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The asymptotic Plateau problem for

convex hypersurfaces of constant

curvature in Hyperbolic space

Joel Spruck

Abstract

We show that for a very general class of curvature functions de-

fined in the positive cone, the problem of finding a complete strictly

locally convex hypersurface in Hn+1
satisfying f(κ) = σ ∈ (0, 1)

with a prescribed asymptotic boundary Γ at infinity has at least

one smooth solution with uniformly bounded hyperbolic principal

curvatures. Moreover if Γ is (Euclidean) starshaped, the solution is

unique and also (Euclidean) starshaped while if Γ is mean convex

the solution is unique. We also show via a strong duality theorem

that analogous results hold in De Sitter space. A novel feature of

our approach is a “global interior curvature estimate”.

1 Introduction

The asymptotic Plateau problem for complete strictly locally convex

hypersurfaces of constant Gauss curvature was initiated by Labourie [9]

in H3 and by Rosenberg-Spruck [11] in Hn+1 and subsequently extended

to more general curvature functions in [5], [6], [7], [12]. In this survey

2000 AMS Subject Classification: 60K35, 60F05, 60K37.

*Partially Supported by the NSF and Simons Foundation

http://doi.org/10.21711/231766362012/rmc4310


248 J. Spruck

paper (which is based on joint work with Bo Guan and Ling Xiao), we

will sketch the complete solution (Theorem 1.3) to the asymptotic Plateau

problem for locally strictly convex hypersurfaces of constant curvature for

essentially arbitrary “elliptic curvature functions”. A novel feature of our

recent work [8] is the derivation of a “global interior curvature bound”

(Theorem 1.2) that besides yielding optimal existence allows us to in-

fer that the convex solutions are starshaped for sharshaped asymptotic

boundary (Theorem 1.4) and unique for mean convex asymptotic bound-

ary (Theorem 1.5).

Given Γ ⊂ ∂∞Hn+1 and a smooth symmetric function f of n variables,

the asymptotic Plateau problem is to find a complete locally strictly convex

hypersurface Σ in Hn+1 satisfying

f(κ[Σ]) = σ (1)

∂Σ = Γ (2)

where κ[Σ] = (κ1, . . . , κn) denotes the induced (positive) hyperbolic prin-

cipal curvatures of Σ and σ ∈ (0, 1) is a constant.

The function f is to satisfy the standard structure conditions [2] in the

positive cone

K = K+
n :=

{
λ ∈ Rn : each component λi > 0

}
, (3)

f > 0 in K, (4)

f = 0 on ∂K, (5)

fi(λ) ≡
∂f(λ)

∂λi
> 0 in K, 1 ≤ i ≤ n, (6)

f is a concave function in K. (7)

In addition, we assume that f is normalized

f(1, . . . , 1) = 1 (8)
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and satisfies

f is homogeneous of degree one. (9)

By contrast we will drop the following more technical assumption of [5],

[6], [7], [12]:

lim
R→+∞

f(λ1, · · · , λn−1, λn +R) ≥ 1 + ε0 uniformly in Bδ0(1) (10)

for some fixed ε0 > 0 and δ0 > 0, where Bδ0(1) is the ball of radius δ0

centered at 1 = (1, . . . , 1) ∈ Rn. This technical condition is the main

assumption used in the proof of boundary estimates.

We will use the half-space model

Hn+1 = {(x, xn+1) ∈ Rn+1 : xn+1 > 0}

equipped with the hyperbolic metric

ds2 =

∑n+1
i=1 dx2i
x2n+1

. (11)

Thus ∂∞Hn+1 is naturally identified with Rn = Rn × {0} ⊂ Rn+1 and

(2) may be understood in the Euclidean sense. For convenience we say

Σ has compact asymptotic boundary if ∂Σ ⊂ ∂∞Hn+1 is compact with

respect to the Euclidean metric in Rn.

In this paper all hypersurfaces in Hn+1 we consider are assumed to be

connected and orientable. If Σ is a complete hypersurface in Hn+1 with

compact asymptotic boundary at infinity, then the normal vector field of

Σ is chosen to be the one pointing to the unique unbounded region in

Rn+1
+ \ Σ, and the (both hyperbolic and Euclidean) principal curvatures

of Σ are calculated with respect to this normal vector field.

As in our earlier work we will take Γ = ∂Ω where Ω ⊂ Rn is a smooth

domain and seek Σ as the graph of a function u(x) over Ω, i.e.

Σ = {(x, xn+1) : x ∈ Ω, xn+1 = u(x)}.
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Then the coordinate vector fields and upper unit normal are given by

Xi = ei + uien+1, n = uν = u
(−uiei + en+1)

w
,

where w =
√
1 + |∇u|2 and ν is the Euclidean upward unit normal to Σ.

The first fundamental form gij is then given by

gij = ⟨Xi, Xj⟩ =
1

u2
(δij + uiuj) =

geij
u2

. (12)

To compute the second fundamental form hij we use

Γk
ij =

1

xn+1
(−δjkδin+1 − δikδjn+1 + δijδkn+1) (13)

to obtain

∇XiXj = (
δij
xn+1

+ uij −
uiuj
xn+1

)en+1 −
ujei + uiej

xn+1
. (14)

Then

hij = ⟨∇XiXj , uν⟩ =
1

uw
(
δij
u

+ uij −
uiuj
u

+ 2
uiuj
u

)

=
1

u2w
(δij + uiuj + uuij) =

heij
u

+
νn+1

u2
geij .

(15)

The hyperbolic principal curvatures κi of Σ are the roots of the charac-

teristic equation

det(hij − κgij) = u−n det(heij −
1

u
(κ− 1

w
)geij) = 0.

Therefore,

κi = uκei + νn+1. (16)

The relations (15) and (16) are easily seen to hold for parametric hy-

persurfaces.

One important consequence of (16) is the following result of [5].

Theorem 1.1. Let Σ be a complete locally strictly convex C2 hypersur-

face in Hn+1 with compact asymptotic boundary at infinity. Then Σ is
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the (vertical) graph of a function u ∈ C2(Ω) ∩ C0(Ω), u > 0 in Ω and

u = 0 on ∂Ω, for some domain Ω ⊂ Rn:

Σ =
{
(x, u(x)) ∈ Rn+1

+ : x ∈ Ω
}

such that

{δij + uiuj + uuij} > 0 in Ω. (17)

That is, the function u2 + |x|2 is strictly (Euclidean) convex.

According to Theorem 1.1, our assumption that Σ is a graph is com-

pletely general for locally strictly convex hypersurfaces, that is, the asymp-

totic boundary Γ must be the boundary of some bounded domain Ω in Rn.

In our recent paper [8], we discovered a new phenomenon of “convexity

arising from infinity” that forces the principal curvatures of solutions to

the asymptotic problem to be uniformly bounded. This leads to substan-

tial improvements of our earlier results for the convex cone K+
n . The main

new technical idea is a global curvature estimate for locally strictly convex

solutions of (1), (2) which is obtained from interior curvature estimates.

