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The asymptotic Plateau problem for
convex hypersurfaces of constant

curvature in Hyperbolic space

Joel Spruck

Abstract

We show that for a very general class of curvature functions de-
fined in the positive cone, the problem of finding a complete strictly
locally convex hypersurface in H"' satisfying f(k) =0 € (0,1)
with a prescribed asymptotic boundary I' at infinity has at least
one smooth solution with uniformly bounded hyperbolic principal
curvatures. Moreover if T' is (Euclidean) starshaped, the solution is
unique and also (Euclidean) starshaped while if T' is mean convex
the solution is unique. We also show via a strong duality theorem
that analogous results hold in De Sitter space. A novel feature of

our approach is a “global interior curvature estimate”.

1 Introduction

The asymptotic Plateau problem for complete strictly locally convex
hypersurfaces of constant Gauss curvature was initiated by Labourie [9]
in H® and by Rosenberg-Spruck [11] in H"™! and subsequently extended

to more general curvature functions in [5], [6], [7], [12]. In this survey
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paper (which is based on joint work with Bo Guan and Ling Xiao), we
will sketch the complete solution (Theorem 1.3) to the asymptotic Plateau
problem for locally strictly convex hypersurfaces of constant curvature for
essentially arbitrary “elliptic curvature functions”. A novel feature of our
recent work [8] is the derivation of a “global interior curvature bound”
(Theorem 1.2) that besides yielding optimal existence allows us to in-
fer that the convex solutions are starshaped for sharshaped asymptotic
boundary (Theorem 1.4) and unique for mean convex asymptotic bound-
ary (Theorem 1.5).

Given I' C 0,,H"*! and a smooth symmetric function f of n variables,
the asymptotic Plateau problem is to find a complete locally strictly convex

hypersurface ¥ in H" ! satisfying

f(&[E]) =0 (1)
ox =T (2)
where k[X] = (K1,..., k) denotes the induced (positive) hyperbolic prin-

cipal curvatures of ¥ and ¢ € (0,1) is a constant.

The function f is to satisfy the standard structure conditions [2] in the

positive cone

K = K, :={X € R" : each component \; > 0}, (3)
f>0in K, (4)
f=0 on 0K, (5)

A
fi(/\)zagi)>0inK, 1<i<mn, (6)
f is a concave function in K. (7)

In addition, we assume that f is normalized
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and satisfies

f is homogeneous of degree one. (9)

By contrast we will drop the following more technical assumption of [5],
(6], [7], [12]:

th-sr-l fO, - s An—1, A + R) > 14+ ¢ uniformly in Bs,(1)  (10)
—+00

for some fixed 9 > 0 and dy > 0, where Bs,(1) is the ball of radius dg
centered at 1 = (1,...,1) € R". This technical condition is the main
assumption used in the proof of boundary estimates.

We will use the half-space model
H" ™ = {(z, 2p41) € R"™ 220 > 0}

equipped with the hyperbolic metric

n+1 2
> iy dr;

2
xn+1

ds® = (11)

Thus d,H"! is naturally identified with R™ = R™ x {0} ¢ R*"! and
(2) may be understood in the Euclidean sense. For convenience we say
¥ has compact asymptotic boundary if 9% C 9 H"t! is compact with

respect to the Euclidean metric in R"”.

In this paper all hypersurfaces in H" ™! we consider are assumed to be
connected and orientable. If ¥ is a complete hypersurface in H**! with
compact asymptotic boundary at infinity, then the normal vector field of
> is chosen to be the one pointing to the unique unbounded region in
Rﬁ“ \ ¥, and the (both hyperbolic and Euclidean) principal curvatures

of ¥ are calculated with respect to this normal vector field.

As in our earlier work we will take I' = 92 where Q C R" is a smooth

domain and seek ¥ as the graph of a function u(z) over €2, i.e.

Y={(z,zpn+1) :x €Q, vpt1 =u(z)}.
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Then the coordinate vector fields and upper unit normal are given by

(—uie; + eny1)
X; = e +uiepi1, N =ury = U

where w = /1 4 |Vu|? and v is the Euclidean upward unit normal to X.
The first fundamental form g;; is then given by
1 95
9i5 = (Xi, X3) = —5 (01 +wiug) = —5 - (12)
To compute the second fundamental form h;; we use

1

Ff}- = —— (=0jk0in+1 — OikOjnt1 + 0ij0kn+1) (13)
Tn+1
to obtain
Ui Uje; + Ui
Vx, Xj = ( . + uij — ZJ)7L+1_M- (14)
Tn+41 Tn+1 Tn+1
Then L s
hij = (Vx.Xj,uv) = — (=% +u; — —% +2-7)
1 hfj I/n+1 e
= m(éu + U; Uy + uuij) = 7 + u2 gl-j.

The hyperbolic principal curvatures x; of ¥ are the roots of the charac-

teristic equation
—-n e 1 e
det(hij — Kkgij) = u det(hij — E(K — E)gij) =0.

Therefore,
K = uk§ + " (16)

The relations (15) and (16) are easily seen to hold for parametric hy-

persurfaces.

One important consequence of (16) is the following result of [5].

Theorem 1.1. Let ¥ be a complete locally strictly convex C? hypersur-

Hn+1

face in with compact asymptotic boundary at infinity. Then ¥ is
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the (vertical) graph of a function u € C?(Q2) N C%(Q), u > 0 in Q and

u = 0 on 0, for some domain 2 C R™:
Y ={(z,u(z)) € R’};H cx €N}

such that
{(5,']‘ + wzug + uuij} >0 in Q. (17)

That is, the function u? + |x|? is strictly (Euclidean) convex.

According to Theorem 1.1, our assumption that ¥ is a graph is com-
pletely general for locally strictly convex hypersurfaces, that is, the asymp-

totic boundary I" must be the boundary of some bounded domain €2 in R™.

In our recent paper [8], we discovered a new phenomenon of “convexity
arising from infinity” that forces the principal curvatures of solutions to
the asymptotic problem to be uniformly bounded. This leads to substan-
tial improvements of our earlier results for the convex cone K,". The main
new technical idea is a global curvature estimate for locally strictly convex
solutions of (1), (2) which is obtained from interior curvature estimates.

