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Integer index of p-broom-like graphs

Laura Patuzzi Maria Aguieiras A. de Freitas

Renata R. Del-Vecchio

Abstract

A p-broom-like graph is obtained by identifying each vertex of

a p-clique with the root of a copy of a rooted broom. We prove

that the class of p-broom-like graphs with n vertices is total and

strictly ordered by the index (the largest eigenvalue of the adjacency

matrix). Moreover, for p-broom-like maximal graphs (higher index)

we obtain integrality conditions, both for the index as for the graph

itself, proving the existence of an integral p-broom-like graph for

each p-clique with p ≥ 5.

1 Introduction

Given a connected simple undirected graph G, with n vertices, its ad-

jacency matrix A(G) is a square matrix of order n, whose entries are

aij =

{
1, if ij is an edge of G;

0, otherwise.

The eigenvalues of this matrix are also called eigenvalues of the graph

G. As A(G) is symmetric, its eigenvalues are all real and, therefore,
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can be displayed in non-increasing order λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G).

In fact, the first inequality is strict, since Perron-Frobenius Theorem [4]

guarantees that the largest eigenvalue has multiplicity 1. We refer to it by

index of the graph, denoted simply by λ(G). In this paper, we study the

index of p-broom-like graphs, which are a variation of the graph defined

by Tyomkyna and Uzzellem in [7]. Initially, let us define the rooted broom

B(a; r): this is the tree with a + r vertices, obtained by hanging a ≥ 1

edges in the vertex v1 of the path Pr = v1 . . . vr and considering its root

in the vertex vr of Pr. If r = 1, the rooted broom B(a; r) coincides with

the star Sa+1 rooted in its central vertex.

A p-broom-like graph Kp ⊓ B(a; r) is a graph with p(a + r) vertices,

obtained by hierarchical product [1] of the complete graph Kp by the

rooted broom B(a; r), where p ≥ 3, a ≥ 1 e r ≥ 1, that is, identifying each

vertex of the p-clique with the root of a copy of B(a; r). Some examples

of p-broom-like graphs are shown in Figure 1.

(a) K3 ⊓B(1; 2) (b) K4 ⊓B(2; 3) (c) K4 ⊓B(2; 1)

Figure 1: p-broom-like graphs

As observed by Stevanović [6], ”one of the basic and hardest problems

of spectral graph theory is to reconstruct a graph from its spectrum alone.

This problem has been solved for a few well defined families of spectra

(...)” In the first section we discuss this problem in the class of p-broom-

like graphs with n vertices, proving that this class is complete and strictly

ordered by the index. Therefore, there are no coespectral pairs of non-

isomorphic p-broom-like graphs.

Another problem, also considered quite difficult, is to build families of
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integral graphs, i.e., graphs whose eigenvalues are all integers. Stevanović

[6], as Cvetković and Simić [3] indicate a growing interest in this area.

In the second section we study the integrality of maximal p-broom-like

graphs (i.e., having largest index), obtained when r = 1. We proved that,

if p = 3, 4, there are no integral graphs in this class. On the other hand,

for each p ≥ 5, we exhibit integral graphs Kp ⊓B(a; 1).

2 Ordering the class of p-broom-like graphs

In the following theorem we prove that the class of p-broom-like graphs

with n vertices is totally ordered. As the number of vertices is n = p·(a+r),

we are considering the parameters p and c = a + r constants. More

specifically, we show that there is a total and strict ordering , given by

the index of these graphs:

λ(Kp ⊓B(c− 1; 1)) > λ(Kp ⊓B(c− 2; 2)) > . . . > λ(Kp ⊓B(1; c− 1)) .

Theorem 2.1. Let p ≥ 3 and c ≥ 2 be integers. Then:

λ(Kp ⊓B(a− 1; c− a+ 1)) < λ(Kp ⊓B(a; c− a)) ,

for all 2 ≤ a ≤ c− 1.

Proof. The proof of this theorem is divided in two parts. In the first

part, we consider r = c− a ≥ 2 and we use the method of subdividing an

edge of an internal path of the graph [5], illustrated in Figure 2.