More precisely we have

Theorem 1.2 ([8]). Let Γ = ∂Ω × {0} ⊂ Rn+1 where Ω is a bounded

smooth domain in Rn. Suppose σ ∈ (0, 1) and that f satisfies conditions

(3)- (4), (6)-(9). Let Σ = graph(u) be a smooth locally strictly convex

graph in Hn+1 satisfying f(κ) = σ, ∂∞Σ = Γ and

νn+1 ≥ 2a > 0 on Σ. (18)

For x ∈ Σ let κmax(x) be the largest principal curvature of Σ at x. Then

for 0 < b ≤ a
4 ,

max
Σ

ub
κmax

νn+1 − a
≤ 8

a
5
2

(sup
Σ

u)b. (19)

In particular,

κmax(x) ≤
8

a
5
2

. (20)



252 J. Spruck

To solve the asymptotic Plateau problem for the curvature function f ,

we apply the existence theorem of [7] to the curvature function fθ :=

θK
1
n + (1 − θ)f which satisfies conditions (3)-(9) as well as (10). We

then obtain a complete strictly locally convex solution Σθ = graph(uθ)

in Hn+1 satisfying (1)-(2) (with f replaced by fθ) with bounded princi-

pal curvatures depending on θ. Using Theorem 1.2, we find that uθ ∈
C0,1(Ω), (uθ)2 ∈ C∞(Ω) ∩ C1,1(Ω), uθ + uθ|D2uθ| + |Duθ| ≤ C where C

is independent of θ. We can now let θ tend to 0 to obtain the following

existence theorem for Γ = ∂Ω satisfying a uniform exterior ball condition.

Theorem 1.3 ([8]). Let Γ = ∂Ω × {0} ⊂ Rn+1 where Ω is a bounded

domain in Rn satisfying a uniform exterior ball condition. Suppose σ ∈
(0, 1) and that f satisfies conditions (4)-(9) in K+

n . Then there exists

a complete locally strictly convex hypersurface Σ = graph(u) in Hn+1

satisfying (1)-(2) with uniformly bounded principal curvatures

1

C
≤ κi ≤ C on Σ. (21)

Furthermore, u ∈ C0,1(Ω), u2 ∈ C∞(Ω)∩C1,1(Ω), u|D2u|+ |Du| ≤ C and√
1 + |Du|2 = 1

σ
on ∂Ω if ∂Ω ∈ C2. (22)

Note that no uniqueness of solutions is asserted. In [7] we showed

uniqueness if ∑
fi >

∑
λ2
i fi in K+

n ∩ {0 < f < 1}.

In particular, uniqueness holds for the curvature quotients f = (Hn
Hl

)
1

n−l

with l = n − 1 or l = n − 2. Of course it is well-known that if Ω is

strictly (Euclidean) starshaped about the origin, then there is uniqueness.

However, much more can be said in this case.

Theorem 1.4 ([8]). Let Ω ∈ C1 be as in Theorem 1.3 and in addition be

strictly (Euclidean) starshaped about the origin. Then the unique solution

given in Theorem 1.3 is strictly (Euclidean) starshaped about the origin,

i.e. X · ν > 0.
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We also proved uniqueness in case Ω is mean convex.

Theorem 1.5 ([8]). Assume Ω is a C2+α mean convex domain, that is,

the Euclidean mean curvature H∂Ω ≥ 0. Then the solution Σ of Theorem

1.3 is unique.

We end by describing an application of Theorem 1.3 to the existence of

constant curvature spacelike hypersurfaces in de Sitter space. There is a

natural asymptotic Plateau problem dual to (1), (2) for strictly spacelike

hypersurfaces [12] which takes place in the steady state subspace Hn+1 ⊂
dSn+1 of de Sitter space. Following Montiel [10], there is a halfspace model

for Hn+1 which can be identified with Rn+1
+ endowed with the Lorentz

metric

ds2 =
1

x2n+1

(dx2 − dx2n+1), (23)

It is important to note that the isometry from Hn+1 to the halfspace model

reverses the time orientation. The dual asymptotic Plateau problem seeks

to find a strictly spacelike hypersurface S satisfying

f(κ[S]) = σ > 1 (24)

∂S = Γ (25)

where κ[S] = (κ1, . . . , κn) denote the principal curvatures of S in the in-

duced de Sitter metric.

If S is a complete spacelike hypersurface in Hn+1 with compact asymp-

totic boundary at infinity, then the normal vector field N of S is chosen

to be the one pointing to the unique unbounded region in Rn+1
+ \ S, and

the de Sitter principal curvatures of S are calculated with respect to this

normal vector field.

Because S is strictly spacelike, we are essentially forced to take Γ =

∂V where V ⊂ Rn is a bounded domain and seek S as the graph of a

“spacelike” function v(x) over Ω, i.e.

S = {(y, yn+1) : y ∈ V, yn+1 = v(x)}, |∇v| < 1, in V . (26)
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In [12] we have computed the first and second fundamental forms of S

with respect to the induced de Sitter metric. We use

Xi = ei + vien+1, N = vν = v
viei + en+1

w
,

where w =
√
1− |∇v|2 and ν is the normal vector field of S viewed as a

Minkowski space Rn,1 graph. The first and second fundamental forms gij

and hij are then given by

gij = ⟨Xi, Xj⟩D =
1

v2
(δij − vivj) (27)

and

hij = ⟨∇XiXj , vν⟩D =
1

vw

(
δij
v

− vij +
vivj
v

− 2
vivj
v

)
=

1

v2w
(δij − vivj − vvij)

(28)

Note that from (28), S is locally strictly convex if and only if

y2 − v2 is (Euclidean) locally strictly convex . (29)

There is a well known Gauss map duality for locally strictly convex

hypersurfaces in dSn+1 For our purposes we will need a very concrete

formulation of this duality [12]. Montiel [10] showed that if we use the

upper halfspace representation for both Hn+1 and Hn+1, then the Gauss

map N corresponds to the map

L : S → Hn+1

defined by

L((y, v(y))) = (y − v(y)∇v(y), v(y)
√

1− |∇v|2), y ∈ V. (30)

We now identify the map L in terms of a hodograph map and its associated

Legendre transform. Define the map x = ∇p(y) : V ⊂ Rn → Rn by

x = ∇p(y), y ∈ V where p(y) = 1
2(y

2 − v(y)2). (31)
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Note that p is strictly convex in the Euclidean sense by (28) and hence the

map x is globally one to one. Therefore u(x) := v(y)
√

1− |∇v(y)|2 is well
defined in Ω := x(V ). The associated Legendre transform is the function

q(x) defined in Ω by p(y) + q(x) = x · y or q(x) = −p(y) + y · ∇p(y).

Theorem 1.6 ([12]). Let L be defined by (30) and let x be defined by

(31). Then the image of S by L is the locally strictly convex graph (with

respect to the induced hyperbolic metric)

Σ = {(x, u(x)) ∈ Rn+1
+ : u ∈ C∞(Ω), u(x) > 0},

with principal curvatures κ∗i = κ−1
i . Here κi > 0, i = 1, . . . , n are the

principal curvatures of S with respect to the induced de Sitter metric.

Moreover the inverse map L−1 : Σ → S defined by

L−1((x, u(x))) = (x+ u(x)∇u(x), u(x)
√
1 + |∇u(x)|2) y ∈ Ω

is the dual Legendre transform and hodograph map y = ∇q(x), q(x) =
1
2(x

2 + u(x)2).

Note that when Σ = graph(u) over Ω is a strictly locally convex solution

of the asymptotic Plateau problem (1)-(2) in Hn+1, then its Gauss image

S = graph(v) is a locally strictly convex spacelike graph also defined over

Ω which solves the asymptotic Plateau problem f∗(κ) = 1
σ > 1. We now

define f∗.

