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On symmetries of singular implicit ODEs

Sergey I. Agafonov

Abstract

We study implicit ODEs, cubic in derivative, with infinitesimal

symmetry at singular points. Cartan showed that even at regular

points the existence of nontrivial symmetry imposes restrictions on

the ODE. Namely, this algebra has the maximal possible dimension

3 iff the web of solutions is flat. For cubic ODEs with flat 3-web of

solutions we establish sufficient conditions for the existence of non-

trivial symmetries at singular points and show that under natural

assumptions such a symmetry is semi-simple, i.e. is a scaling is some

coordinates. We use this symmetry to find first integrals of the ODE.

1 Introduction

Consider an implicit ODE, cubic in derivative. Its solutions form 3

foliations in the plane, i.e. a planar 3-web. We suppose that the web

directions are well defined everywhere. In suitable coordinates one can

write such an equation in the monic form:

p3 + a(x, y)p2 + b(x, y)p+ c(x, y) = 0. (1)
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In this paper we study the complex analytic case locally, i.e., a, b, c are

germs of holomorphic function at (C2, 0) and the equivalence relation is

induced by the group of germs of biholomorphisms Diff(C2, 0).

A point is called regular if for each pair of foliations the leaves are

transverse to each other. Blaschke discovered (see [4]) that generically

even a regular 3-web germ is not equivalent to the web germ of 3 families

of parallel lines: a generic 3-web has a non-vanishing curvature 2-form.

Definition 1.1. A 3-web is flat, or hexagonal if at each regular points it

is diffeomorphic (biholomorphic) to the 3-web germ of 3 pencils of parallel

straight lines.

We call a web germ at q0 ∈ C2 singular if at least two web directions

coincide at q0. Singular hexagonal web germs are not necessarily equiva-

lent, unlike regular ones which have no local invariants by definition.

Curvature 2-form of a 3-web is defined as the derivative d(γ) of the

Chern connection 1-form γ (see [5] and Section 2). Thus, for hexagonal

3-webs, this form is closed. But it is not exact in general: on the dis-

criminant curve of the web, which is the locus of singular points, the

Chern connection form usually has a pole. For instance, for the Clairaut

equation p3 + px− y = 0 we have

γ =
6x2dx+ 27ydy

4x3 + 27y2
,

whereas the EDO p3 + 2xp+ y = 0 has the zero connection 1-form. (See

the 3-webs of solutions to these equations in Figure 1.)

Observe that the above two equations are invariant under the flow of

the vector field X = 2x∂x + 3y∂y. We say that a web has an infinitesimal

symmetry

X = ξ(x, y)∂x + η(x, y)∂y (2)

if the local flow of the vector field X respects its web of solutions. Cartan

proved (see [6]) that at a regular point a 3-web either does not have

infinitesimal symmetries (generic case), or has one-dimensional symmetry
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Figure 1: Solutions of p3 + px− y = 0 and p3 + 2xp+ y = 0. (The y-axis

is horizontal.)

algebra (then in suitable coordinates it can be defined by the form dx ·
dy · (dy + u(x + y)dx) = 0 with the symmetry ∂y − ∂x), or has a three-

dimensional symmetry algebra (then it is equivalent to the web defined

by the form dx · dy · (dy + dx) = 0 with the symmetry algebra generated

by {∂x, ∂y, x∂x + y∂y}). In the last case, when the symmetry algebra

has the largest possible dimension 3, the 3-web is hexagonal. Note that

not all symmetries survive at a singular point; in the above examples the

dimension of the symmetry algebra drops to 2 at a generic point of the

discriminant curve and to 1 at the cusp point. The condition to have at

least one-dimensional symmetry at a singular point is not trivial. The

following equation has a flat 3-web of solutions but does not admit non-

trivial symmetries at (0, 0)

p3 − 2x2y(1 + x2)p+ 8x3y2 = 0.

In this paper we study flat (or hexagonal) web germs admitting an in-

finitesimal symmetry at the singular point. The classical Lie approach

would lead to a system of linear singular PDEs for ξ, η. To avoid a dif-

ficult problem of existence of regular solutions to this system, we look



4 S. I. Agafonov

into the local monodromy group of the cubic equation (1). (This group

permutes the roots on going around the discriminant curve.) The results

of this study can be summarized as follows.