More precisely we have

Theorem 1.2 ([8]). Let I' = 9Q x {0} € R™"! where Q is a bounded
smooth domain in R". Suppose o € (0,1) and that f satisfies conditions
(3)- (4), (6)-(9). Let ¥ = graph(u) be a smooth locally strictly convex
graph in H"™! satisfying f(k) = 0, 0xX = I' and

"1 >92a>00n X, (18)

For x € ¥ let kmax(x) be the largest principal curvature of ¥ at x. Then
for 0 <b< ¢,

b FRmax 8 b
max u'— o —— < a—g(s%p u)’. (19)
In particular,
8
/fmax(x) < — (20)



252 J. Spruck

To solve the asymptotic Plateau problem for the curvature function f,
we apply the existence theorem of [7] to the curvature function 1o .=
0K + (1 — 0)f which satisfies conditions (3)-(9) as well as (10). We
then obtain a complete strictly locally convex solution %¢ = graph(u?)
in H"™! satisfying (1)-(2) (with f replaced by f?) with bounded princi-
pal curvatures depending on #. Using Theorem 1.2, we find that u’ €
Co1(Q), (u)? € C>=(Q) N CHY(Q), u? + u?|D?u’| + |Duf| < C where C
is independent of 8. We can now let 6 tend to 0 to obtain the following

existence theorem for I' = 02 satisfying a uniform exterior ball condition.

Theorem 1.3 ([8]). Let I' = 9Q x {0} € R"™! where Q is a bounded
domain in R" satisfying a uniform exterior ball condition. Suppose o €
(0,1) and that f satisfies conditions (4)-(9) in K. Then there exists
a complete locally strictly convex hypersurface ¥ = graph(u) in H

satisfying (1)-(2) with uniformly bounded principal curvatures

%gnigc on X. (21)

Furthermore, u € C%1(Q), u? € C=°(Q)NCH(Q), u|D?u|+|Du| < C and

V1+|Dul?2 = L onoo ionece (22)
g

Note that no uniqueness of solutions is asserted. In [7] we showed

uniqueness if
S fi>d NfimKin{o< f<1}

1
In particular, uniqueness holds for the curvature quotients f = (Hﬁ’;)m
with Il = n—1orl = n—2. Of course it is well-known that if € is
strictly (Euclidean) starshaped about the origin, then there is uniqueness.

However, much more can be said in this case.

Theorem 1.4 ([8]). Let Q € C! be as in Theorem 1.3 and in addition be
strictly (Euclidean) starshaped about the origin. Then the unique solution
given in Theorem 1.3 is strictly (Euclidean) starshaped about the origin,
ie. X -v>0.
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We also proved uniqueness in case {2 is mean convex.

Theorem 1.5 ([8]). Assume  is a C**® mean convex domain, that is,
the Euclidean mean curvature Hgq > 0. Then the solution ¥ of Theorem

1.3 is unique.

We end by describing an application of Theorem 1.3 to the existence of
constant curvature spacelike hypersurfaces in de Sitter space. There is a
natural asymptotic Plateau problem dual to (1), (2) for strictly spacelike
hypersurfaces [12] which takes place in the steady state subspace H"*! C
dSy+1 of de Sitter space. Following Montiel [10], there is a halfspace model
for H"+! which can be identified with R?fl endowed with the Lorentz
metric

ds® = 1

——(do® — dak,), (23

n+1
It is important to note that the isometry from H™ ! to the halfspace model
reverses the time orientation. The dual asymptotic Plateau problem seeks

to find a strictly spacelike hypersurface S satisfying

IS = o1 (24)
oS =T (25)
where k[S] = (K1, ..., kn) denote the principal curvatures of S in the in-

duced de Sitter metric.

If S is a complete spacelike hypersurface in H"*! with compact asymp-
totic boundary at infinity, then the normal vector field N of S is chosen
to be the one pointing to the unique unbounded region in Ri“ \ S, and
the de Sitter principal curvatures of S are calculated with respect to this

normal vector field.

Because S is strictly spacelike, we are essentially forced to take I' =
OV where V. C R" is a bounded domain and seek S as the graph of a

“spacelike” function v(z) over €, i.e.

S={(,Ynt1) 1Y €V, Ynt1 =v(x)}, [Vv|<1,inV. (26)
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In [12] we have computed the first and second fundamental forms of S

with respect to the induced de Sitter metric. We use

Vi€ + ent1
Xi =e; +viept1, N=w=v———,
w

where w = /1 — |Vv|? and v is the normal vector field of S viewed as a
Minkowski space R™! graph. The first and second fundamental forms Gij

and h;; are then given by

1
gij = (Xi, Xj)p = 172(51” — v;v5) (27)

and

1 [6; V; V5 V; V5
hij = <inXj7’UV>D = — (Zj — V5 + I 2”)
vw \ v v

(28)
= a5, (0ij — vivj — vuij)
Note that from (28), S is locally strictly convex if and only if
y? — v? is (Euclidean) locally strictly convex . (29)

There is a well known Gauss map duality for locally strictly convex
hypersurfaces in dS, 1 For our purposes we will need a very concrete
formulation of this duality [12]. Montiel [10] showed that if we use the
upper halfspace representation for both #"t! and H"*!, then the Gauss

map N corresponds to the map
L:S—H"!
defined by

L((y,v())) = (v — v(y)Vo(y),v(y)vV/1— Vo), yeV. (30)

We now identify the map L in terms of a hodograph map and its associated
Legendre transform. Define the map = = Vp(y) : V C R” — R" by

z=Vp(y), y €V where p(y) = 3(y* — v(y)?). (31)
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Note that p is strictly convex in the Euclidean sense by (28) and hence the
map z is globally one to one. Therefore u(x) := v(y)y/1 — [Vo(y)|? is well

defined in 2 := (V). The associated Legendre transform is the function
q(z) defined in Q by p(y) + ¢(xz) =z -y or q(z) = —p(y) + y - Vp(y).

Theorem 1.6 ([12]). Let L be defined by (30) and let x be defined by
(31). Then the image of S by L is the locally strictly convex graph (with

respect to the induced hyperbolic metric)

S = {(z,u(z)) € RT™ 1w e C®(Q),u(x) > 0},

1 Here k; > 0,i=1,...,n are the

with principal curvatures x; = x;
principal curvatures of S with respect to the induced de Sitter metric.

Moreover the inverse map L' : X — S defined by
L7H((z,u(2))) = (x + u(@) Vu(z), u()y/1 + [Vu(@)]?) y €9

is the dual Legendre transform and hodograph map y = Vq(x), ¢(z) =
(2% + u(z)?).