Definition 1.1. Given a curvature function f(κ) in the positve cone K+
n ,

define the dual curvature function f∗(κ) by

f∗(κ) := (f(
1

κ1
, . . . ,

1

κn
))−1 κ ∈ K+

n (32)

Note that f∗ may in fact be naturally defined in a cone K ⊇ K+
n . For

example if f(κ) =
(
Hn
Hl

) 1
n−l , n > l ≥ 0 defined in K+

n , then

f∗(κ) =
(
Hn−l

) 1
n−l

is in fact defined in the standard Garding cone K = Γn−l. Here Hk is the

normalized kth elementary symmetric function.



256 J. Spruck

Using the duality Theorem 1.6, we can transplant the existence Theorem

1.3 to Hn+1.

Theorem 1.7 ([8]). Let Γ = ∂Ω × {0} ⊂ Rn+1 where Ω is a bounded

domain in Rn satisfying a uniform exterior ball condition. Suppose σ > 1

and that f satisfies conditions (4)-(9) in K+
n . Then there exists a com-

plete locally strictly convex spacelike graph S = graph(v) in Hn+1 satis-

fying (24)-(25) for the curvature function f∗(κ) with uniformly bounded

principal curvatures
1

C
≤ κi ≤ C on S. (33)

Furthermore, v ∈ C0,1(Ω), v2 ∈ C∞(Ω)∩C1,1(Ω), v|D2v|+ |Dv| ≤ C and√
1− |Dv|2 = 1

σ
on ∂Ω if ∂Ω ∈ C2. (34)

Corollary 1.1 ([8]). Let Γ = ∂Ω×{0} ⊂ ∂∞Hn+1 where Ω is a bounded

domain in Rn satisfying a uniform exterior ball condition. Then there

exists a complete locally strictly convex spacelike hypersurface S in Hn+1

satisfying

(Hl)
1
l = σ > 1, 1 ≤ l ≤ n

with ∂S = Γ and having uniformly bounded principal curvatures

1

C
≤ κi ≤ C on Σ. (35)

Moreover, S = graph(v) with v ∈ C∞(Ω) ∩ C0,1(Ω̄) and v2 ∈ C∞(Ω) ∩
C1,1(Ω), v|D2v|+|Dv| ≤ C. Further, if l = 1 or l = 2 (mean curvature and

normalized scalar curvature) or if ∂Ω is mean convex, we have uniqueness

among convex solutions and even among all solutions (convex or not) if Ω

is simple.

The uniqueness part of Corollary 1.1 follows from the uniqueness The-

orem 1.6 of [7] or Theorem 1.5 and a continuity and deformation argu-

ment like that used in [11]. Note that Montiel [10] proved existence for

H = σ > 1 assuming ∂Ω is mean convex. Our result shows that for ar-

bitrary Ω there is always a unique locally strictly convex solution. If Ω
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is mean convex the solutions constructed by Montiel must agree with the

ones we construct.

An outline of the paper is as follows. Sections 2-4 contain all the im-

portant identities and formulas needed in the proof of our main techni-

cal result Theorem 5.1 which is our “global interior curvature estimate”.

This is proved in Section 5 and Theorem 1.2 follows immediately. For

the reader’s convenience and completeness we have repeated some of the

proofs which are contained in our earlier paper [7]. These preliminary

results are interesting and important in themselves and will orient the

reader to our point of view. They are also needed in Section 4 to prove

Corollary 4.1 which shows that the condition νn+1 ≥ 2a is satisfied for

∂Ω satisfying a uniform exterior ball condition with an a of order σ. In

Section 6, we prove the strict starshapedness of solutions in Theorem 1.3.

In Section 7 we prove the uniqueness Theorem 1.5 making essential use

of Theorem 1.2. Finally in Section 8, we sketch the proof from [12] of the

duality stated in Theorem 1.6.

2 Formulas on hypersurfaces and some basic iden-

tities

In this section we recall some basic identities on a hypersurface that were

derived in [7] by comparing the induced hyperbolic and Euclidean metrics.

Let Σ be a hypersurface in Hn+1. We shall use g and ∇ to denote the

induced hyperbolic metric and Levi-Civita connection on Σ, respectively.

As Σ is also a submanifold of Rn+1, we shall usually distinguish a geometric

quantity with respect to the Euclidean metric by adding a ‘tilde’ over the

corresponding hyperbolic quantity. For instance, g̃ denotes the induced

metric on Σ from Rn+1, and ∇̃ is its Levi-Civita connection.
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Let x be the position vector of Σ in Rn+1 and set

u = x · e

where e is the unit vector in the positive xn+1 direction in Rn+1, and ‘·’
denotes the Euclidean inner product in Rn+1. We refer u as the height

function of Σ.

Throughout the paper we assume Σ is orientable and let n be a (global)

unit normal vector field to Σ with respect to the hyperbolic metric. This

also determines a unit normal ν to Σ with respect to the Euclidean metric

by the relation

ν =
n

u
.

We denote νn+1 = e · ν.
Let (z1, . . . , zn) be local coordinates and

τi =
∂

∂zi
, i = 1, . . . , n.

The hyperbolic and Euclidean metrics of Σ are given by

gij = ⟨τi, τj⟩, g̃ij = τi · τj = u2gij ,

while the second fundamental forms are

hij = ⟨Dτiτj ,n⟩ = −⟨Dτin, τj⟩,

h̃ij = ν · D̃τiτj = −τj · D̃τiν,
(1)

where D and D̃ denote the Levi-Civita connection of Hn+1 and Rn+1,

respectively. The following relations are well known (see (15), (16)):

hij =
1

u
h̃ij +

νn+1

u2
g̃ij (2)

and

κi = uκ̃i + νn+1, i = 1, · · · , n (3)

where κ1, · · · , κn and κ̃1, · · · , κ̃n are the hyperbolic and Euclidean prin-

cipal curvatures, respectively. The Christoffel symbols are related by the

formula

Γk
ij = Γ̃k

ij −
1

u
(uiδkj + ujδik − g̃klulg̃ij). (4)
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It follows that for v ∈ C2(Σ)

∇ijv = vij − Γk
ijvk = ∇̃ijv +

1

u
(uivj + ujvi − g̃klulvkg̃ij) (5)

where (and in sequel)

vi =
∂v

∂zi
, vij =

∂2v

∂zizj
, etc.

In particular,

∇iju = ∇̃iju+
2uiuj
u

− 1

u
g̃klukulg̃ij (6)

and

∇ij
1

u
= − 1

u2
∇̃iju+

1

u3
g̃klukulg̃ij . (7)

Moreover,

∇ij
v

u
= v∇ij

1

u
+

1

u
∇̃ijv −

1

u2
g̃klukvlg̃ij . (8)

In Rn+1,

g̃klukul = |∇̃u|2 = 1− (νn+1)2

∇̃iju = h̃ijν
n+1.

(9)

Therefore, by (3) and (7),

∇ij
1

u
= −νn+1

u2
h̃ij +

1

u3
(1− (νn+1)2)g̃ij

=
1

u
(gij − νn+1hij).

(10)

We note that (8) and (10) still hold for general local frames τ1, . . . , τn.

In particular, if τ1, . . . , τn are orthonormal in the hyperbolic metric, then

gij = δij and g̃ij = u2δij .