1) If this group is the largest possible (i.e. S3), and the symmetry

operator vanishes at the singular point then the symmetry is scaling in

suitable coordinates:

E = wxx
∂

∂x
+ wyy

∂

∂y
, wx, wy = const. (3)

2) For the case of holomorphic (i.e. locally exact) connection form there

is the existence theorem. Namely the algebra is at least 2-dimensional for

a point with a double root and with the local monodromy Z2; and 1-

dimensional for a point with a triple root and the local monodromy S3.

3) If the connection form is holomorphic and the symmetry operator

vanishes at the singular point then this symmetry also is equivalent to

some scaling.

4) In the above cases the first integrals of the foliations can be chosen

algebraic integer over the ring of holomorphic function germs.

Studying singular points of implicit ODEs was initiated by Thom in

[14]. For a generic quadratic ODE, normal forms were established by

Davydov in [7]. For cubic ODEs the classification problem becomes more

complicated: the obstacle is the curvature. Moreover, Nakai showed that

the topological and analytic classifications are in fact the same in this case

(see [12]). Even the zero curvature condition will not compress the class

of ODEs to guarantee a sensible classification (see [1] for discussion and a

partial classification result).

The principal motivation for the study of the above defined class of

ODEs, possessing a symmetry and holomorphic connection form, is a re-

lation to Frobenius 3-folds (see [2] and [3]). The approach to webs based

on implicit ODEs turned out a useful tool for studying abelian relations

and singularities of webs (see [8, 9]). Infinitesimal symmetries were used

for constructing families of so-called exceptional webs in [11].
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2 Chern connection, first integrals, and abelian

relations

Following Blaschke’s approach based on differential forms [5], we present

a formula for the Chern connection form of a 3-web, formed by solutions

of an implicit cubic ODE.

Let p1, p2, p3 be the roots of (1) at a point (x, y) outside the discriminant

curve. One-forms vanishing on the solutions can be chosen as follows

σ1 = (p2−p3)(dy−p1dx), σ2 = (p3−p1)(dy−p2dx), σ3 = (p1−p2)(dy−p3dx).

They are normalized to satisfy the condition σ1+σ2+σ3 = 0. The Chern

connection form is defined as

γ := h2σ1 − h1σ2 = h3σ2 − h2σ3 = h1σ3 − h3σ1,

where hi are determined by dσi = hiΩ with

Ω = σ1 ∧ σ2 = σ2 ∧ σ3 = σ3 ∧ σ1 = (p1 − p2)(p2 − p3)(p3 − p1)dy ∧ dx.

The web is flat iff the connection form is closed: d(γ) = 0. This implies

dσi = γ ∧ σi. Defining

dk = −γk, (4)

we introduce first integrals ui of the foliations (at least locally at regular

points) by

du1 = kσ1, du2 = kσ2, du3 = kσ3. (5)

Remark. Let η1, η2, η3 be germs of differential forms in (C2, q0) satisfying

the conditions:

� the forms are closed: d(ηi) = 0, i = 1, 2, 3,

� the forms define the web: ηi ∧ σi = 0, i = 1, 2, 3,

� the forms sum up to zero: η1 + η2 + η3 = 0,
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then these forms are proportional to kσi: ηi = ckσi, i = 1, 2, 3, c =

const. One says that the space of abelian relations is one-dimensional for

a hexagonal 3-web. In what follows these first integrals are called abelian.

To simplify the final formulas we bring equation (1) to the form

p3 +A(x, y)p+B(x, y) = 0, (6)

killing the coefficient by p2 by a coordinate transform

y = f(x̃, ỹ), x = x̃, satisfying 3fx̃ + a(x̃, f) = 0. (7)

By a coordinate transform y = F (X,Y ), x = G(X,Y ) the forms σi are

multiplied by the factor (GXFY −GY FX)2

G3
X+aGXG2

Y −G3
Y b

, where a(X,Y ) = A(G,F ), and

b(X,Y ) = B(G,F ).

