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Characterizations of linear Weingarten

spacelike hypersurfaces in locally

symmetric Lorentz spaces
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Abstract

We deal with complete linear Weingarten hypersurfaces immersed

in a locally symmetric Lorentz space, whose sectional curvatures are

supposed to obey some standard controls. In this setting, under

suitable boundedness on the norm of the traceless part of the sec-

ond fundamental form, we are able to show that such a hypersurface

must be either totally umbilical or an isoparametric hypersurface

with two distinct principal curvatures one of which is simple.
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1 Introduction and statements of the main re-

sults

In 1970, Calabi [8] proved that the only complete maximal surfaces (that

is, with zero mean curvature) in the 3-dimensional Lorentz-Minkowski

space L3 are the spacelike planes. Equivalently, he showed that the only

entire maximal graphs in L3 are the spacelike planes. This result has

been the origin of a wide productive branch of research in differential ge-

ometry. Later, this result has been generalized to general dimension by

Cheng and Yau [13] and, afterwards, also to complete spacelike hypersur-

faces of constant mean curvature in Ln+1 under some additional geometric

assumptions (see, for instance, [1], [3], [21] and [23]).

Many authors have studied similar problems in other Lorentzian ambi-

ent spaces. As for the case of the de Sitter space Sn+1
1 , which is the stan-

dard simply connected Lorentz space form of positive constant sectional

curvature 1, Goddard [16] conjectured that every complete spacelike hy-

persurface with constant mean curvature H in Sn+1
1 should be totally um-

bilical. Although the conjecture turned out to be false in its original state-

ment, it motivated a great deal of work of several authors trying to find a

positive answer to the conjecture under appropriate additional hypothe-

ses. For instance, in [2] Akutagawa showed that Goddard’s conjecture is

true when 0 ≤ H2 ≤ 1 in the case n = 2, and when 0 ≤ H2 < 4(n− 1)/n2

in the case n ≥ 3. Later on, Montiel [19] solved Goddard’s problem in the

compact case proving that the only closed spacelike hypersurfaces in Sn+1
1

with constant mean curvature are the totally umbilical hypersurfaces.

Another Goddard-like problem is to characterize spacelike hypersurfaces

immersed in a Lorentz space with constant scalar curvature. An interest-

ing result due to Cheng and Ishikawa [12] states that the totally umbilical

round spheres are the only compact spacelike hypersurfaces in Sn+1
1 with

constant normalized scalar curvature R < 1. More recently, many other

authors, such as Aledo and Aĺıas [4], Brasil, Colares and Palmas [7], Ca-

margo, Chaves and Sousa Jr. [9], Caminha [10], and Hu, Scherfner and
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Zhai [17], have also worked on related problems.

It is natural to study the geometry of spacelike hypersurfaces immersed

in more general Lorentz spaces, since they have important meaning in

the relativity theory and are of substantial interest from geometric and

mathematical cosmology points of view. In such direction, for constants

c1 and c2, Choi et al. [15, 22] introduced the class of (n+ 1)-dimensional

Lorentz spaces Ln+1
1 which satisfy the following two conditions (here, K

denotes the sectional curvature of Ln+1
1 ):

K(u, v) = −c1
n
, (1)

for any spacelike vector u and timelike vector v; and

K(u, v) ≥ c2, (2)

for any spacelike vectors u and v.

We observe that Lorentz space forms Ln+1
1 (c) satisfy conditions (1) and

(2) for − c1
n = c2 = c. Moreover, there are several examples of Lorentz

spaces which are not Lorentz space forms and satisfy (1) and (2). For

instance, semi-Riemannian product manifolds Hk
1(−c1/n) × Nn+1−k(c2),

where c1 > 0, and Rk
1 × Sn+1−k. In particular, R1

1 × Sn is a so-called

Einstein Static Universe. Also the so-called Robertson-Walker spacetime

N(c, f) = I ×f N3(c) is another general example of Lorentz space, where

I denotes an open interval of R1
1, f is a positive smooth function defined

on the interval I and N3(c) is a 3-dimensional Riemannian manifold of

constant curvature c. N(c, f) also satisfies conditions (1) and (2) for an

appropriate choice of the function f (for more details, see [15] and [22]).