Note that when ¥ = graph(u) over € is a strictly locally convex solution
of the asymptotic Plateau problem (1)-(2) in H" ™!, then its Gauss image
S = graph(v) is a locally strictly convex spacelike graph also defined over
Q which solves the asymptotic Plateau problem f*(x) = 1 > 1. We now

define f*.

Definition 1.1. Given a curvature function f(x) in the positve cone K,

define the dual curvature function f*(k) by

. 1 1.._
PR = (=, =) kEK, (32)
K1 Rn,
Note that f* may in fact be naturally defined in a cone K O K. For
1
example if f(k) = (%)m7 n > 1> 0 defined in K, , then

1

(k) = (Hp—y) ™

is in fact defined in the standard Garding cone K =I',,_;. Here H} is the

normalized kth elementary symmetric function.
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Using the duality Theorem 1.6, we can transplant the existence Theorem
1.3 to H™ L

Theorem 1.7 ([8]). Let I' = 9Q x {0} € R"™! where Q is a bounded
domain in R" satisfying a uniform exterior ball condition. Suppose o > 1
and that f satisfies conditions (4)-(9) in K;F. Then there exists a com-
plete locally strictly convex spacelike graph S = graph(v) in H"*! satis-
fying (24)-(25) for the curvature function f*(x) with uniformly bounded
principal curvatures

1
6§ni§0 on S. (33)

Furthermore, v € C%1(Q), v? € C*(Q)NCHY(Q), v|D?v|+|Dv| < C and

1
V1—|Dv2== ondQ if o0 e C?. (34)
g

Corollary 1.1 ([8]). Let I' = 9Q x {0} C d5H" ™! where Q is a bounded
domain in R™ satisfying a uniform exterior ball condition. Then there
exists a complete locally strictly convex spacelike hypersurface S in H"*!
satisfying

1
I

(H)T=0>1, 1<i<n

with 95 = I' and having uniformly bounded principal curvatures
1
5§/{¢§C on Y. (35)

Moreover, S = graph(v) with v € C*®(Q) N C%(Q) and v? € C®(Q) N
CH1(Q), v|D?v|+|Dv| < C. Further, if | = 1 or [ = 2 (mean curvature and
normalized scalar curvature) or if 92 is mean convex, we have uniqueness
among convex solutions and even among all solutions (convex or not) if

s simple.

The uniqueness part of Corollary 1.1 follows from the uniqueness The-
orem 1.6 of [7] or Theorem 1.5 and a continuity and deformation argu-
ment like that used in [11]. Note that Montiel [10] proved existence for
H = o > 1 assuming 9f2) is mean convex. Our result shows that for ar-

bitrary  there is always a unique locally strictly convex solution. If
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is mean convex the solutions constructed by Montiel must agree with the

ones we construct.

An outline of the paper is as follows. Sections 2-4 contain all the im-
portant identities and formulas needed in the proof of our main techni-
cal result Theorem 5.1 which is our “global interior curvature estimate”.
This is proved in Section 5 and Theorem 1.2 follows immediately. For
the reader’s convenience and completeness we have repeated some of the
proofs which are contained in our earlier paper [7]. These preliminary
results are interesting and important in themselves and will orient the
reader to our point of view. They are also needed in Section 4 to prove
Corollary 4.1 which shows that the condition v"*! > 2a is satisfied for
0N} satisfying a uniform exterior ball condition with an a of order ¢. In
Section 6, we prove the strict starshapedness of solutions in Theorem 1.3.
In Section 7 we prove the uniqueness Theorem 1.5 making essential use
of Theorem 1.2. Finally in Section 8, we sketch the proof from [12] of the
duality stated in Theorem 1.6.

2 Formulas on hypersurfaces and some basic iden-
tities

In this section we recall some basic identities on a hypersurface that were

derived in [7] by comparing the induced hyperbolic and Euclidean metrics.

Let ¥ be a hypersurface in H"™!. We shall use ¢ and V to denote the
induced hyperbolic metric and Levi-Civita connection on X, respectively.
As ¥ is also a submanifold of R" ™!, we shall usually distinguish a geometric
quantity with respect to the Euclidean metric by adding a ‘tilde’ over the
corresponding hyperbolic quantity. For instance, g denotes the induced

metric on ¥ from R™™!, and V is its Levi-Civita connection.
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Let x be the position vector of ¥ in R"*! and set
uU=xX-e

where e is the unit vector in the positive z,11 direction in R and ¢
denotes the Euclidean inner product in R"*'. We refer u as the height
function of X.

Throughout the paper we assume ¥ is orientable and let n be a (global)
unit normal vector field to ¥ with respect to the hyperbolic metric. This
also determines a unit normal v to X with respect to the Euclidean metric

by the relation

n
v=—.
u
We denote "t =e - v.
Let (z1,...,2n) be local coordinates and
0
=, t=1,...,n.
‘ 822‘

The hyperbolic and Euclidean metrics of X are given by
9ij = (Ti:7j)s Gij = Ti - T = w’gij,
while the second fundamental forms are
hij = (Dr,15,n) = —(Dz,n, 15), W

hij =V- DT,-Tj = —Tj . DTZ.V,

where D and D denote the Levi-Civita connection of H™*! and R"!
respectively. The following relations are well known (see (15), (16)):

1~ Vn—‘rl

hij = —hij + =5 (2)

and
ki =uk; " i=1,--.n (3)
where k1, -+, Kk, and Kq,--- , R, are the hyperbolic and Euclidean prin-

cipal curvatures, respectively. The Christoffel symbols are related by the
formula 1
F?j = Ffj — a(uiékj + ujéik - gklulgij). (4)
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It follows that for v € C%()

1 - ~
Vijv = vij — Ffjvk = Vijv+ E(uivj + wjv; — §Muongig) (5)

where (and in sequel)

ov 9% ;
V; = —, Vj; = —, etc.
! 8,2/ K 8zizj ’
In particular,
~ 2U; U5 1. 5
Viu = Viju+ —2 — Egklukulgij (6)
and ) . )
= ~kl ~
Vijﬂ = fﬁviju + 39 wkgij- (7
Moreover, ) .
v ]. iad ~kl ~
vija =V~ Evijv — 29" wkvgis- (8)
In R*H,

FMupuy = [Vu? =1 - ()2 -
@iju = iLijI/n-H.
Therefore, by (3) and (7),

1 Vn+1~ 1
i == hz 1— n+12~i,
VJu w2 + uig( (V")) Gig (10)

1
We note that (8) and (10) still hold for general local frames 7, ..., 7y,.
In particular, if 7, ..., 7, are orthonormal in the hyperbolic metric, then