We now consider equation (1) on Σ. Let A be the vector space of n×n

matrices and

A+ = {A = {aij} ∈ A : λ(A) ∈ K+
n },

where λ(A) = (λ1, . . . , λn) denotes the eigenvalues of A. Let F be the

function defined by

F (A) = f(λ(A)), A ∈ A+ (11)
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and denote

F ij(A) =
∂F

∂aij
(A), F ij,kl(A) =

∂2F

∂aij∂akl
(A). (12)

Since F (A) depends only on the eigenvalues of A, if A is symmetric then

so is the matrix {F ij(A)}. Moreover,

F ij(A) = fiδij

when A is diagonal, and

F ij(A)aij =
∑

fi(λ(A))λi = F (A), (13)

F ij(A)aikajk =
∑

fi(λ(A))λ
2
i . (14)

Equation (1) can therefore be rewritten in a local frame τ1, . . . , τn in

the form

F (A[Σ]) = σ (15)

where A[Σ] = {gikhkj}. Let F ij = F ij(A[Σ]), F ij,kl = F ij,kl(A[Σ]).

Lemma 2.1 ([7]). Let Σ be a smooth hypersurface in Hn+1 satisfying

equation (1). Then in a local orthonormal frame,

F ij∇ij
1

u
= −σνn+1

u
+

1

u

∑
fi. (16)

and

F ij∇ij
νn+1

u
=

σ

u
− νn+1

u

∑
fiκ

2
i . (17)

Proof. The first identity follows immediately from (10), (13) and assump-

tion (9). To prove (17) we recall the identities in Rn+1

(νn+1)i = −h̃ij g̃
jkuk,

∇̃ijν
n+1 = −g̃kl(νn+1h̃ilh̃kj + ul∇̃kh̃ij).

(18)

By (2), (13), (14), and g̃ik = δjk/u
2 we see that

F ij g̃klh̃ilh̃kj =
1

u2
F ij h̃ikh̃kj

=F ij(hikhkj − 2νn+1hij + (νn+1)2δij)

= fiκ
2
i − 2νn+1σ + (νn+1)2

∑
fi.

(19)
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As a hypersurface in Rn+1, it follows from (3) that Σ satisfies

f(uκ̃1 + νn+1, . . . , uκ̃n + νn+1) = σ,

or equivalently,

F ({g̃ik(uh̃kj + νn+1g̃kj)}) = σ. (20)

Differentiating equation (20) and using g̃ik = u2δik, g̃ik = δik/u
2, we

obtain

F ij(u∇̃kh̃ij + ukh̃ij + (νn+1)ku
2δij) = 0. (21)

That is,

F ij∇̃kh̃ij+(νn+1)ku
∑

F ii = −uk
u
F ij h̃ij

= − ukF
ij(hij − νn+1δij)

= − uk

(
σ − νn+1

∑
fi

)
.

(22)

Finally, combining (8), (16), (18), (19), (22), and the first identity in

(9), we derive

F ij∇ij
νn+1

u
= νn+1F ij∇ij

1

u
+

|∇̃u|2

u
F ij h̃ij −

νn+1

u3
F ij h̃ikh̃kj

=
νn+1

u

(∑
fi − νn+1σ

)
+

|∇̃u|2

u

(
σ − νn+1

∑
fi

)
− νn+1

u

(
fiκ

2
i − 2νn+1σ + (νn+1)2

∑
fi

)
=

σ

u
− νn+1

u

∑
fiκ

2
i .

(23)

This proves (17).

3 Height estimates and the asymptotic angle

condition

In this section let Σ be a hypersurface in Hn+1 with ∂Σ ⊂ P (ε) :=

{xn+1 = ε} so Σ separates {xn+1 ≥ ε} into an inside (bounded) region

and an outside (unbounded) one. Let Ω be the region in Rn × {0} such
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that its vertical lift Ωε to P (ε) is bounded by ∂Σ (and Rn \Ω is connected

and unbounded). It is allowable that Ω has several connected components.

Suppose κ[Σ] ∈ K and f(κ) = σ ∈ (0, 1) with respect to the outer normal.

Let B1 = BR(a) be a ball of radius R centered at a = (a′,−σR) ∈ Rn+1

where σ ∈ (0, 1) and S1 = ∂B1 ∩Hn+1. Then κi[S1] = σ for all 1 ≤ i ≤ n

with respect to its outward normal. Similarly, let B2 = BR(b) be a ball

of radius R centered at b = (b′, σR) ∈ Rn+1 with S2 = ∂B2 ∩Hn+1. Then

κi[S2] = σ for all 1 ≤ i ≤ n with respect to its inward normal.

These so called equidistant spheres serve as useful barriers.

Lemma 3.1 ([7]).

(i) Σ ∩ {xn+1 < ε} = ∅

(ii) If ∂Σ ⊂ B1, then Σ ⊂ B1 .

(iii) If B1 ∩ P (ε) ⊂ Ωε, then B1 ∩ Σ = ∅ .

(iv) If B2 ∩ Ωε = ∅, then B2 ∩ Σ = ∅ .

(1)

Proof. For (i) let c = minx∈Σ xn+1 and suppose 0 < c < ε. Then the

horosphere P (c) satisfies f(κ) = 1 with respect to the upward normal,

lies below Σ and has an interior contact violating the maximum principle.

Thus c = ε. For (ii),(iii), (iv) we perform homothetic dilations from

(a′, 0) and (b′, 0) respectively which are hyperbolic isometries and use the

maximum principle. For (ii), expand B1 continuously until it contains

Σ and then reverse the process. Since the curvatures of Σ and S1 are

calculated with respect to their outward normals and both hypersurfaces

satisfy f(κ) = σ, there cannot be a first contact. For (iii) and (iv) we

shrink B1 and B2 until they are respectively inside and outside Σ. When

we expand B1 there cannot be a first contact as above. Now shrink B2

until it lies below P (ε) and so is disjoint (outside) from Σ. Now reverse

the process and suppose there is a first interior contact. Then the outward

normal to Σ at this contact point is the inward normal to S2. Since the

curvatures of S2 are calculated with respect to its inner normal and it

satisfies f(κ) = σ, this contradicts the maximum principle.



The asymptotic Plateau problem 263

Lemma 3.2 ([7]). Suppose f satisfies (3), (7) and (8). Assume that ∂Σ

satisfies a uniform interior and/or exterior ball condition and let u denote

the height function of Σ. Then for ε > 0 sufficiently small,

− ε
√
1− σ2

r2
− ε2(1 + σ)

r22
< νn+1−σ <

ε
√
1− σ2

r1
+
ε2(1− σ)

r21
on ∂Σ (2)

where r2 and r1 are the maximal radii of exterior and interior spheres to

∂Ω, respectively. In particular, νn+1 → σ on ∂Σ as ε → 0.

Proof. Assume first r2 < ∞. Fix a point x0 ∈ ∂Ω and let e1 be the

outward pointing unit normal to ∂Ω at x0. Let B1, B2 be balls in Rn+1

with centers a1 = (x0−r1e1,−R1σ, a2 = (x0+r2e1, R2σ) and radii R1, R2

respectively satisfying

R2
1 = r21 + (R1σ + ε)2, R2

2 = r22 + (R2σ − ε)2 . (3)

Then B1 ∩ P (ε) is an n-ball of radius r1 internally tangent to ∂Ωε at x0

while B2 ∩ P (ε) is an n-ball of radius r2 externally tangent to ∂Ωε at x0.

By Lemma 3.1 (iii) and (iv), Bi ∩ Σ = ∅, i = 1, 2. Hence,

−u− σR2

R2
< νn+1 <

u+ σR1

R1
at x0 .