Here, our purpose is to study the geometry of complete linear Wein-

garten spacelike hypersurfaces, that is, complete spacelike hypersurfaces

whose mean curvature H and normalized scalar curvature R satisfy

R = aH + b,

for some a, b ∈ R. In this setting, by exploring the ellipticity of a suit-

able Cheng-Yau modified operator (see Section 3), we are able to establish
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characterization theorems concerning to such spacelike hypersurfaces im-

mersed in a locally symmetric Lorentz space Ln+1
1 , which is supposed to

obey conditions (1) and (2). We recall that a Lorentz space Ln+1
1 is said

locally symmetric if all the covariant derivative components RABCD;E of

the curvature tensor of Ln+1
1 vanish identically.

In order to state our result, we will need some basic facts. Denoting by

RAB the components of the Ricci tensor of Ln+1
1 satisfying condition (1),

the scalar curvature R of Ln+1
1 is given by

R =
n+1∑
A=1

εARAA =
n∑

i,j=1

Rijji − 2
n∑

i=1

R(n+1)ii(n+1) =
n∑

i,j=1

Rijji + 2c1.

Moreover, it is well known that the scalar curvature of a locally symmetric

Lorentz space is constant. Consequently,
∑

i,j Rijji is a constant naturally

attached to a locally symmetric Lorentz space satisfying condition (1).

Now, we are in position to present our results. In what follows, for the

sake of simplicity of notation, R = 1
n(n−1)

∑
i,j Rijji and Φ stands for the

traceless part of the second fundamental form of the spacelike hypersurface

Mn.

Theorem 1.1. Let Ln+1
1 be a locally symmetric Lorentz space satisfying

conditions (1) and (2), with n ≥ 3 and c = c1
n + 2c2 > 0. Let Mn be

a complete linear Weingarten spacelike hypersurface immersed in Ln+1
1 ,

such that R = aH + b with b < R. Suppose that R− c < R < R− 2c
n . If

H can attain the maximum on Mn and

sup
M

|Φ|2 ≤
(n− 1)

(
R−R− c

)2
(n− 2)

(
R−R− 2c

n

) , (3)

then either

i. |Φ| ≡ 0 and Mn is totally umbilical;

ii. or |Φ|2 ≡
(n− 1)

(
R−R− c

)2
(n− 2)

(
R−R− 2c

n

) and Mn is an isoparametric hyper-

surface with two distinct principal curvatures one of which is simple.
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Related to the compact case, when the ambient space is a locally sym-

metric Einstein spacetime, we obtain the following:

Theorem 1.2. Let Ln+1
1 be a locally symmetric Einstein spacetime sat-

isfying conditions (1) and (2), with n ≥ 3 and c = c1
n + 2c2 > 0. Let Mn

be a compact linear Weingarten spacelike hypersurface immersed in Ln+1
1 ,

such that R = aH+ b with (n−1)a2+4n(R− b) ≥ 0 and b ̸= R. Suppose

that R− c < R < R− 2c
n . If

sup
M

|Φ|2 <
(n− 1)

(
R−R− c

)2
(n− 2)

(
R−R− 2c

n

) , (4)

then |Φ| ≡ 0 and Mn is totally umbilical.

Proceeding, we also get the following:

Theorem 1.3. Let Ln+1
1 be a locally symmetric Lorentz space satisfying

conditions (1) and (2), with n ≥ 3 and c = c1
n +2c2. Let M

n be a complete

linear Weingarten spacelike hypersurface immersed in Ln+1
1 , such that

R = aH + b with b < R. Suppose that either R < R − c, if c > 0, or

R < R− 2c
n , if c ≤ 0. If H can attain the maximum on Mn and

inf
M

|Φ|2 ≥
(n− 1)

(
R−R− c

)2
(n− 2)

(
R−R− 2c

n

) , (5)

then |Φ|2 ≡
(n− 1)

(
R−R− c

)2
(n− 2)

(
R−R− 2c

n

) and Mn is an isoparametric hypersur-

face with two distinct principal curvatures one of which is simple.