Gij = 5z‘j and gij = u2(5,-j.
We now consider equation (1) on . Let A be the vector space of n x n
matrices and

AF = {A={ay} € A: MA) € K,

where A(A) = (A1,...,\,) denotes the eigenvalues of A. Let F' be the
function defined by

F(A) = f(A(4)), Ae A" (11)
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and denote

. OF » 0*F
FY(A) = A), FoklAy= ——~ (A). 12
(4) = g (), FIH() = 5 =5 () (12

Since F'(A) depends only on the eigenvalues of A, if A is symmetric then
so is the matrix {F%(A)}. Moreover,

FU(A) = fidi

when A is diagonal, and

Fi(A)a; = fi(AA) X = F(A), (13)

Fi(A)apaje =Y fi(A(A)A. (14)

Equation (1) can therefore be rewritten in a local frame 7q,...,7, in
the form

F(AY) =0 (15)

where A[X] = {g*hy;}. Let F = Fii(A[X]), FUk = Pk (A[5]).

Lemma 2.1 ([7]). Let ¥ be a smooth hypersurface in H"™ satisfying

equation (1). Then in a local orthonormal frame,

L1 ot 1
N7, - - .
FUVjj— = = 4 >t (16)
and o "
o U o v 9
F”vij - = i Z fik;. (17)

Proof. The first identity follows immediately from (10), (13) and assump-
tion (9). To prove (17) we recall the identities in R™*!

") = —hi; g uy, a8)
V"t = =M (" hihyg + wVihig).
By (2), (13), (14), and §* = §;;/u® we see that
FYg" hyhy; = %Fijﬁikﬁkj
= F(hirhig — 20" by + (0"1)2645) (19)

= fik? — 20" g 4 (T2 Z fi-
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As a hypersurface in R, it follows from (3) that X satisfies

fluky + v uk, 0" =0,
or equivalently,
F{G"* (ubg; +v" i) }) = 0. (20)
Differentiating equation (20) and using g = u?6i, §°F = oi/u?, we
obtain
F9(uVhij + ughi; + (0" gu?si;) = 0. (21)
That is,

i 7, n ii Uk 1ij7
Fjvkhij—l- (V +1)kuZF = —EF]hij
= — ukFij<hij — I/n+15ij) (22)
= —’U,k(O'—I/nJrlZfi).

Finally, combining (8), (16), (18), (19), (22), and the first identity in

(9), we derive

pntl 1 |@u\2 pyntl

FijVij :u”“Fijvij; + Fijilij T8 Fijilikilkj
n+1 70, |2
v (Zfi_yn+lg)+M<U_yn+lzfi)
UynH u (23)
B (fzﬁ% _ oty + (Vn+1)2 Z fz)
u
o pntl
T
This proves (17). O

3 Height estimates and the asymptotic angle
condition
In this section let ¥ be a hypersurface in H"*! with 9% C P(e) :=

{xn+1 = €} so ¥ separates {x,+1 > €} into an inside (bounded) region

and an outside (unbounded) one. Let £ be the region in R"™ x {0} such
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that its vertical lift Q° to P(e) is bounded by 0% (and R™\ Q is connected
and unbounded). It is allowable that 2 has several connected components.
Suppose k[X] € K and f(k) = o € (0,1) with respect to the outer normal.

Let B; = Bg(a) be a ball of radius R centered at a = (a’, —oR) € R""!
where o € (0,1) and S; = 9B; NH"™!. Then k;[S1] =0 forall 1 <i <n
with respect to its outward normal. Similarly, let By = Br(b) be a ball
of radius R centered at b = (V,0R) € R"™! with Sy = 9By NH" . Then
ki[Se] = o for all 1 <14 < n with respect to its inward normal.

These so called equidistant spheres serve as useful barriers.

Lemma 3.1 ([7]).
(i) EN{apy1<ep=10

(ii) If 0¥ C By, then ¥ C By . W

(i4i) If BiN P(e) C QF, then BiNYX =1 .

() If BoNQ® =10, then BaNnX =10 .

Proof. For (i) let ¢ = mingex ¢p+1 and suppose 0 < ¢ < e. Then the
horosphere P(c) satisfies f(k) = 1 with respect to the upward normal,
lies below 3 and has an interior contact violating the maximum principle.
Thus ¢ = e. For (ii),(iii), (iv) we perform homothetic dilations from
(a’,0) and (b, 0) respectively which are hyperbolic isometries and use the
maximum principle. For (ii), expand Bj continuously until it contains
Y and then reverse the process. Since the curvatures of ¥ and S; are
calculated with respect to their outward normals and both hypersurfaces
satisfy f(k) = o, there cannot be a first contact. For (iii) and (iv) we
shrink B; and B until they are respectively inside and outside . When
we expand B; there cannot be a first contact as above. Now shrink Bs
until it lies below P(e) and so is disjoint (outside) from . Now reverse
the process and suppose there is a first interior contact. Then the outward
normal to X at this contact point is the inward normal to S3. Since the
curvatures of Sy are calculated with respect to its inner normal and it

satisfies f(k) = o, this contradicts the maximum principle. O
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Lemma 3.2 ([7]). Suppose f satisfies (3), (7) and (8). Assume that O%
satisfies a uniform interior and/or exterior ball condition and let u denote
the height function of . Then for e > 0 sufficiently small,

51_2 €2l+ 81—2 621_
VIEF P40) e, VIS0 P-0)

on 0% (2)
T2 7’2 (& ?”1

where ro and r1 are the maximal radii of exterior and interior spheres to

09, respectively. In particular, v — o on 0% as e — 0.