That is,

− ε

R2
< νn+1 − σ <

ε

R1
at x0 . (4)

From (3),

1

R1
=

√
(1− σ2)r21 + ε2 − εσ

r21 + ε2
<

√
1− σ2

r1
+

ε(1− σ)

r21
,

and
1

R2
=

√
(1− σ2)r22 + ε2 + εσ

r22 + ε2
<

√
1− σ2

r2
+

ε(1 + σ)

r22
,

These estimates and (4) give (2), completing the proof of the lemma.
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4 The asymptotic angle maximum principle and

gradient estimates

In this section we show that the upward unit normal of a solution tends

to a fixed asymptotic angle on approach to the boundary. This implies a

global gradient bound on solutions.

Theorem 4.1 ([7]). Let Σ be a smooth strictly locally convex hypersur-

face in Hn+1 satisfying equation (1). Suppose Σ is globally a graph:

Σ = {(x, u(x)) : x ∈ Ω}

where Ω is a domain in Rn ≡ ∂Hn+1. Then

F ij∇ij
σ − νn+1

u
≥ σ(1− σ)

(
∑

fi − 1)

u
≥ 0 (1)

and so,
σ − νn+1

u
≤ sup

∂Σ

σ − νn+1

u
on Σ. (2)

Moreover, if u = ϵ > 0 on ∂Ω (satisfying a uniform exterior ball condi-

tion), then there exists ϵ0 > 0 depending only on ∂Ω, such that for all

ϵ ≤ ϵ0,
σ − νn+1

u
≤

√
1− σ2

r2
+

ε(1 + σ)

r22
on Σ (3)

where r2 is the maximal radius of exterior tangent spheres to ∂Ω.

Proof. Set η = σ−νn+1

u . By (16) and (17) we have

F ij∇ijη =
σ

u

(∑
fi − 1

)
+

νn+1

u

(∑
fiκ

2
i − σ2

)
.

On the other hand,∑
κ2i fi ≥

(
∑

κifi)
2∑

fi
=

σ2∑
fi
.
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Hence,

F ij∇ijη ≥ σ

u

(∑
fi − 1

)(
1− σνn+1∑

fi

)
≥ σ(1− σ)

u

(∑
fi − 1

)
≥ 0.

So (2) follows from the maximum principle, while (3) follows from (2)

and the approximate asymptotic angle condition,

η ≤
√
1− σ2

r2
+

ε(1 + σ)

r22
on ∂Σ

which is proved in Lemma 3.2

Proposition 4.1 ([7]). Let Σ be a smooth strictly locally convex graph

Σ = {(x, u(x)) : x ∈ Ω}

in Hn+1 satisfying u ≥ ε in Ω, u = ε on ∂Ω. Then at an interior maximum

of u
νn+1 we have u

νn+1 ≤ maxΩ u. Hence for ε small compared to σ,

νn+1 ≥ u

maxΩ u
in Ω (4)

Proof. Let h = u
νn+1 = uw and suppose that h assumes its maximum at

an interior point x0. Then at x0,

∂ih = uiw + u
ukuki
w

= (δki + ukui + uuki)
uk
w

= 0 ∀ 1 ≤ i ≤ n.

Since Σ is strictly locally convex, this implies that ∇u = 0 at x0 so the

proposition follows immediately from Theorem 4.1.

Combining Theorem 4.1 and Proposition 4.1 gives

Corollary 4.1 ([8]). Let Σ be a smooth strictly locally convex graph

Σ = {(x, u(x)) : x ∈ Ω}

in Hn+1 satisfying u ≥ ε in Ω, u = ε on ∂Ω. Assume that ∂Ω satisfies a

uniform exterior ball condition. Then for ε sufficiently small compared to

σ

νn+1 ≥ 2a :=
σ

1 +M maxΩ u
(5)

where M =
√
1−σ2

r2
+ ε(1+σ)

r22
.
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Proof. By Theorem 4.1 we have νn+1 ≥ σ−Mu while by Proposition 4.1

we have νn+1 ≥ u
maxΩ u . Hence if u ≤ λσ we find νn+1 ≥ σ(1− λM) while

if u ≥ λσ we find νn+1 ≥ λσ
maxΩ u . Choosing λ = maxΩ u

1+M maxΩ u completes the

proof.

5 The global interior curvature estimate

In this section we prove an interior curvature estimate (see Theorem 5.1

below) for the largest principal curvature of locally strictly convex graphs

satisfying f(κ) = σ. What is remarkable is that the bound obtained is

independent of the “cutoff ” function ub which vanishes at ∂Ω. Hence we

can let b tend to zero to prove the global estimate Theorem 1.2.

Let Σ be a smooth strictly locally convex hypersurface in Hn+1 satis-

fying f(κ) = σ with ∂Σ ⊂ ∂∞Hn+1. For a fixed point x0 ∈ Σ we choose

a local orthonormal frame τ1, . . . , τn around x0 such that hij(x0) = κiδij .

The calculations below are done at x0. For convenience we shall write

vij = ∇ijv, hijk = ∇khij , hijkl = ∇lkhij = ∇l∇khij , etc.

Since Hn+1 has constant sectional curvature −1, by the Codazzi and

Gauss equations we have hijk = hikj and

hiijj =hjjii + (hiihjj − 1)(hii − hjj)

=hjjii + (κiκj − 1)(κi − κj).
(1)

Consequently for each fixed j,

F iihjjii = F iihiijj + (1 + κ2j )
∑

fiκi − κj
∑

fi − κj
∑

κ2i fi. (2)

Theorem 5.1 ([8]). Let Σ be a smooth strictly locally convex graph in

Hn+1 satisfying f(κ) = σ, ∂∞Σ ⊂ ∂∞Hn+1 and

νn+1 ≥ 2a > 0 on Σ. (3)
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For x ∈ Σ let κmax(x) be the largest principal curvature of Σ at x. Then

for 0 < b ≤ a
4 ,

max
Σ

ub
κmax

νn+1 − a
≤ 8

a
5
2

(sup
Σ

u)b. (4)

Proof. Let

M0 = max
x∈Σ

ub
κmax(x)

νn+1 − a
. (5)

Then M0 > 0 is attained at an interior point x0 ∈ Σ. Let τ1, . . . , τn be

a local orthonormal frame around x0 such that hij(x0) = κiδij , where

κ1, . . . , κn are the principal curvatures of Σ at x0. We may assume κ1 =

κmax(x0). Thus, at x0, u
b h11
νn+1−a

has a local maximum and so

h11i
h11

+ b
ui
u

− ∇iν
n+1

νn+1 − a
= 0, (6)

h11ii
h11

+ b
uii
u

− ∇iiν
n+1

νn+1 − a
− (b+ b2)

u2i
u2

+ 2b
ui
u

∇iν
n+1

νn+1 − a
≤ 0. (7)

Using (4), we find after differentiating the equation F (hij) = σ twice

that

Lemma 5.1. At x0,

F iih11ii = −F ij,rshij1hrs1 + σ(1 + κ21)− κ1(
∑

fi +
∑

κ2i fi). (8)

By Lemma 2.1 we immediately derive

Lemma 5.2 ([7]). Let Σ be a smooth hypersurface in Hn+1 satisfying

f(κ) = σ. Then in a local orthonormal frame,

F ij∇ijν
n+1 =

2

u
F ij∇iu∇jν

n+1 + σ(1 + (νn+1)2)

− νn+1
(∑

fi +
∑

fiκ
2
i

)
,

F ij∇iju

u
= 2

∑
fi
u2i
u2

+ σνn+1 −
∑

fi .