The proofs of Theorems 1.1, 1.2 and 1.3 are given in Section 4.

2 Preliminaries

We recall that an (n + 1)-dimensional Lorentz space Ln+1
1 is a semi-

Riemannian manifold of index 1 and that a hypersurface Mn immersed in
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Ln+1
1 is said to be spacelike if the metric on Mn induced from that of the

ambient space Ln+1
1 is positive definite. In this setting, we choose a local

field of semi-Riemannian orthonormal frame {eA}1≤A≤n+1 in Ln+1
1 , with

dual coframe {ωA}1≤A≤n+1, such that, at each point of Mn, e1, . . . , en

are tangent to Mn and en+1 is normal to Mn. We will use the following

convention for the indices:

1 ≤ A,B,C, . . . ≤ n+ 1, 1 ≤ i, j, k, . . . ≤ n.

Denoting by {ωAB} the connection forms of Ln+1
1 , we have that the

structure equations of Ln+1
1 are given by:

dωA = −
∑
B

εBωAB ∧ ωB, ωAB + ωBA = 0, εi = 1, εn+1 = −1, (6)

dωAB = −
∑
C

εCωAC ∧ ωCB − 1

2

∑
C,D

εCεDRABCDωC ∧ ωD. (7)

Here, RABCD, RCD and R denote respectively the semi-Riemannian cur-

vature tensor, the Ricci tensor and the scalar curvature of the Lorentz

space Ln+1
1 . In this setting, we have

RCD =
∑
B

εBRBCDB, R =
∑
A

εARAA.

Moreover, the components RABCD;E of the covariant derivative of the

semi-Riemannian curvature tensor of Ln+1
1 are defined by∑

E

εERABCD;EωE = dRABCD −
∑
E

εE(REBCDωEA

+RAECDωEB +RABEDωEC +RABCEωED).

Next, we restrict all the tensors to the spacelike hypersurface Mn in

Ln+1
1 . First of all, ωn+1 = 0 on Mn, so

∑
i ω(n+1)i ∧ ωi = dωn+1 = 0.

Consequently, by Cartan’s Lemma [11], there are hij such that

ω(n+1)i =
∑
j

hijωj and hij = hji. (8)
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This gives the second fundamental form of Mn, h =
∑

i,j hijωiωjen+1,

and its square length S =
∑

i,j h
2
ij . Furthermore, the mean curvature H

of Mn is defined by H = 1
n

∑
i hii.

The connection forms {ωij} of Mn are characterized by the structure

equations of Mn:

dωi = −
∑
j

ωij ∧ ωj , ωij + ωji = 0, (9)

dωij = −
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, (10)

where Rijkl are the components of the curvature tensor of Mn.

Using the structure equations we obtain the Gauss equation

Rijkl = Rijkl − (hikhjl − hilhjk). (11)

The components Rij of the Ricci tensor and the scalar curvature R of

Mn are given, respectively, by

Rij =
∑
k

Rkijk − nHhij +
∑
k

hikhkj (12)

and

n(n− 1)R =
∑
j,k

Rkjjk − n2H2 + S. (13)

The first covariant derivatives hijk of hij satisfy∑
k

hijkωk = dhij −
∑
k

hikωkj −
∑
k

hjkωki. (14)

Then, by exterior differentiation of (8), we obtain the Codazzi equation

hijk − hikj = R(n+1)ijk. (15)

Similarly, the second covariant derivatives hijkl of hij are given by∑
l

hijklωl = dhijk −
∑
l

hljkωli −
∑
l

hilkωlj −
∑
l

hijlωlk. (16)
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By exterior differentiation of (14), we can get the following Ricci formula

hijkl − hijlk = −
∑
m

himRmjkl −
∑
m

hjmRmikl. (17)

Restricting the covariant derivative RABCD;E of RABCD on Mn, then

R(n+1)ijk;l is given by

R(n+1)ijk;l = R(n+1)ijkl +R(n+1)i(n+1)khjl (18)

+R(n+1)ij(n+1)hkl +
∑
m

Rmijkhml,

where R(n+1)ijkl denotes the covariant derivative of R(n+1)ijk as a tensor

on Mn so that∑
l

R(n+1)ijklωl = dR(n+1)ijk −
∑
l

R(n+1)ljkωli

−
∑
l

R(n+1)ilkωlj −
∑
l

R(n+1)ijlωlk.