Lemma 2.1. Let k(x, y) be a function not vanishing at (0, 0); then the

following system of PDEs

k(G,F )(GXFY −GY FX)2 = G3
X + aGXG2

Y −G3
Y b,

(3F 2
Y + aG2

Y )FX + 2aFY GXGY + 3bGXG2
Y = 0

(8)

has a solution germ at (0, 0) satisfying (GXFY − GY FX) ̸= 0, F (0, 0) =

G(0, 0) = 0.

Proof: One easily checks the local solvability of the above system via

the Cauchy-Kovalevskaya Theorem; locally the above system can be repre-

sented in Kovalevskaya form with respect to FX , GX by adjusting Cauchy

data. 2

Lemma 2.2. Suppose the Chern connection form is exact γ = d(f), where

the function f is defined on some neighborhood U of a point on the dis-

criminant curve. Then one can choose new local coordinates to keep the

coefficient by p2 to be zero and simultaneously to ensure k ≡ 1.

Proof: From (4) one has k = exp(−f) ̸= 0. Now choose F,G to satisfy

system (8) and (GXFY −GY FX) ̸= 0. The second equation of (8) ensures
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that the coefficient by p2 remains zero. 2

Computing the Chern connection form in terms of roots pi and using the

Viete formulas one gets

γ = (2A2Ax−4A2By+6ABAy+9BBx)
4A3+27B2 dx+ (4A2Ay+6ABx+18BBy−9BAx)

4A3+27B2 dy. (9)

Notice that this form can have a pole on the discriminant curve

∆ := {(x, y) : 4A3(x, y) + 27B2(x, y) = 0}.

3 Infinitesimal symmetries

Pick up a point q0 on the discriminant curve and select some connected

neighborhood U of this point. At a point q ∈ U \ ∆, equation (6) im-

plicitly defines function germs p1, p2, p3. Analytical continuation of these

germs along all closed paths in U passing through q generates a subgroup

of the group S3 permuting the roots pi. We call this subgroup a local

monodromy group of (6) at q0.

Notice that equation (6) defines an analytic set germ A in (C5, 0) by

p1+p2+p3 = 0, p1p2+p2p3+p3p1 = A(x, y), p1p2p3 = −B(x, y). (10)

We will need the following representation of functions holomorphic on A.

Lemma 3.1. Suppose that equation (6) is irreducible over the ring of

holomorphic function germs O0 on (C2, 0) and the local monodromy group

of (6) acts on the roots as the permutation group S3. Then each holomor-

phic function germ F on the analytic set germ A can be represented in the

form

F = F0(x, y)+p1F1(x, y)+p2F2(x, y)+p1p2F3(x, y)+p22F4(x, y)+p1p
2
2F5(x, y),

where Fi, i = 0, ..., 5 are holomorphic function germs on (C2, 0). More-

over, this representation is unique.
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Proof: The existence of the representation follows from Malgrange’s

Preparation Theorem. In fact, the identities

p21 = −p1p2−p22−A, p31 = −p1A−B, p21p2 = −p1p
2
2+B, p32 = −p2A−B

imply ⟨p1, p2⟩4 ⊂ ⟨A,B⟩ andO2(p1, p2)/⟨A,B⟩ = C{1, p1, p2, p1p2, p22, p1p22}.
To prove the uniqueness one applies all the permutations of S3 to the rep-

resentation of the zero function germ, normalize the results using the above

identities and shows that all Fi are zero function germs. 2

At each regular point one can choose any pair of the abelian first integrals

(5) as local coordinates. The symmetry algebra at this point is generated

by the 3 vector fields ∂u1 , ∂u2 , u1∂u1 + u2∂u2 . If an operator X is a sym-

metry then X(ui) = φi(ui) for some function germs φi. As the space of

abelian relations for a hexagonal 3-web is one-dimensional and the sym-

metry X maps abelian relations into abelian relations, the functions φi

are linear:

X(ui) = Cui + ci. (11)

Lemma 3.2. Suppose that X is a symmetry of equation (6) and the local

monodromy group is S3. Then C ̸= 0 in the equality (11).