Proof. Assume first 7o < oco. Fix a point zg € 9 and let e; be the
outward pointing unit normal to 9 at xzg. Let By, By be balls in R"*!
with centers a; = (zg—rie1, —Ry0, ag = (xg+1r2e1, Reo) and radii Ry, R

respectively satisfying
R? =712+ (Rio+¢)% RS =r2+ (Ryo —¢)?. (3)

Then By N P(e) is an n-ball of radius 7 internally tangent to 09Q° at zo
while By N P(e) is an n-ball of radius rp externally tangent to 0Q2° at xo.
By Lemma 3.1 (iii) and (iv), B;NYX =0, i = 1,2. Hence,

u—oR u+oR
_72<Vn+1<71

t .
R2 R1 al Tg
That is,
—i<y"+1—o<iatxo (4)
RQ Rl '
From (3),
1 (1—02)r?+e2—eco V1—-02 £(1-o0)
. 2, 2 < + 2 ’
R, ri+e 1 ]
and
1 (1—0?)rs+e?2+eoc  V1—0?2 e(l+40)
R, 2 .2 < + 2
Ry r5 4 € T2 5

These estimates and (4) give (2), completing the proof of the lemma. [
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4 The asymptotic angle maximum principle and

gradient estimates

In this section we show that the upward unit normal of a solution tends
to a fixed asymptotic angle on approach to the boundary. This implies a

global gradient bound on solutions.

Theorem 4.1 ([7]). Let ¥ be a smooth strictly locally convex hypersur-
face in H™ ! satisfying equation (1). Suppose X is globally a graph:

Y ={(z,u(z)):x € Q}

where  is a domain in R” = 9H"T!. Then

. —_ yntl 1
F”Vm% > o(1 - U)M >0 (1)
U u
and so,
_ n+l _ on+l
g-r < supL on X. (2)
u ox u

Moreover, if u = € > 0 on 02 (satisfying a uniform exterior ball condi-
tion), then there exists ¢g > 0 depending only on 012, such that for all

€§€07

o— it < V1—o? +5(1+0)

U - 79 7’%

on X (3)
where 75 is the maximal radius of exterior tangent spheres to 0f2.

Proof. Set n = %ﬂﬂ By (16) and (17) we have

Vn+1

Fivm = %(Zfi_1> + " (me?—ﬁ).

On the other hand,

0, o (OCkifi)?  o?
2z o X i
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Hence,
+1

FiiVn > %(Zﬁ—l) (1- Ugfi )= U(lu_ U)(Zfi—1> > 0.

So (2) follows from the maximum principle, while (3) follows from (2)

and the approximate asymptotic angle condition,

Vv1—o02 1
< g —{—8( —;U) on 0%

which is proved in Lemma 3.2 0
Proposition 4.1 ([7]). Let ¥ be a smooth strictly locally convex graph
Y ={(z,u(z)) : z € Q}

in H" ! satisfying u > ¢ in Q, u = e on 0. Then at an interior maximum
of 4t we have 47 < maxg u. Hence for £ small compared to o,

u

> in (4)
maxg u
Proof. Let h = =%t = uw and suppose that h assumes its maximum at
v
an interior point xg. Then at xg,

Uk Uk
Oih = u;w + u !

:(5ki+ukui+uuki)%20 V1<i<n.
w

Since X is strictly locally convex, this implies that Vu = 0 at xg so the

proposition follows immediately from Theorem 4.1. O

Combining Theorem 4.1 and Proposition 4.1 gives

Corollary 4.1 ([8]). Let ¥ be a smooth strictly locally convex graph
Y ={(z,u(z)) : x € Q}

in H"*! satisfying u > € in Q, u = con 9Q. Assume that 9 satisfies a
uniform exterior ball condition. Then for ¢ sufficiently small compared to

g
g

>0 =
Y = 14+ M maxq u

()

where M = \/1T—0'2 + 6(1—&2-0)'
2 r3



266 J. Spruck

Proof. By Theorem 4.1 we have v"*! > ¢ — Mu while by Proposition 4.1

we have v+ > ﬁﬂu Hence if u < Ao we find v"! > o(1 — AM) while

: n+1 Ao . _ maxq u
if u> Ao we find v 2 ey Choosing A = 3 haxe U completes the

proof. ]

5 The global interior curvature estimate

In this section we prove an interior curvature estimate (see Theorem 5.1
below) for the largest principal curvature of locally strictly convex graphs
satisfying f(k) = 0. What is remarkable is that the bound obtained is
independent of the “cutoff ” function u® which vanishes at 9. Hence we
can let b tend to zero to prove the global estimate Theorem 1.2.

Hn+1

Let X be a smooth strictly locally convex hypersurface in satis-

fying f(k) = o with 90X C O,H"™!. For a fixed point xg € ¥ we choose
a local orthonormal frame 71, ..., 7, around x¢ such that h;;(x0) = kid;;.
The calculations below are done at x¢. For convenience we shall write
vij = Vv, hz‘jk = thij, hijkl = Vlkhij = Vlvkhij, etc.

Since H"*! has constant sectional curvature —1, by the Codazzi and

Gauss equations we have h;j; = h;i; and

hiijj = hjjii + (hiihjj — 1) (hii = hjj)
= hjji + (F&ilij — 1)(/@‘ — Rj).

(1)
Consequently for each fixed 7,

Fiihjjii = Fiih“‘jj +(1+ HL?) Z fiki — Kj Z fi — Kj Z li?f, (2)

Theorem 5.1 ([8]). Let ¥ be a smooth strictly locally convex graph in
H" satisfying f(k) = 0, 0so® C OscH" ™ and

"1 >94>0o0n X. (3)
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For x € ¥ let Kmax(x) be the largest principal curvature of ¥ at x. Then
for0<b< %,

p HFmax 8 b
max 4 ———— < —(supu)”. 4
< (sup) (@)
Proof. Let
Fmax(Z)
My = max u? —2227) )
07 k& ot g (5)
Then My > 0 is attained at an interior point xg € . Let 7,...,7, be
a local orthonormal frame around xq such that h;;(xo) = K;0;;, where
K1,...,kKn are the principal curvatures of ¥ at xg. We may assume k] =
Kmax(X0). Thus, at xq, u® V,fff_a has a local maximum and so
hi1s s v,ynJrl
11 + b*Z - : 1 = 07 (6)
hi1 uw vl —g
h114i Ui A\ u? w; Vol
iyt e (h bt 2 — T <0 (7)
hi1 U vntl — ¢ u u vt —q

Using (4), we find after differentiating the equation F'(h;;) = o twice
that

Lemma 5.1. At xq,
Fhyyis = —F9"hijihest + o(1 4 k) — m(z fi+ Z K2f). (8)

By Lemma 2.1 we immediately derive

Lemma 5.2 ([7]). Let ¥ be a smooth hypersurface in H"™' satisfying

f(k) =0. Then in a local orthonormal frame,
g 9
F”Vijy"“ = EFUVZ'Ule/n—H + 0(1 + (Vn+1)2)
_yn+1(Zfi+Zfi/€?), (9)

vy 2
Y iy ZQZfi%+JUn+1—ZfZ'.