The Laplacian ∆hij of hij is defined by ∆hij =
∑
k

hijkk. From (15),

(17) and (18), after a straightforward computation we obtain

∆hij = (nH)ij − nH
∑
l

hilhlj + Shij (19)

+
∑
k

(R(n+1)ijk;k +R(n+1)kik;j)

−
∑
k

(hkkR(n+1)ij(n+1) + hijR(n+1)k(n+1)k)

−
∑
k,l

(2hklRlijk + hjlRlkik + hilRlkjk).

Since ∆S = 2
(∑

i,j,k h
2
ijk +

∑
i,j hij∆hij

)
, from (19) we get
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1

2
∆S = S2 +

∑
i,j,k

h2ijk +
∑
i,j

(nH)ijhij (20)

+
∑
i,j,k

(R(n+1)ijk;k +R(n+1)kik;j)hij

−(
∑
i,j

nHhijR(n+1)ij(n+1) + S
∑
k

R(n+1)k(n+1)k)

−2
∑
i,j,k,l

(hklhijRlijk + hilhijRlkjk)− nH
∑
i,j,l

hilhljhij .

Now, let ϕ =
∑

i,j ϕijωi ⊗ ωj be a symmetric tensor on Mn defined by

ϕij = nHδij − hij .

Following Cheng-Yau [14], we introduce a operator □ associated to ϕ

acting on any smooth function f by

□f =
∑
i,j

ϕijfij =
∑
i,j

(nHδij − hij)fij . (21)

Setting f = nH in (21) and taking a (local) orthonormal frame {e1, . . . , en}
on Mn such that hij = λiδij , from equation (13) we obtain the following

□(nH) =
1

2
∆(nH)2 −

∑
i

(nH)2i −
∑
i

λi(nH)ii (22)

=
1

2
∆S − n2|∇H|2 −

∑
i

λi(nH)ii

+
1

2
∆

∑
i,j

Rijji − n(n− 1)R

 .

3 Some auxiliary results

In order to prove our results, we will need some auxiliary lemmas. The

first one is a classic algebraic lemma due to M. Okumura in [20], and
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completed with the equality case proved in [5] by H. Alencar and M. do

Carmo.

Lemma 3.1. Let µ1, ...µn be real numbers such that
∑
i

µi = 0 and∑
i

µ2
i = β2, with β ≥ 0. Then,

− (n− 2)√
n(n− 1)

β3 ≤
∑
i

µ3
i ≤

(n− 2)√
n(n− 1)

β3, (23)

and equality holds if, and only if, at least (n − 1) of the numbers µi are

equal.

Now, we present our second auxiliary lemma. Following the steps of the

proof of Lemma 2.1 of [18], we get

Lemma 3.2. Let Mn be a linear Weingarten spacelike hypersurface im-

mersed in a locally symmetric Lorentz space Ln+1
1 satisfying condition (1),

such that R = aH + b with b ̸= R. Suppose that

(n− 1)a2 + 4n
(
R− b

)
≥ 0. (24)

Then, ∑
i,j,k

h2ijk ≥ n2|∇H|2. (25)

Moreover, if the inequality (24) is strict and the equality holds in (25) on

Mn, then H is constant on Mn.

Proof. Since we are supposing that R = aH+b and the termR is constant,

from equation (13) we get

2
∑
i,j

hijhijk =
(
2n2H + n(n− 1)a

)
(H)k.

