d ∈ R,

vd is defined over {(x, y, 0) ∈ P̃SL(2,H2)(R, τ); 0 < y < d−1}. The graph

of vd has vertical tangent plane at (x, d−1,
√
1 + 4τ2π/2), for all x ∈ R.

Fix d ̸= 0, after a rotation by π around the geodesic γ(x1), we obtain

a complete minimal surface Ad. In the next lemma, we summarize the

properties of Ad which we will use later.
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Lemma 5.3. Let Ad the family of complete minimal surfaces invariant

by parabolic isometry described above. Then for each d ̸= 0, the surface

Ad has the following properties

1. When d goes to +∞, Ad goes to the slices {t = 0}∪{t =
√
1 + 4τ2π}.

2. When d goes to 0, Ad goes to the slab

{(x, 0, t), 0 ≤ t ≤
√

1 + 4τ2π}.

3. The asymptotic boundary of Ad are the lines {(x, 0, 0)}
∪{(x, 0,

√
1 + 4τ2π)} and vertical segments joining their end points.

Proof. The proof follows from the analysis of the function arcsin(dy),

taking into account that the surface Ad is invariant by parabolic isome-

tries. ■

Let Ω be a bounded domain in {(x, 0, t);x, t ∈ R} having smooth bound-

ary. For each x ∈ R, let

C(x) := {t ∈ R; (x, 0, t) ∈ ∂Ω}

and

l(x) := sup
C(x)

{|ti − tj |}.

We define the width of ∂Ω with respect to the t-axes by

w(x) = sup
x∈R

l(x).

Now we will use the family of minimal surfaces Ad to prove that there

is no horizontal minimal graph defined over a bounded domain whose

boundary has width less than
√
1 + 4τ2π.

Theorem 5.4. Let Ω be a domain in ∂∞H2 × R bounded by a Jordan

curve ∂Ω ⊂ ∂∞H2 × R having width less than
√
1 + 4τ2π. Then there is

no horizontal minimal graph defined in Ω continuous up to its asymptotic

boundary.
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Proof. Suppose that there exists such a horizontal minimal graph Σ. After

a vertical translation, we can assume that Ω is inside the simply connected

region bounded by the horizontal planes {t =
√
1 + 4τ2π} ∪ {t = 0}. We

fix d > 0 large enough, such that Ad does not intersect the surface Σ. It is

possible since when d → +∞ the surface Ad goes to the horizontal planes

{t =
√
1 + 4τ2π} ∪ {t = 0}. Moreover, when d goes to 0, the surface Ad

goes to {(x, 0, t) ∈ P̃SL(2,H2)(R, τ); 0 < t <
√
1 + 4τ2π}. So, letting d

decreasing to 0, it would occur a first contact point between Ad and Σ.

And by the maximum principle, we would conclude that these surfaces are

equal. The contradiction consists in the fact that these surfaces do not

have the same asymptotic boundary, so, they can not be the same. ■

6 Vertical graphs

In R3, the Berstein’s theorem states that an entire minimal graph is

a plane. In [3, Theorem 4], the authors proved that given a rectifiable

Jordan curve in the asymptotic boundary of D2 × R there is a unique

entire minimal graph having this Jordan curve as asymptotic boundary.

We want to extend this theorem for P̃SL2(R, τ). Before this, we have to

fix some notation.

We recall some notations about the Scherk’s surfaces described in Lemma

5.1 and Corollary 5.1. We have denoted S+
1 (x1) (S−

1 (x1)) the graphs over

the unbounded domain Ωπ/2(x1) whose boundary values are +∞ (−∞)

over γ(x1) and zero (zero) over Γ(x1). The image of S+
1 (x1) (S

−
1 (x1)) by

the isometry Lx1 is denoted by M+
1 (0, x1) (M−

1 (0, x1)), the projection

over H2 of M+
1 (0, x1) (M−

1 (0, x1)) is D1(0, x1). After a parabolic isom-

etry on P̃SL(2,H2)(R, τ), we ca assume that the projection of the Scherk

surface M+
1 (0, x1) is a domain D1(x, x̃), where x̃ − x = x1. The image

of M+
1 (0, x1) by this parabolic isometry is denoted by M+

1 (x, x̃). Since

x1 > 0 is arbitrary, we can choose x, x̃, x < x̃ arbitrarily. Similarly, we

define M−
1 (x, x̃).