u
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Using Lemma 5.1 and Lemma 5.2 we find from (7)

.. 1 n+1\2
0> — F”’Tshijlhrﬂ + 0’<1 + K2 — L/ﬂ)

n+l _ g
I/”+1 (Zfz+zﬁ fZ) *b’ilzfz (10)
2 2b)K1 i Ui i
b b /i?lZfl D) ﬁF‘]ZV.ﬂ/ .
Next we use an inequality due to Andrews [1] and Gerhardt [4] which
states
ikl fi—Jio fi—f
— F9HRp by > Z p Mhm >2) o hm (11)
i#£] 1>2
Recall that (see (18))
vV, = %(1/"‘"1 — Ki).
u
Then at x¢, we obtain from (6)
w; v — K,
hi; = Hl;(m —b). (12)

Inserting this into (11) we derive

2 o n+l
— PR By > 262 fizhow k= v e (g
;2 w2 (g Y (13)

Note that we may write

Zfrl-zﬁgfi: yth? Zfri-z V2 fi 200" (14)

Combining (11), (13) and (14) gives at xg

0> U(l—i—li% L @) /11) —mefz

yntl
(b~ b2 Zfl 2 yn+1 (Zf”LZK’QfZ)
+2(un%l a)< -y Zfﬁz - f+2"”n+1>

u? Hz i+l ) fi— fi a2k — ot ,
FE=2Wm D g () + 2 D i e Y

1>2
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Note that (assuming x1 > 2 and b < %) all the terms of (15) are
positive except possibly the ones in the sum involving (x; — v"*!) and

only if k; < v"t1,
Therefore define

J={i:kri— < 0, fi < 9_1f1}7
L="{i:r—v"" <0, f; >071f1},

where 6 € (0,1) is to be chosen later. Since Y u?/u? = [Vul? = 1 —
(v"*1)2 <1 and k1 f1 < o, we have

ul
Z(H _ n-l-l)f Ui S _ﬁ >_ 7 (16)
= ! w2z T 0 T Oky
Finally,
fi— fhu? li —pntl i — L)
2ﬁlzm_nu2 T +b)° + 2—26/41212 Qiynﬂ_a
i€L i€l
+1 ’iz _ VnJrl)
2(1-9 mez 3 Vn+1 —rr ) 21+ b(1 - 20) me, s ——
i€L i€l
2k1 u? n+1 n+1
zmzﬁ B = v D+
€L
1
n+1 (K' — vt )
*aun“ ;fz Ki— v +2b(1—29m§f1 T
(2 K3
60 2bk1 +1)2 +1)2
e = el Uil Zfz—;,ﬂm 2 filki—v"
zeL
(17)

In deriving (17) we have used that «; f; < o for each i and that "+ > 2a.
We now fix 0 = %2 and 0 < b < . From (16) and (17) we see that the
right hand side of (15) at xq is strictly greater than

8 8
(1 + K/l K',l - ﬁ) . (18)
Then (18) is strictly positive if for example x; > %. Therefore k1 < %
a? a?2

at xg, completing the proof of Theorem 5.1. O



270 J. Spruck

6 Strict Euclidean starshapedness for convex so-

lutions

In this section we give the proof (taken from [[8]]) of Theorem 1.4 by
direct construction in Theorem 6.1 below of a strictly starshaped locally
strictly convex solution with boundary in the horosphere {z,41 = ¢}.
Then by compactness and uniqueness, we can pass to the limit as ¢ tends
to zero. We use the continuity method by deforming from the horosphere
solution u = ¢ for ¢ = 1. Under this deformation we will show that the
property of being strictly sharshaped, i.e. X - v > 0, persists as long as a
solution exists. This property is intertwined with the demonstration that

the full linearized operator has trivial kernel.
Suppose ¥ is locally represented as the graph of a function u € C?(),
u > 0, in a domain  C R™:
Y = {(z,u(z)) e R"™: z € Q}.

oriented by the upward (Euclidean) unit normal vector field v to X:

—Du 1
VI( u,—), w = +/1+ |Dul?.

w w

The Euclidean metric and second fundamental form of > are given respec-

tively by
Uz’j
gy =y v, 1y =
According to [3], the Euclidean principal curvatures x¢[3] are the eigen-

values of the symmetric matrix A°[u] = {af; }:

1 . A
agy = —y gy, (1)
where
(VR (e} . 2
7 Y aw(l 4 w) (2)

Note that the matrix {7y} is invertible with inverse
uin
14+w

Vij = 035 +
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which is the square root of {gf;}, i.e., vikvk; = g5;- By (16) the hyperbolic

principal curvatures k[u] of ¥ are the eigenvalues of the matrix Afu] =
{aijlul}: X
Qjj [u] = E <(51] + u'yikuklvlj> . (4)

Let S be the vector space of n X n symmetric matrices and
Sy ={AecS:\NA) K},

where \(A) = (A1,..., A\,) denotes the eigenvalues of A. Define a function
F by

F(4) = JOA)), A€ S, )
We denote
PU(A) = S(A), FI() = 52 ), ()

The matrix {F¥(A)}, which is symmetric, has eigenvalues fi, ..., f,, and
therefore is positive definite for A € S, if f satisfies (6), while (7) implies
that F' is concave for A € S; (see [2]), that is

FR(A) i€ <0, V{g; eS, AeS,. (7)

We have
Fi(A)ai; =Y LAA))N;, (8)
Fi(A)agaje =Y fi(AA))A]. 9)

Problem (1)-(2) reduces to the Dirichlet problem for a fully nonlinear

second order equation which we shall write in the form
G(D*u,Du,u) =0, u>0 in QCR" (10)
with the boundary condition

u=0 on 0. (11)
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The function G in equation (10) is determined by
G(D*u, Du,u) = F(A[u))
where Alu] = {aj;[u]} is given by (4). Let
L =G"0,0, + G°0s + G,

be the linearized operator of G at u, where

oG . G . oG
_8u5t’G _aTS’G“—au‘

We shall not need the exact formula for G° but note that

Gst

Gst — EFZj,yzs,y]t

1 5
Clug = uGy =G — — Y F
st = w

and
PG &

GPTSt . — —
OupgOug — w?

Fij,kl,yis,ytj,ykp,yql

J. Spruck

(16)

where FV = FU(A[u]), etc. It follows that, under condition (6), equa-
tion (10) is elliptic for u if A[u] € S, while (7) implies that G(D?u, Du, u)

is concave with respect to D?u.