Thus,

4
∑
k

∑
i,j

hijhijk

2

=
(
2n2H + n(n− 1)a

)2 |∇H|2.
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Consequently, using Cauchy-Schwartz inequality, we obtain that

4S
∑
i,j,k

h2ijk = 4

∑
i,j

h2ij

∑
i,j,k

h2ijk

 (26)

≥ 4
∑
k

∑
i,j

hijhijk

2

=
(
2n2H + n(n− 1)a

)2 |∇H|2.

On the other hand, since R = aH + b, using again equation (13) we easily

verify that(
2n2H + n(n− 1)a

)2
= 4n3(n− 1)R− 4n3(n− 1)b (27)

+n2(n− 1)2a2 + 4n2S.

Consequently, from (24), (26) and (27), we get

S
∑
i,j,k

h2ijk ≥ n2S|∇H|2.

Therefore, we obtain either S = 0 and
∑

i,j,k h
2
ijk = n2|∇H|2 or

∑
i,j,k h

2
ijk ≥

n2|∇H|2. Moreover, if the inequality (24) is strict, from (27) we get that(
2n2H + n(n− 1)a

)2
> 4n2S.

Consequently, if
∑

i,j,k h
2
ijk = n2|∇H|2 holds on Mn, from (26) we con-

clude that ∇H = 0 on Mn and, hence, H is constant on Mn. ■

Now, we consider the Cheng-Yau’s modified operator

L = □+
n− 1

2
a∆. (28)

Related to such operator, we have the following sufficient criterion of

ellipticity.

Lemma 3.3. Let Mn be a linear Weingarten spacelike hypersurface im-

mersed in a locally symmetric Lorentz space Ln+1
1 satisfying condition (1),

such that R = aH + b with b < R. Then, H does not vanish on Mn and

L is elliptic.



28 C.P. Aquino, H.F. de Lima and M.A.L. Velásquez

Proof. From equation (13), since R = aH + b with b < R, we easily see

that H cannot vanish on Mn and, by choosing the appropriate Gauss

mapping, we may assume that H > 0 on Mn.

Let us consider the case that a = 0. Since R = b < R, from equation

(13) if we choose a (local) orthonormal frame {e1, . . . , en} on Mn such

that hij = λiδij , we have that
∑

i<j λiλj > 0. Consequently,

n2H2 =
∑
i

λ2
i + 2

∑
i<j

λiλj > λ2
i

for every i = 1, . . . , n and, hence, we have that nH − λi > 0 for every i.

Therefore, in this case, we conclude that L is elliptic.

Now, suppose that a ̸= 0. From equation (13) we get that

a =
1

n(n− 1)H

(
S − n2H2 + n(n− 1)(R− b)

)
.

Consequently, for every i = 1, . . . , n, with a straightforward algebraic

computation we verify that

nH − λi +
n− 1

2
a = nH − λi +

1

2nH

(
S − n2H2 + n(n− 1)(R− b)

)
=

1

2nH

∑
j ̸=i

λ2
j + (

∑
j ̸=i

λj)
2 + n(n− 1)(R− b)

 .

Therefore, since b < R, we also conclude in this case that L is elliptic. ■

4 Proofs of Theorems 1.1, 1.2 and 1.3

In what follows, we present some computations which are common for

the proofs of Theorems 1.1, 1.2 and 1.3. At this point, we assume that

Mn is a complete linear Weingarten spacelike hypersurface immersed in

a locally symetric Lorentzian space Ln+1
1 , n ≥ 3, satisfying conditions (1)

and (2), such that R = aH + b with (n− 1)a2 + 4n(R− b) ≥ 0.

Initially, we observe that the local symmetry of Ln+1
1 implies that∑

i,j,k

(R(n+1)ijk;k +R(n+1)kik;j)hij = 0.
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Consequently, if we choose a (local) orthonormal frame {ei}1≤i≤n on Mn

such that hij = λiδij , taking into account equations (20) and (22), we get

from (28) that

L(nH) =
∑
i,j,k

h2ijk − n2|∇H|2 + S2 − nH
∑
i

λ3
i (29)

−2
∑
i,k

(λiλkRkiik + λ2
iRikik)

−

(∑
i

nHλiR(n+1)ii(n+1) + S
∑
k

R(n+1)k(n+1)k

)
.