Theorem 6.1. Consider the cylinder model for P̃SL2(R, τ). Let f : S1 →
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R be a smooth function. There exist a unique function u : D2 → R having

boundary value f and whose vertical graph is a minimal surface.

Proof. We start extending f smoothly to D2. For instance, let u : D2 → R
the function having boundary value f and whose graph in the product

space D2 ×R is minimal, the existence of such u is proved in [3, Theorem

4].

Now let Ωn be the disc centered at the origin having hyperbolic radius

n. Let un : Ωn → R be the unique function whose vertical graph is

minimal and un(x, y) = u(x, y) for all (x, y) in ∂Ωn. The existence of such

un is given in [8].

We have to prove that the sequence {un} converges to a function u :

D2 → R having boundary value f . First we prove that the sequence {un}
is uniformly bounded. For this, let J be the isometry given in Lemma 3.2.

Fix x > 1, we define Σ+ := J−1(M+
1 (x, x)) and Σ− := J−1(M−

1 (x, x)).

Let Rπ be the elliptic isometry of P̃SL(2,D2)(R, τ) generated by the ro-

tation around the origin on D2. Set C0 := maxz∈S1 f(z) and C1 :=

minz∈S1(f(z)). We observe that {un|π(Σ+)} is uniformly bounded above

by C0+Σ+ by maximum principle, the maximum principle can be applied

since the minimal equation can be extended to the asymptotic boundary.

Also, {un|π(Σ+)} is uniformly bounded bellow by C1 + Σ− by the maxi-

mum principle. The same reasoning can be applied to {un|π(Rπ(Σ+))}. So,
we conclude that the sequence {un} is uniformly bounded.

Now we prove that u has boundary value f . Fix p ∈ S1, given ε > 0,

by the continuity of f , there exists δ1 > 0 such that for all q ∈ S1 such

that |p− q|S1 < δ1, where |.|S1 denotes the metric on S1, then

|f(q)− f(p)| < ε/2.

On the other hand, let π3; P̃SL2(R, τ) → R be the projection on the

third factor, that is π3(x, y, t) = t. Define (x0, 0, t0) := J(p, f(p) + 3ε/4),

where J is the isometry define on Lemma 3.2. Then by continuity of J−1,

there exists δ2 > 0, such that if |x− x0| < δ2, then

|π3(J−1(x0, 0, t0))− π3(J
−1(x, 0, t0))| < ε/4.
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Then,

π3(J
−1(x, 0, t0)) > f(p) + ε/2, (6.1)

for all (x, 0, t0) such that |x− x0| < δ2.

Let Qν(x, y, t) := (x, y, t + ν) be the vertical translation. Taking δ1

smaller, if necessary, inequality (6.1) guaranties that the surface

J−1(Qt0(M
+
1 (x0 − δ2, x0 + δ2)))

is above u near (p, f(p)).

Similar argument prove that if (x1, 0, t1) := J(p, f(p−3ε/4)) the surface

J−1(Qt1(M
−
1 (x1 − δ2, x1 + δ2)))

is bellow u near (p, f(p)). The arbitrariness of p ∈ S1 and ε > 0, ensures

that u takes boundary value f .

Assume that there are u1 and u2 two smooth functions having prescribed

boundary values f and whose graphs are minimal. We can translate ver-

tically the graph of u1 upward such that the translated graph of u1 has

no intersection with the graph of u2. Then, we translate the new graph of

u1 downward, the maximum principle assures that the first contact point

occur at the boundary, and the conclusion is that u2 ≤ u1, for all points

in D2. Similarly, translating downward the graph of u1, we conclude that

u2 ≥ u1, for all points in D2. So u1 ≡ u2. ■
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[8] R. Younes, Minimal Surfaces in ˜PSL2(R), Illinois J. Math. Volume

54, Number 2 (2010), 671-712.

Abigail Folha

Instituto de Matemática e Es–
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