Proof: Consider a point q0 = (x0, y0) /∈ ∆. Suppose C = 0; then

at least two of the constants ci, say c1 and c2, do not vanish. Indeed,

the corresponding first integrals are functionally independent at q0 and

a non-trivial symmetry operator cannot have 2 independent invariants.

Equations (5) imply c1 = k(p2 − p3)(η − p1ξ), c2 = k(p3 − p1)(η − p2ξ),

where X = ξ(x, y)∂x + η(x, y)∂y. Excluding the function k gives c2(p2 −
p3)(η − p1ξ) = c1(p3 − p1)(η − p2ξ). Rewriting this as c2ξA + η(2c1 +

c2)p1 + η(2c2 + c1)p2 − ξ(2c1 + c2)p1p2 − ξ(c1 − c2)p
2
2 = 0 and applying

Lemma 3.1 we get X ≡ 0. 2

Theorem 3.1. Suppose that ODE (6) has a flat web of solutions and

admits a symmetry operator (2) such that C ̸= 0 in the equality (11).

Then one can choose germs Ii, i = 1, 2, 3 of first integrals of (6) to satisfy



On symmetries of singular implicit ODEs 9

Ii = k2Ui, where dk = −kγ, γ is the Chern connection form, and Ui are

the roots of the following cubic equation:

U3 − 2αU2 + α2U + β = 0, where (12)

α = ξ2A2 − 3η2A− 9ξηB, β = (4A3 + 27B2)(η3 + ξ2ηA+ ξ3B)2. (13)

Proof: Let q = (x0, y0) /∈ ∆. Consider the germs of abelian integrals

(5) at q. Normalizing X and adjusting integration constant we have ui =

X(ui) = kσi(X), i.e.

u1 = k(p2−p3)(η−p1ξ), u2 = k(p3−p1)(η−p2ξ), u3 = k(p1−p2)(η−p3ξ).

Note that Ii := u2i are also first integrals. Calculating elementary sym-

metric function of Ii
k2

one arrives at (12). 2

Remark. Lie discovered (see [10]) that an explicit ODE in differentials

M(x, y)dx + N(x, y)dy = 0 with an infinitesimal symmetry X has the

integrating factor µ = 1
ξM+ηN , i.e. d(µMdx + µNdy) = 0. The above

Theorem gives an analog of this Lie result for implicit cubic ODEs.

IfX is a symmetry of equation (6) then the Lie derivative of the connection

form γ vanishes. Therefore LX(γ) = iX(d(γ)) + d(iX(γ)) = d(γ(X)) = 0

since the connection form is closed. Thus γ(X) is constant:

γ(X) = c. (14)

Theorem 3.2. Suppose that ODE (6) has a flat web of solutions, C ̸= 0 in

the equality (11), and a symmetry X of (6) vanishes at the singular point

(0, 0) ∈ ∆. Then the equation is equivalent to a weighted homogeneous

ODE and the symmetry operator X to some scaling.

Proof: Choose a point q = (x0, y0) /∈ ∆. The condition C ̸= 0 allows

one to normalize the symmetry operator X and the first integrals ui to

satisfy X(ui) = ui. Let us calculate the action of the symmetry operator

X on the functions α and β defined by (13): X(α) = X(
u2
1+u2

2+u3
3

k2
) =
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2u1X(u1)+2u2X(u2)+2u3X(u3)
k2

−2
u2
1+u2

2+u3
3

k3
X(k) = 2(1− X(k)

k )α. Since X(k)
k =

−(γ(X)) = −c we have X(α) = 2(1 + c)α. Similarly X(β) = 6(1 + c)β.

One can choose a coordinate system to make the functions α and β func-

tionally independent at q. (This is a slightly modified version of Lemma

2.1.) This condition is equivalent to c ̸= −1 in the formula (14).

The operator X vanishes at (0, 0) hence we can apply the following results

of K.Saito (see [13]).