Thus, from Lemma 3.2 we have

L(nH) ≥ S2 − nH
∑
i

λ3
i − 2

∑
i,k

(λiλkRkiik + λ2
iRikik) (30)

−

(∑
i

nHλiR(n+1)ii(n+1) + S
∑
k

R(n+1)k(n+1)k

)
.

Now, set Φij = hij − Hδij . We will consider the following symmetric

tensor

Φ =
∑
i,j

Φijωi ⊗ ωj . (31)

It is easy to check that Φ is traceless and, for this reason, it is called

traceless part of the second fundamental form of Mn. Moreover, if |Φ|2 =∑
i,j

Φ2
ij is the square of the length of Φ, then

|Φ|2 = S − nH2. (32)

If we take a (local) frame field {ei}1≤i≤n at p ∈ Mn, such that

hij = λiδij and Φij = µiδij ,

it is straightforward to check the following algebraic relations:

∑
i

µi = 0,∑
i

µ2
i = |Φ|2,∑

i

µ3
i =

∑
i λ

3
i − 3H|Φ|2 − nH3.
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Consequently, by applying Lemma 3.1 to the real numbers µ1, . . . , µn, we

get

S2 − nH
∑
i

λ3
i =

(
|Φ|2 + nH2

)2 − n2H4 (33)

−3nH2|Φ|2 − nH
∑
i

µ3
i

≥ |Φ|4 − nH2|Φ|2 − n(n− 2)√
n(n− 1)

H|Φ|3.

Using curvature conditions (1) and (2), we get

−

∑
i,j

nHλiR(n+1)ii(n+1) + S
∑
k

R(n+1)k(n+1)k

 = c1(S − nH2) (34)

and

−2
∑
i,j,k,l

(λiλkRkiik + λ2
iRikik) ≥ c2

∑
i,k

(λi − λk)
2 (35)

= 2nc2(S − nH2).

Hence, setting c = c1
n + 2c2, from (30), (32), (33), (34) and (35) we

obtain that

L(nH) ≥ |Φ|2
(
nc+ S − 2nH2 − n(n− 2)√

n(n− 1)
H|Φ|

)
(36)

= |Φ|2
(
nc+ |Φ|2 − nH2 − n(n− 2)√

n(n− 1)
H|Φ|

)
.

On the other hand, from (13) and (32) we have

H2 =
1

n(n− 1)
|Φ|2 +R−R, (37)

and, since we can assume that H > 0 on Mn,

H =
1√

n(n− 1)

√
|Φ|2 + n(n− 1)(R−R). (38)
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Substituting (37) and (38) into (36), we finally get

L(nH) ≥ 1

n− 1
|Φ|2PR(|Φ|), (39)

where

PR(x) = (n− 2)x2 − (n− 2)x

√
x2 + n(n− 1)(R−R) (40)

+n(n− 1)(c+R−R).

We observed that PR(x) = 0 if, and only if,

x2 =

(
n(n− 1)(c+R−R)

)2
n(n− 2)

(
n(n− 1)(R−R− 2c

n )
) . (41)

At this point, we proceed with the proofs of Theorems 1.1, 1.2 and 1.3.

Proof of Theorem 1.1.

Since we are supposing that c > 0 and R− c < R < R− 2c
n , from (40)

and (41) we easily verify that PR(0) = n(n − 1)(c + R −R) > 0 and the

function PR(x) is strictly decreasing for x ≥ 0, with PR(x̃) = 0 at

x̃ =
n(n− 1)(c+R−R)√

n(n− 2)
√
n(n− 1)(R−R− 2c

n )
> 0.

Thus, hypothesis (3) ensures that 0 ≤ |Φ| ≤ x̃ and PR (|Φ|) ≥ 0. Hence,

from (39) we have

L(nH) ≥ 1

n− 1
|Φ|2PR (|Φ|) ≥ 0. (42)

Since we are supposing b < R, Lemma 3.3 guarantees that L is elliptic.