Since X -v = %, the following lemma is important.

Lemma 6.1. L(u— > xpug) = 0.

Proof. Write L = L 4+ G,. Since horizontal translation is an isometry,

L(ug) = 0. Then

E(Z Tpug) = L(Z xrpug) + Gy Z TLUL

= Z[ka(uk) + ukL(:ck) + 2Gij(5kiukj] + Gy, Z TpUL

= Zazkﬁuk + Z urGF + 2Gijuz-j = Gijuij + G*up + Guu = Lu

since GYu;; = uGy,.
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Lemma 6.2. Suppose Lo =0 in 2, ¢ = 0 on 052 and there exists w > 0
in Q satisfying Lw = 0. Then ¢ = 0.

Proof. Set h = % Then a simple computation shows that h satisfies
Lh +2G"%h; = 0in Q, h = 0 on 9Q. The lemma now follows by the
maximum principle. O

Consider for 0 < ¢ < 1, the family of Dirichlet problems
G(D*u!,Dut,ut) =o' :=toc +(1—t) inQ,
u' =¢  on 09Q, (17)

uO

E.

Theorem 6.1. Let Q be a strictly starshaped C?t® domain. Then the

Dirichlet problem
G(D*u, Du,u) = o in Q, a8)
u=c¢ on 012,
has a smooth solution.

0=¢)

For Q a C?+ strictly starshaped domain, we find (starting from u
a smooth family of solutions uf, 0 < t < 2ty by the implicit function
theorem since Gy |,0 = 0 implies £ initially has trivial kernel. By elliptic
regularity it is now well understood that if we can find uniform estimates
in C? for 0 < tg <t <1 and if £* has trivial kernel, then the set of ¢ for
which we can solve (17) is both open and closed. By Lemma 3.1, Lemma
3.2 and Theorem 1.2. ||u!||c2 is uniformly bounded independent of t, by
a constant depending only on ¢ and the exterior ball condition satisfied
by Q. Hence to solve the Dirichlet problem (17) for ¢ = 1 it remains
only to show that £! has trivial kernel. Note that for t sufficiently small,
w' = ul =Y zpul, > 0 in Q and L' = 0 by Lemma 6.1. Moreover for n
the exterior unit normal to 9Q, w! = — > zpur =+ |Vul|z-n > ¢ on
00 since 0N is strictly starshaped. Since for t sufficiently small, w’ > 0
and w?® > ¢ on 9Q, the maximum principle implies w® > 0 on 2 as long as
w! exists. Hence by Lemma 6.2, £! has trivial kernel and Theorem 6.1 is

proven. O
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7 Uniqueness for mean convex ()

In this section we give the proof (taken from [[8]]) of Theorem 1.5 .
The main step is to show there is always a solution 3o = graph(u) of the
asymptotic probem (1)-(2) in Q with G, < 0 and moreover u < v for
any other solution ¥; = graph(v). Then we show that 3o is the unique
solution. The proof we give is slightly circuitous in order to avoid delicate
issues of boundary regularity caused by the degeneracy of the problem at

the asymptotic boundary.

Proposition 7.1. Suppose that the Euclidean mean curvature Hgp > 0.
Then for any smooth solution ¥ = graph(u) of (1) over D with u =¢ >0
on 0D, we have G, < 0 in D. Consequently the linearized operator £

satisfies the maximum principle and so has trivial kernel.

Proof. Let n = %ﬂﬂ Then by (15), Gy, < 7 so we need to show 7 < 0

in D. According to Theorem 4.1,  cannot have an interior maximum.

Suppose the maximum of 7 is achieved at 0 € 9D and choose coordinates

so that the x,, direction is the interior unit normal to 0D at 0. Then at 0,
UnUnp U

—n— < 0 or equivalently “zn < 7, (1)
u

w3

7771 - uw3

On the other hand by the concavity of f(x), the hyperbolic mean curvature
H(Y) > 0. Equivalently,

1 Uil
—(0ij = ——5")uig = (2)
Restricting (2) to 0D implies (since ), taa = —un(n — 1)Hsp)

unn un
Combining (1) and (3) yields n(0) < —%2Hyp < 0. This gives supgpn < 0

son < 0in D. O

Proposition 7.2. Let f(x) satisfy (3)-(9) and also (10). Let D € C**®
be as in Proposition 7.1. Then for s € (0,1) and ¢ sufficiently small, there
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is a continuous family of solutions X! = graph(u), 0 <t < 1 of (1) over
D with u! =& > 0on dD and f(k) = ts + (1 —t) on X! such that u’
tends uniformly to € in D as t tends to 0. Moreover G, < 0 on D for each

solution u?.

Proof. Consider for 0 <t <1 the family of Dirichlet problems

G(D*u!, Dut,ut) = s(t) :=ts+ (1 —t) inQ,
u'=¢  on 09, (4)

uO

g.

For D a C?*® domain, we find (starting from u® = £) a smooth family

of solutions u!, 0 < t < 2ty by the implicit function theorem since Gy|,0 =
0. By Propositon 7.1, the linearized operator (at a solution u') satisfies
the maximum principle, i.e. G, < 0, and so has trivial kernel. Hence
the set of ¢ for which (4) is solvable is open. By elliptic regularity it
is now well understood that if we can find uniform estimates in C? for
0 < tp <t <1 then we can solve (1). In [5] we obtained such estimates
ul + |Dul| + u!|D?*ut| < C where C depends on D, s and the uniformity

of constants in (10). Hence the Proposition follows. O

Corollary 7.1. Let f(k) satisfy (3)-(9) and let D be as in Proposition
7.2. Then for any o € (0,1) there exist a solution u of the asymptotic
problem (1)-(2) in D with bounded principal curvatures and G,, < 0.

Proof. Given f(r) satisfying (3)-(9), let f¢ := (1 —0)f + OKn. Then f?
satisfies (3)-(9) and also (10). We can apply Proposition 7.2 with s = ¢
and obtain a solution of the approximate problem f? = ¢ with © = ¢ on
dD. Letting ¢ — 0 yields a solution u? of the asymptotic problem for
f? = 0. By Theorem 1.2 the principal curvatures of ¢ = graph(u?) are
uniformly bounded by a constant C' depending only on D and o. Hence as

0 — 0 we obtain by passing to a subsequence the desired solution u. [
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Proposition 7.3. Let Q be a C?**® domain with Hgq > 0. Let ¥, =
graph(v) be a solution of the asymptotic problem (1)-(2) where f(x) sat-
isfy (3)-(9). Then v > w where u is a solution of the asymptotic problem

satisfying G,, < 0 . The inequality is strict unless v = u.