(9)
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Using Lemma 5.1 and Lemma 5.2 we find from (7)

0 ≥ − F ij,rshij1hrs1 + σ
(
1 + κ21 −

1 + (νn+1)2

νn+1 − a
κ1

)
+

aκ1
νn+1 − a

(∑
fi +

∑
κ2i fi

)
− bκ1

∑
fi

+ (b− b2)κ1
∑

fi
u2i
u2

− (2− 2b)κ1
νn+1 − a

F ij ui
u
∇jν

n+1.

(10)

Next we use an inequality due to Andrews [1] and Gerhardt [4] which

states

− F ij,klhij1hkl,1 ≥
∑
i ̸=j

fi − fj
κj − κi

h2ij1 ≥ 2
∑
i≥2

fi − f1
κ1 − κi

h2i11. (11)

Recall that (see (18))

∇iν
n+1 =

ui
u
(νn+1 − κi).

Then at x0, we obtain from (6)

h11i = κ1
ui
u
(
νn+1 − κi
νn+1 − a

− b). (12)

Inserting this into (11) we derive

− F ij,klhij1hkl,1 ≥ 2κ1
2
∑
i≥2

fi − f1
κ1 − κi

u2i
u2

(
κi − νn+1

νn+1 − a
+ b)2. (13)

Note that we may write∑
fi+

∑
κ2i fi = (1−(νn+1)2)

∑
fi+

∑
(κi−νn+1)2fi+2σνn+1. (14)

Combining (11), (13) and (14) gives at x0

0 ≥ σ
(
1 + κ21 −

1 + (νn+1)2

νn+1 − a
κ1

)
− bκ1

∑
fi

+ (b− b2)
∑

fi
u2i
u2

+
aκ1

2(νn+1 − a)

(∑
fi +

∑
κ2i fi

)
+

aκ1
2(νn+1 − a)

(
(1− (νn+1)2)

∑
fi +

∑
(κi − νn+1)2fi + 2σνn+1

)
+ (2− 2b)κ1

∑
fi
u2i
u2

(
κi − νn+1

νn+1 − a
) + 2κ1

2
∑
i≥2

fi − f1
κ1 − κi

u2i
u2

(
κi − νn+1

νn+1 − a
+ b)2.

(15)
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Note that (assuming κ1 ≥ 2
a and b ≤ a

4 ) all the terms of (15) are

positive except possibly the ones in the sum involving (κi − νn+1) and

only if κi < νn+1.

Therefore define

J = {i : κi − νn+1 < 0, fi < θ−1f1},

L = {i : κi − νn+1 < 0, fi ≥ θ−1f1},

where θ ∈ (0, 1) is to be chosen later. Since
∑

u2i /u
2 = |∇̃u|2 = 1 −

(νn+1)2 ≤ 1 and κ1f1 ≤ σ, we have∑
i∈J

(κi − νn+1)fi
u2i
u2

≥ −f1
θ

≥ − σ

θκ1
. (16)

Finally,

2κ21
∑
i∈L

fi − f1
κ1 − κi

u2i
u2

(κi − νn+1

νn+1 − a
+ b

)2
+ (2− 2b)κ1

∑
i∈L

fi
u2i
u2

(κi − νn+1)

νn+1 − a

≥ 2(1− θ)κ1
∑
i∈L

fi
u2i
u2

(
κi − νn+1

νn+1 − a
)2 + 2(1 + b(1− 2θ))κ1

∑
i∈L

fi
u2i
u2

(κi − νn+1)

νn+1 − a

≥ 2κ1
(νn+1 − a)2

∑
i∈L

fi
u2i
u2

(κ2i − (a+ νn+1)κi + aνn+1)

− 2θ

a

κ1
νn+1 − a

∑
i∈L

fi(κi − νn+1)2 + 2b(1− 2θ)κ1
∑
i∈L

fi
u2i
u2

(κi − νn+1)

νn+1 − a

≥ −6σ

a
κ1 −

2bκ1
νn+1 − a

(1− (νn+1)2)
∑

fi −
2θ

a

κ1
νn+1 − a

∑
i∈L

fi(κi − νn+1)2.

(17)

In deriving (17) we have used that κifi ≤ σ for each i and that νn+1 ≥ 2a.

We now fix θ = a2

4 and 0 < b ≤ a
4 . From (16) and (17) we see that the

right hand side of (15) at x0 is strictly greater than

σ(1 + κ21 −
8

a
κ1 −

8

a3
) . (18)

Then (18) is strictly positive if for example κ1 ≥ 8

a
3
2
. Therefore κ1 ≤ 8

a
3
2

at x0, completing the proof of Theorem 5.1.
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6 Strict Euclidean starshapedness for convex so-

lutions

In this section we give the proof (taken from [[8]]) of Theorem 1.4 by

direct construction in Theorem 6.1 below of a strictly starshaped locally

strictly convex solution with boundary in the horosphere {xn+1 = ε}.
Then by compactness and uniqueness, we can pass to the limit as ε tends

to zero. We use the continuity method by deforming from the horosphere

solution u ≡ ε for σ = 1. Under this deformation we will show that the

property of being strictly sharshaped, i.e. X · ν > 0, persists as long as a

solution exists. This property is intertwined with the demonstration that

the full linearized operator has trivial kernel.

Suppose Σ is locally represented as the graph of a function u ∈ C2(Ω),

u > 0, in a domain Ω ⊂ Rn:

Σ = {(x, u(x)) ∈ Rn+1 : x ∈ Ω}.

oriented by the upward (Euclidean) unit normal vector field ν to Σ:

ν =
(−Du

w
,
1

w

)
, w =

√
1 + |Du|2.

The Euclidean metric and second fundamental form of Σ are given respec-

tively by

geij = δij + uiuj , heij =
uij
w

.

According to [3], the Euclidean principal curvatures κe[Σ] are the eigen-

values of the symmetric matrix Ae[u] = {aeij}:

aeij :=
1

w
γikuklγ

lj , (1)

where

γij = δij −
uiuj

w(1 + w)
. (2)

Note that the matrix {γij} is invertible with inverse

γij = δij +
uiuj
1 + w

(3)
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which is the square root of {geij}, i.e., γikγkj = geij . By (16) the hyperbolic

principal curvatures κ[u] of Σ are the eigenvalues of the matrix A[u] =

{aij [u]}:
aij [u] :=

1

w

(
δij + uγikuklγ

lj
)
. (4)

Let S be the vector space of n× n symmetric matrices and

S+ = {A ∈ S : λ(A) ∈ K+
n },

where λ(A) = (λ1, . . . , λn) denotes the eigenvalues of A. Define a function

F by

F (A) = f(λ(A)), A ∈ S+. (5)

We denote

F ij(A) =
∂F

∂aij
(A), F ij,kl(A) =

∂2F

∂aij∂akl
(A). (6)

The matrix {F ij(A)}, which is symmetric, has eigenvalues f1, . . . , fn, and

therefore is positive definite for A ∈ S+ if f satisfies (6), while (7) implies

that F is concave for A ∈ S+ (see [2]), that is

F ij,kl(A)ξijξkl ≤ 0, ∀ {ξij} ∈ S, A ∈ S+. (7)

We have

F ij(A)aij =
∑

fi(λ(A))λi, (8)

F ij(A)aikajk =
∑

fi(λ(A))λ2
i . (9)

Problem (1)-(2) reduces to the Dirichlet problem for a fully nonlinear

second order equation which we shall write in the form

G(D2u,Du, u) = σ, u > 0 in Ω ⊂ Rn (10)

with the boundary condition

u = 0 on ∂Ω. (11)
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The function G in equation (10) is determined by

G(D2u,Du, u) = F (A[u]) (12)

where A[u] = {aij [u]} is given by (4). Let

L = Gst∂s∂t +Gs∂s +Gu (13)

be the linearized operator of G at u, where

Gst =
∂G

∂ust
, Gs =

∂G

∂us
, Gu =

∂G

∂u
. (14)

We shall not need the exact formula for Gs but note that

Gst =
u

w
F ijγisγjt

Gstust = uGu = G− 1

w

∑
F ii

(15)

and

Gpq,st :=
∂2G

∂upq∂ust
=

u2

w2
F ij,klγisγtjγkpγql (16)

where F ij = F ij(A[u]), etc. It follows that, under condition (6), equa-

tion (10) is elliptic for u if A[u] ∈ S+, while (7) implies that G(D2u,Du, u)

is concave with respect to D2u.