Consequently, since we are also assuming that H attains its maximum on

Mn, from (42) we can apply Hopf’s strong maximum principle in order to

conclude that H is constant on Mn. Hence, taking into account equation

(29), we get ∑
i,j,k

h2ijk = n2|∇H|2 = 0,
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and it follows that λi is constant for every i ∈ {1, . . . , n}.
If |Φ| < x̃, then from (42) we have that |Φ| = 0 and, hence, Mn is totally

umbilical. If |Φ| = x̃, since the equality holds in (23) of Lemma 3.1, we

conclude that Mn is either totally umbilical or an isoparametric spacelike

hypersurface with two distinct principal curvatures one of which is simple.

■

Proof of Theorem 1.2.

From (21) we have that

□f = trace(P1 ◦ ∇2f),

where, denoting by I the identity in the algebra of smooth vector fields

on Mn, P1 = nHI −h and ∇2f stands for the self-adjoint linear operator

metrically equivalent to the hessian of f . Thus, by using the standard

notation ⟨ , ⟩ for the (induced) metric of Mn, we get

□f =
∑
i

⟨P1(∇ei∇f), ei⟩,

where {e1, . . . , en} is a local orthonormal frame on Mn. Consequently, we

have that

div(P1(∇f)) =
∑
i

⟨(∇eiP1)(∇f), ei⟩+
∑
i

⟨P1(∇ei∇f), ei⟩ (43)

= ⟨divP1,∇f⟩+□f,

where

divP1 := trace (∇P1) =
∑
i

(∇eiP1) (ei).

On the other hand, since we are assuming that Ln+1
1 is an Einstein space-

time, there exist a constant λ such that Ric = λ⟨ , ⟩, where Ric denotes

the Ricci tensor of Ln+1
1 . Thus, denoting by R the curvature tensor of

Ln+1
1 , from Lemma 3.1 of [6] we have

⟨divP1,∇f⟩ =
∑
i

⟨R(N, ei)ei,∇f⟩ = −Ric(N,∇f) = −λ⟨N,∇f⟩ = 0,
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where N stands for the Gauss mapping of Mn. Hence, from (43), we

conclude that

□f = div(P1(∇f)). (44)

Consequently, from (28) and (44), we have that

L(nH) = div(P (∇H)), (45)

where P = nP1 +
n(n−1)

2 aI.

Now, by applying the divergence theorem, from (42) we get

0 =

∫
M

L(nH) ≥
∫
M

{
1

n− 1
|Φ|2PR (|Φ|)

}
dM ≥ 0. (46)

Consequently, taking into account hypothesis (4), from (46) we conclude

that |Φ| = 0 on Mn and, hence, Mn is totally umbilical. ■

Proof of Theorem 1.3.

First, from our restrictions on R, we note that

(a) R < R− c < R− 2c
n , when c > 0;

(b) R < R− 2c
n ≤ R− c, when c ≤ 0.

In both of these case, from (40) and (41) we have that

PR(0) = −n(n− 1)(R−R− c) < 0

and the function PR(x) is strictly increasing for x ≥ 0, with PR(x̂) = 0 at

x̂ =
n(n− 1)(R−R− c)√

n(n− 2)
√
n(n− 1)(R−R− 2c

n )
> 0.

Thus, hypothesis (5) guarantees that |Φ| ≥ x̂ > 0 and PR (|Φ|) ≥ 0.

Hence, from (39) we have

L(H) ≥ 1

n− 1
|Φ|2PR (|Φ|) ≥ 0. (47)

In a similar way of the proof of Theorem 1.1, since we are supposing that

b < R, we can apply Hopf’s strong maximum principle to guarantee that
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H is constant onMn and that λi is constant for every i ∈ {1, . . . , n}. Since
|Φ| > 0, from (47) we obtain that L(H) ≥ 0 if, and only if, |Φ| = x̂. Hence,

Lemma 3.1 assures that Mn is an isoparametric spacelike hypersurface

with two distinct principal curvatures one of which is simple. ■
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