Proof. By Theorem 1.2, f < (1 —6)o +C0 on %,. Let I'. be the inward
parallel hypersurface to I' = 0f) at distance € and let D, be the domain
bounded by I'. Then for ¢ sufficiently small, I'* € C?>*® and Hpe > 0.
Moreover, v > 2Ae in D, for a uniform constant A > 0 independent of ¢.
Now let s = (1 —0)o + C6 and let u' be the continuous family of solutions
(0 fixed) given in Proposition 7.2 with € replaced by Ae with 6 so small
that § <s < H'TU Then for ¢ close to 0, u! < v in D and by the maximum
principle this property must continue until ¢ = 1. As € — 0 we obtain
v >u’ in Q. Finally as § — 0 we obtain v > v in €. O

We now prove Theorem 1.5. Suppose that ¥; = graph(v) and ¥y =
graph(u) are two distinct solutions of the asymptotic problem (1)-(2) with
Gy < 01in Q. By Proposition 7.3 either v > w or v = u in ). Suppose for
contradiction that maxq(v—u) = v(zg)—u(zg) > 0. Set w' := tv+(1—t)u.
We claim that in a small neighborhood of zg, graph(w?) is locally strictly

(w)?+|z—ao?
2

convex, that is, is strictly Euclidean convex. At xg, Vu = Vv

and D?v < D?u. A simple computation shows
wtwfj —tovy; — (1 — thuuyy = t(1 —t)(v — u)(uy; —vi;) >0 at xo .

Hence at o, w'wf; +wiw’ +8;j > t(vvi; +vvj+0i5) + (1 —1) (uwij +ujuj +
dij) > 0 and the claim follows.

Note that 2G(D*w!, Dw!,w')(zo) = Lw(zo) where w(zg) = (v —
u)(xo) > 0. Evaluating at ¢t = 0 gives
d .
gG(Dzwt, Duwt, w')(z0)|t=0 = G w;j(z0) + Guw(zp) < 0

since (GY) > 0, (wi;)(wo) < 0, Vw(zg) = 0, G, < 0 and w(zg) > 0.
Hence for t > 0 small enough, o(t) := G(D*w’, Dw!,w')(z¢) < o . In
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particular there is a ¢y € (0, 1] such that

o(to) =0, p(t) < o on (0,ty) .
Using the integral form of the mean value theorem, we may write

0= p(ty) — ¢(0) = [aijwij + a’ws + c(x)w](xo) = Lw(zg) + c(zo)w(xo) ,

.. to .. to to
a"’ :/ GY | edt, a® = G?|edt, c(x) = Gulywtdt .
0 0 0
Since graph(w!) is hyperbolic locally strictly convex in a small neigh-

borhood of zg, the operator L = a¥ 8x?;xj + asa%s is elliptic in this

neighborhood. Suppose for the moment that also c¢(zg) < 0. Then
Lw(xg) = —c(xo)w(zp) > 0 and w has a strict interior maximum at zo
contradicting the maximum principle.

We show ¢(xg) < 0 to complete the proof of Theorem 1.5. According to
(15), WGyl wt (z0) = @(t) — v (mg) < o — 2T (20) < 0 on (0,tp). Hence
c(x0) = [}° Gulut (w0)dt < 0.

8  Hyperbolic-de Sitter space duality and the

asymptotic Plateau problem

In this section we sketch the proof of the duality theorem [12].

Theorem 8.1. Let L be defined by (30) and let x be defined by (31). Then
the image of S by L is the locally strictly convex graph (with respect to
the induced hyperbolic metric)

Y = {(z,u(z)) € RT 1w € C=(Q), u(x) > 0},

L Here k; > 0,7 =1,...,n are the

with principal curvatures k] = &
principal curvatures of S with respect to the induced de Sitter metric.

Moreover the inverse map L~!: ¥ — S defined by

L™ ((z,u(x))) = (2 + u(2)Vu(z),u(2) /1 + [Vu(2)?) y e
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is the dual Legendre transform and hodograph map y = Vg(z).

Lemma 8.1. The Legendre transform q(x) is given by
1
a(@) = 5 (@ +u(2)®) where u(z) = v(y)y/1- Vo) .

Moreover, /1 + |Vu(x)]? = (1 —|Vv(y)|2)_% andv(y) = u(z)\/1 + |Vu(z)|?.
Therefore y = Vq(x), (q:;(z)) = (pij(y)) ™" and the inverse map L=' of L
is given by L™ (z,u(z)) = (y,v(y))-

Proof. We calculate

p(y) + q(@) = 512 —v(®)?) + 3(=* + u(z)?)
(y* —v(y)?) + 5% — 20(¥)y - Vou(y) + 02 Vol*) + 5(v*(1 = [Vo(y)[?)
=y*—o(yy-Voly) =y -z,

[l

as required. It is then standard that y = Vq(z) and (g;;(z)) = (pi;(y)) L
Then y = Vq(z) = z4+uVu(z) and x = y—v(y)Vo(y) implies vVv = uVu
so v2|Vo|? = v?|Vu|? = v*(1 — |[Vv|?)|Vul? and so |[Vu(z)]? = %.
Therefore,

1+ |Vu(z))?P=(1 - |Vv|2)_% and v(y) = u(x)\/1+ [Vu(z)|?. O

Proof of Theorem 1.6: By Lemma 8.1, it remains only to show that the
principal curvatures of ¥ are L. The principal curvatures of S, ¥ are

respectively the eigenvalues of the matrices

Alv) = (W) (hi)(¥9),  Alu] = (v*)(hi) () ,
where

0ij — VUi — ViV

v2\/1—|Vu]2

_ 5z‘j + uui; + ujug

u?y/1+ |Vul?
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By Lemma 8.1,

. 4j B v2y/1 — |Vol|? 1 (h )_1
; ij )

hi; = = qij =
Vw14 [Vul? v2u? T uPe?
N vV ..
o _ Oy tuuy 0 + 1 [gep  g¥ (4719} = up(y17)
gz] - U2 - U2 - UQ’U27 Y - Y ’

and therefore Afu] = (A[v])~! completing the proof.
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