1. In suitable coordinates the operator X can be written as a sum X =

Xs+Xn of a scaling operatorXs (semi-simple in Saito’s terminology)

and a commuting with Xs nilpotent operator Xn = n1(x, y)∂x +

n2(x, y)∂y) (i.e. all eigenvalues of the matrix(
∂n1
∂x

∂n1
∂y

∂n2
∂x

∂n2
∂y

)

are zeros at (0, 0)).

2. Moreover, the following two conditions are equivalent:

a) X(f) = λf ,

b) Xs(f) = λf , Xn(f) = 0,

where f is a function germ and λ is a complex number.

Thus we have from the condition b): Xn(α) = Xn(β) = 0. As the func-

tions α and β are functionally independent we get Xn = 0. 2

Theorem 3.3. Suppose that ODE (6) has a flat web of solutions and

admits a symmetry X at the singular point (0, 0) ∈ ∆, the operator X

vanishes at this point, and the local monodromy group of (6) is S3. Then

the equation is equivalent to a weighted homogeneous ODE and the sym-

metry operator X to a scaling.

Proof: The claim follows from Lemma 3.2 and Theorem 3.2. 2

Remark. Unfortunately, Lemma 3.2 is not true if the local monodromy

group is smaller than S3. It is not difficult to find counter-examples.
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4 ODEs with exact Chern connection form.

Lemma 4.1. Let q0 = (x0, y0) ∈ ∆. Suppose that the Chern connection

form is exact γ = d(f), where the function f is defined on some connected

neighborhood U of q0. Then the abelian first integrals ui are algebraic

integers over the ring of holomorphic function germs Oq0.

Proof: Define U∆ := U\∆. Then the connection form γ is exact on

U∆. Let q ∈ U∆ be some point outside the discriminant curve and V a

simply connected neighborhood of q contained in U∆, i.e. q ∈ V ⊂ U∆.

Select a path α : [0, 1] 7→ U connecting q0 and q: α(0) = q0, α(1) = q and

satisfying α((0, 1]) ∈ U∆.

Define functions u1, u2, u3 : V 7→ C by equations (5), where k =

exp(−f) and p1, p2, p3 : V 7→ C are functions implicitly defined by equa-

tion (6). Then u1, u2, u3 are well-defined up to a choice of the initial values

u1(q), u2(q), u3(q). Let us fix them by

u1(q) =
∫
α k(p2 − p3)(dy − p1dx),

u2(q) =
∫
α k(p3 − p1)(dy − p2dx),

u3(q) =
∫
α k(p1 − p2)(dy − p3dx).

The analytical continuation of ui along all the paths contained in U∆ gives

multivalued functions ũi on U∆. Due to the choice of initial conditions

one has

ũ1 + ũ2 + ũ3 = 0.

Moreover, these initial conditions also imply that the functions

f := ũ21 + ũ22 + ũ23, h := ũ21ũ
2
2ũ

2
3

are one-valued on U∆. In fact, the analytic continuation along each closed

path in U∆ induces a permutation of roots p1, p2, p3. This permutation

generates an action on the differentials d(u1), d(u2), d(u3). On the other

hand, due to the choice of the initial values of ui the action on ũ1, ũ2, ũ3

coincides with the action on the differentials. Moreover, being bounded,

the functions f, h are holomorphic on the whole neighborhood U by the
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Riemann theorem. Therefore each of the functions ũi is integer over the

ring O(U) of functions analytical on U as satisfying the following equation

u6 − fu4 +
f2

4
u2 − h = 0

Differentiating the function f and using (5) one shows that the functions

ũ1, ũ2, ũ3 are well defined meromorphic functions on the germ of analytic

set A determined by equations (10). Further, being integer also over O(A)

these functions are in fact holomorphic on O(A). 2

According to the classical Lie results the components of our symmetry

operator X satisfy a system of linear PDEs. In a neighborhood of a

regular point the space of solutions to this system is 3-dimensional. When

there exists a solution that can be extended to a neighborhood of a point

on the discriminant curve ∆? A sufficient condition gives the following

theorem.

Theorem 4.1. Let q0 = (x0, y0) ∈ ∆. Suppose that the Chern connection

form is exact γ = d(f), where the function f is defined on some neighbor-

hood U of q0. Then the dimension of the symmetry algebra of equation

(6) at q0 is

� at least 1, if the root is triple and the local monodromy group is S3,

� at least 2, if the root is double and the local monodromy group is

Z2.