Since X · ν = u−
∑

xkuk

w , the following lemma is important.

Lemma 6.1. L(u−
∑

xkuk) = 0.

Proof. Write L = L + Gu. Since horizontal translation is an isometry,

L(uk) = 0. Then

L(
∑

xkuk) = L(
∑

xkuk) +Gu

∑
xkuk

=
∑

[xkL(uk) + ukL(xk) + 2Gijδkiukj ] +Gu

∑
xkuk

=
∑

xkLuk +
∑

ukG
k + 2Gijuij = Gijuij +Gkuk +Guu = Lu ,

since Gijuij = uGu.
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Lemma 6.2. Suppose Lϕ = 0 in Ω, ϕ = 0 on ∂Ω and there exists w > 0

in Ω satisfying Lw = 0. Then ϕ ≡ 0.

Proof. Set h = ϕ
w . Then a simple computation shows that h satisfies

Lh + 2Gij wi
w hj = 0 in Ω, h = 0 on ∂Ω. The lemma now follows by the

maximum principle.

Consider for 0 ≤ t ≤ 1, the family of Dirichlet problems

G(D2ut, Dut, ut) = σt := tσ + (1− t) in Ω,

ut = ε on ∂Ω,

u0 ≡ ε.

(17)

Theorem 6.1. Let Ω be a strictly starshaped C2+α domain. Then the

Dirichlet problem

G(D2u,Du, u) = σ in Ω,

u = ε on ∂Ω,
(18)

has a smooth solution.

For Ω a C2+α strictly starshaped domain, we find (starting from u0 ≡ ε)

a smooth family of solutions ut, 0 ≤ t ≤ 2t0 by the implicit function

theorem since Gu|u0 ≡ 0 implies L0 initially has trivial kernel. By elliptic

regularity it is now well understood that if we can find uniform estimates

in C2 for 0 < t0 ≤ t ≤ 1 and if Lt has trivial kernel, then the set of t for

which we can solve (17) is both open and closed. By Lemma 3.1, Lemma

3.2 and Theorem 1.2. ||ut||C2 is uniformly bounded independent of t, by

a constant depending only on σ and the exterior ball condition satisfied

by Ω. Hence to solve the Dirichlet problem (17) for t = 1 it remains

only to show that Lt has trivial kernel. Note that for t sufficiently small,

wt := ut −
∑

xku
t
k > 0 in Ω and Ltwt = 0 by Lemma 6.1. Moreover for n

the exterior unit normal to ∂Ω, wt = ε−
∑

xkuk = ε+ |∇ut|x · n > ε on

∂Ω since ∂Ω is strictly starshaped. Since for t sufficiently small, wt > 0

and wt > ε on ∂Ω, the maximum principle implies wt > 0 on Ω as long as

wt exists. Hence by Lemma 6.2, Lt has trivial kernel and Theorem 6.1 is

proven.
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7 Uniqueness for mean convex Ω

In this section we give the proof (taken from [[8]]) of Theorem 1.5 .

The main step is to show there is always a solution Σ2 = graph(u) of the

asymptotic probem (1)-(2) in Ω with Gu < 0 and moreover u ≤ v for

any other solution Σ1 = graph(v). Then we show that Σ2 is the unique

solution. The proof we give is slightly circuitous in order to avoid delicate

issues of boundary regularity caused by the degeneracy of the problem at

the asymptotic boundary.

Proposition 7.1. Suppose that the Euclidean mean curvature H∂D ≥ 0.

Then for any smooth solution Σ = graph(u) of (1) over D with u = ε > 0

on ∂D, we have Gu < 0 in D. Consequently the linearized operator L
satisfies the maximum principle and so has trivial kernel.

Proof. Let η = σ−νn+1

u . Then by (15), Gu ≤ η so we need to show η < 0

in D. According to Theorem 4.1, η cannot have an interior maximum.

Suppose the maximum of η is achieved at 0 ∈ ∂D and choose coordinates

so that the xn direction is the interior unit normal to ∂D at 0. Then at 0,

ηn =
ununn
uw3

− η
un
u

< 0 or equivalently unn
w3 < η. (1)

On the other hand by the concavity of f(κ), the hyperbolic mean curvature

H(Σ) ≥ σ. Equivalently,

1

w
(δij −

uiuj
w2

)uij ≥ nη (2)

Restricting (2) to ∂D implies (since
∑

α<n uαα = −un(n− 1)H∂D)

unn
w3

− un
w

(n− 1)H∂D ≥ nη (3)

Combining (1) and (3) yields η(0) < −un
w H∂D ≤ 0. This gives sup∂D η < 0

so η < 0 in D.

Proposition 7.2. Let f(κ) satisfy (3)-(9) and also (10). Let D ∈ C2+α

be as in Proposition 7.1. Then for s ∈ (0, 1) and ε sufficiently small, there
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is a continuous family of solutions Σt = graph(ut), 0 ≤ t ≤ 1 of (1) over

D with ut = ε > 0 on ∂D and f(κ) = ts + (1 − t) on Σt such that ut

tends uniformly to ε in D as t tends to 0. Moreover Gu < 0 on D for each

solution ut.

Proof. Consider for 0 ≤ t ≤ 1 the family of Dirichlet problems

G(D2ut, Dut, ut) = s(t) := ts+ (1− t) in Ω,

ut = ε on ∂Ω,

u0 ≡ ε.

(4)

For D a C2+α domain, we find (starting from u0 ≡ ε) a smooth family

of solutions ut, 0 ≤ t ≤ 2t0 by the implicit function theorem since Gu|u0 ≡
0. By Propositon 7.1, the linearized operator (at a solution ut) satisfies

the maximum principle, i.e. Gu < 0, and so has trivial kernel. Hence

the set of t for which (4) is solvable is open. By elliptic regularity it

is now well understood that if we can find uniform estimates in C2 for

0 < t0 ≤ t ≤ 1 then we can solve (1). In [5] we obtained such estimates

ut + |Dut| + ut|D2ut| ≤ C where C depends on D, s and the uniformity

of constants in (10). Hence the Proposition follows.

Corollary 7.1. Let f(κ) satisfy (3)-(9) and let D be as in Proposition

7.2. Then for any σ ∈ (0, 1) there exist a solution u of the asymptotic

problem (1)-(2) in D with bounded principal curvatures and Gu < 0.