Proof: Define the first integrals as in Lemma 4.1.

• Triple root. Each holomorphic function germ on A can be written in

the normal form given by Lemma 3.1. Using the symmetry properties of

ũ1, ũ2, ũ3 under the permutations of the roots one gets

ũ1 = (p2−p3)(M(x, y)−p1L(x, y)), ũ2 = (p3−p1)(M(x, y)−p2L(x, y)),

where M and L are holomorphic on U . Define

ξ = 1
k(p1−p2)

(
ũ2

p3−p1
− ũ1

p2−p3

)
, η = 1

k(p1−p2)

(
p1ũ2

p3−p1
− p2ũ1

p2−p3

)
. (15)
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It is immediate that the functions ξ = L
k and η = M

k are well defined on U .

Therefore the vector field X = ξ(x, y)∂x + η(x, y)∂y is a symmetry of our

ODE, as its action on the first integrals satisfies X(u1) = u1, X(u2) = u2

due to the equalities (15) and (5).

• Double root. Suppose that p1, p2 satisfy an irredicible quadratic equa-

tion at 0 and p1 = p2 ̸= p3. Then a := p3 is a holomorphic function

germ on (U, q0) and a(q0) ̸= 0 since p1 + p2 + p3 = 0. The function germ

2p23 + p1p2 = 2a2 + p1p2 is also holomorphic. Moreover, it does not vanish

at q0 since 2a2 + p1p2|q0 = 9
4a

2(q0). Then the vector field

X1 =
∂x + p3∂y

k(2p23 + p1p2)

is an infinitesimal symmetry. Indeed, its action on the first integrals is

the following: X1(u1) = −1, X1(u2) = 1. The second symmetry X2 is

defined by the same formula as for the case of triple root. To check that

the vector field (15) is well defined on (U, q0) write

ũ1(p) = R(x, y) + p1S(x, y)

instead of the normal form given by Lemma 3.1, observe that ũ2(p) =

aSR−R+p1S due to the permutation symmetry properties, and substitute

these expressions into (15). One immediately checks that this vector field

satisfies X2(u1) = u1, X2(u2) = u2. On some neighborhood V ⊂ U of a

point q ̸= q0, one can rewrite the symmetry operators as X1 = ∂u2 − ∂u1 ,

X2 = u1∂u1 + u2∂u2 , i.e. they are linearly independent. 2

Proposition 4.1. If an infinitesimal symmetry of equation (1) vanishes

at (0, 0) and the Chern connection form is exact, then the equation is

equivalent to a weighted homogeneous one and the symmetry to a scaling.

Proof: In fact, choosing the first integrals as in Lemma 4.1 we have

c1 = c2 = c3 = 0 in formula (11). For example, X(u1)|0 = C u1|0+c1 = c1.

On the other hand X(u1) = k(p2 − p3)(η − p1ξ) = 0. Whence c1 = 0,

C ̸= 0 and the equation is weighted homogeneous due to Theorem 3.2. 2
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Note that if the symmetry algebra is 3-dimensional and the Chern con-

nection form is exact, then the roots of equation (1) are simple. In fact,

there are two symmetries X1, X2 satisfying Xi(uj) = δij . The function k

in equations (5) for abelian first integrals can be reduced to k = 1 (Lemma

2.2).

Corollary 4.1. Suppose that equation (1) has a non-trivial symmetry al-

gebra at (0, 0) and the Chern connection form of the web germ of solutions

is exact.

� If the symmetry algebra is 3-dimensional, then the equation has

simple roots at (0, 0).

� If the symmetry algebra is 2-dimensional, then the equation has a

double root at (0, 0).

� If the symmetry algebra is 1-dimensional, then the equation has a

triple root..

5 Concluding remarks

The results obtained in this paper distinguish the ODEs with scaling

symmetries and holomorphic Chern connection form. In fact, such ODEs

can be effectively classified. We present the corresponding classification

results elsewhere.
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