Proof. Given f(κ) satisfying (3)-(9), let fθ := (1 − θ)f + θK
1
n . Then fθ

satisfies (3)-(9) and also (10). We can apply Proposition 7.2 with s = σ

and obtain a solution of the approximate problem fθ = σ with u = ε on

∂D. Letting ε → 0 yields a solution uθ of the asymptotic problem for

fθ = σ. By Theorem 1.2 the principal curvatures of Σθ = graph(uθ) are

uniformly bounded by a constant C depending only on D and σ. Hence as

θ → 0 we obtain by passing to a subsequence the desired solution u.
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Proposition 7.3. Let Ω be a C2+α domain with H∂Ω ≥ 0. Let Σv =

graph(v) be a solution of the asymptotic problem (1)-(2) where f(κ) sat-

isfy (3)-(9). Then v ≥ u where u is a solution of the asymptotic problem

satisfying Gu < 0 . The inequality is strict unless v ≡ u.

Proof. By Theorem 1.2, fθ ≤ (1− θ)σ +Cθ on Σv. Let Γε be the inward

parallel hypersurface to Γ = ∂Ω at distance ε and let Dε be the domain

bounded by Γε. Then for ε sufficiently small, Γε ∈ C2+α and HΓε ≥ 0.

Moreover, v ≥ 2λε in Dε for a uniform constant λ > 0 independent of ε.

Now let s = (1− θ)σ+Cθ and let ut be the continuous family of solutions

(θ fixed) given in Proposition 7.2 with ε replaced by λε with θ so small

that σ
2 < s < 1+σ

2 . Then for t close to 0, ut < v in D and by the maximum

principle this property must continue until t = 1. As ε → 0 we obtain

v ≥ uθ in Ω. Finally as θ → 0 we obtain v ≥ u in Ω.

We now prove Theorem 1.5. Suppose that Σ1 = graph(v) and Σ2 =

graph(u) are two distinct solutions of the asymptotic problem (1)-(2) with

Gu < 0 in Ω. By Proposition 7.3 either v > u or v ≡ u in Ω. Suppose for

contradiction that maxΩ(v−u) = v(x0)−u(x0) > 0. Set wt := tv+(1−t)u.

We claim that in a small neighborhood of x0, graph(w
t) is locally strictly

convex, that is, (wt)2+|x−x0|2
2 is strictly Euclidean convex. At x0, ∇u = ∇v

and D2v ≤ D2u. A simple computation shows

wtwt
ij − tvvij − (1− t)uuij = t(1− t)(v − u)(uij − vij) ≥ 0 at x0 .

Hence at x0, w
twt

ij+wt
iw

t
j+δij ≥ t(vvij+vivj+δij)+(1− t)(uuij+uiuj+

δij) > 0 and the claim follows.

Note that d
dtG(D2wt, Dwt, wt)(x0) = Ltw(x0) where w(x0) = (v −

u)(x0) > 0. Evaluating at t = 0 gives

d

dt
G(D2wt, Dwt, wt)(x0)|t=0 = Gijwij(x0) +Guw(x0) < 0

since (Gij) > 0, (wij)(x0) < 0, ∇w(x0) = 0, Gu < 0 and w(x0) > 0.

Hence for t > 0 small enough, φ(t) := G(D2wt, Dwt, wt)(x0) < σ . In



The asymptotic Plateau problem 277

particular there is a t0 ∈ (0, 1] such that

φ(t0) = σ, φ(t) < σ on (0, t0) .

Using the integral form of the mean value theorem, we may write

0 = φ(t0)− φ(0) = [aijwij + asws + c(x)w](x0) := Lw(x0) + c(x0)w(x0) ,

where

aij =

∫ t0

0
Gij |wtdt, as =

∫ t0

0
Gs|wtdt, c(x) =

∫ t0

0
Gu|wtdt .

Since graph(wt) is hyperbolic locally strictly convex in a small neigh-

borhood of x0, the operator L = aij ∂2

∂xi∂xj
+ as ∂

∂xs
is elliptic in this

neighborhood. Suppose for the moment that also c(x0) < 0. Then

Lw(x0) = −c(x0)w(x0) > 0 and w has a strict interior maximum at x0

contradicting the maximum principle.

We show c(x0) < 0 to complete the proof of Theorem 1.5. According to

(15), wtGu|wt(x0) = φ(t)−νn+1
u (x0) < σ−νn+1

u (x0) < 0 on (0, t0). Hence

c(x0) =
∫ t0
0 Gu|wt(x0)dt < 0.

8 Hyperbolic-de Sitter space duality and the

asymptotic Plateau problem

In this section we sketch the proof of the duality theorem [12].

Theorem 8.1. Let L be defined by (30) and let x be defined by (31). Then

the image of S by L is the locally strictly convex graph (with respect to

the induced hyperbolic metric)

Σ = {(x, u(x)) ∈ Rn+1
+ : u ∈ C∞(Ω), u(x) > 0},

with principal curvatures κ∗i = κ−1
i . Here κi > 0, i = 1, . . . , n are the

principal curvatures of S with respect to the induced de Sitter metric.

Moreover the inverse map L−1 : Σ → S defined by

L−1((x, u(x))) = (x+ u(x)∇u(x), u(x)
√

1 + |∇u(x)|2) y ∈ Ω
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is the dual Legendre transform and hodograph map y = ∇q(x).

Lemma 8.1. The Legendre transform q(x) is given by

q(x) =
1

2
(x2 + u(x)2) where u(x) := v(y)

√
1− |∇v(y)|2 .

Moreover,
√

1 + |∇u(x)|2 = (1−|∇v(y)|2)−
1
2 and v(y) = u(x)

√
1 + |∇u(x)|2.

Therefore y = ∇q(x), (qij(x)) = (pij(y))
−1 and the inverse map L−1 of L

is given by L−1(x, u(x)) = (y, v(y)).

Proof. We calculate

p(y) + q(x) = 1
2(y

2 − v(y)2) + 1
2(x

2 + u(x)2)

= 1
2(y

2 − v(y)2) + 1
2(y

2 − 2v(y)y · ∇v(y) + v2|∇v|2) + 1
2(v

2(1− |∇v(y)|2)

= y2 − v(y)y · ∇v(y) = y · x ,

as required. It is then standard that y = ∇q(x) and (qij(x)) = (pij(y))
−1.

Then y = ∇q(x) = x+u∇u(x) and x = y−v(y)∇v(y) implies v∇v = u∇u

so v2|∇v|2 = u2|∇u|2 = v2(1− |∇v|2)|∇u|2 and so |∇u(x)|2 = |∇v(y)|2
1−|∇v(y)|2 .

Therefore,√
1 + |∇u(x)|2 = (1− |∇v|2)−

1
2 and v(y) = u(x)

√
1 + |∇u(x)|2 .

Proof of Theorem 1.6: By Lemma 8.1, it remains only to show that the

principal curvatures of Σ are κ−1
i . The principal curvatures of S, Σ are

respectively the eigenvalues of the matrices

A[v] = (γij)(hij)(γ
ij), A[u] = (γ∗ij))(h∗ij)(γ

∗ij) ,

where

gij =
δij − vivj

v2
, (γij) = (gij)

− 1
2 , hij =

δij − vvij − vivj

v2
√

1− |∇v|2
,

g∗ij =
δij + uiuj

u2
, (γ∗ij) = (g∗ij)

− 1
2 , h∗ij =

δij + uuij + uiuj

u2
√

1 + |∇u|2
.
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By Lemma 8.1,

h∗ij =
qij

u2
√
1 + |∇u|2

=
v2
√

1− |∇v|2
v2u2

qij =
1

u2v2
(hij)

−1 ,

g∗ij =
δij + uiuj

u2
=

δij +
vivj

1−|∇v|2

u2
=

gij

u2v2
, (γ∗ij) = uv(γij)−1 ,

and therefore A[u] = (A[v])−1 completing the proof.
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