(a) λ ≈ 2, 65544 (b) λ ≈ 2, 54926 (c) λ ≈ 2, 51658

Figure 2: Subdividing an edge in three internal paths of K3 ⊓B(3; 2)
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As r = c − a ≥ 2, Kp ⊓ B(a; r) has p internal paths, each one given

by the edges of the path Pr contained in the rooted broom B(a; r). By a

result from Hoffman and Smith [5] (see also in [8], Lemma 2.5) it follows

that, subdividing an edge of each of these paths, the index of the graph

obtained, namely Kp ⊓B(a; r+ 1), will be strictly smaller than the index

of the original graph. Since Kp ⊓ B(a− 1; r + 1) is a proper subgraph of

Kp⊓B(a; r+1) and they are both connected, it follows that λ(Kp⊓B(a−
1; r + 1)) < λ(Kp ⊓ B(a; r + 1)). Therefore, we prove in this case that

λ(Kp ⊓B(a− 1; c− a+ 1)) < λ(Kp ⊓B(a; c− a)), for all 2 ≤ a ≤ c− 2.

Now, in the second part of the proof, we considere r = c − a = 1, and

we compare the indices of Kp ⊓B(a; 1) and Kp ⊓B(a; 2) computing their

characteristic polynomial. The characteristic polynomial of Kp ⊓ B(a; 1)

can be calculated using Theorem 2.2.5 of [2], obtaining

pKp⊓B(a;1) = xp(a−1) [x2 − (p− 1)x− a] [x2 + x− a]p−1 . (1)

Therefore, the index γ1 of Kp ⊓ B(a; 1) is the largest root of p1(x) =

x2 − (p − 1)x − a. On the other hand, from Theorem 2.2 of [1], we have

that the characteristic polynomial q(x) of Kp ⊓B(a− 1; 2) is given by the

formula

q(x) = [pSa(x)]
p pKp

(
pSa+1(x)

pSa(x)

)
.

As pSa(x) = xa−2(x2 − a+1) and pKp = (x+1)p−1(x− p+1), we deduce

that

q(x) = xp(a−2) [x(x2−a)+x2−a+1]p−1 [x(x2−a)− (p−1)(x2−a+1)] .

Since the index γ2 of Kp ⊓ B(a − 1; 2) is a root of q(x) with multiplicity

1, it will be the largest root of p2(x) = x(x2 − a) − (p − 1)(x2 − a + 1).

As we want to prove that γ2 < γ1, it is sufficient to check that p1(γ2) < 0.

As γ2 > 0, we verify that γ2 p1(γ2) < 0, thereby concluding the proof.
□

In Figure 3 we exemplify this theorem ordering the 3-broom-like graphs

with 15 vertices.
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(a) λ ≈ 3, 23607 (b) λ ≈ 2, 65544 (c) λ ≈ 2, 51658 (d) λ ≈ 2, 49889

Figure 3: Order of 3-broom-like graphs with 15 vertices

3 Integral Kp ⊓B(a; 1) graphs

From the previous theorem, we have that the maximal p-broom-like

graphs are given by Kp ⊓ B(a; 1). In the following proposition we give

necessary and sufficient conditions for the integrality of index of Kp ⊓
B(a; 1) and also for the integrality of the other eigenvalues of the graph.

We prove here that, for each p ≥ 3, there is an infinite family of p-broom-

like graphs having integer index, but not necessarily integral. Indeed, the

condition of integrality of these graphs is more difficult to achieve, since

the parameter a must satisfy simultaneously two nonlinear diophantine

equations. Corollaries 3.1 and 3.2 illustrate this difficulty.

Proposition 3.1. Given integers p ≥ 3 and a ≥ 1, Kp ⊓ B(a; 1) has

integer index λ if and only if there is a positive integer q such that

a = q(p− 1 + q) .

In this case, λ = p− 1+ q and Kp ⊓B(a; 1) is integral if and only if there

is a positive integer s such that

q(p− 1 + q) = s(s+ 1) .

Proof. From (1) we have that the distinct nonzero eigenvalues of Kp ⊓
B(a; 1) are:

λ =
p−1+

√
(p−1)2+4a

2 , −1+
√
1+4a

2 ,
p−1−

√
(p−1)2+4a

2 and −1−
√
1+4a

2 .
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Thus, λ is integer if and only if (p − 1)2 + 4a is a perfect square. The

remaining eigenvalues are integers if, furthermore, 1 + 4a is also a perfect

square. We will verify firstly that (p− 1)2 + 4a is a perfect square if and

only if there is a positive integer q such that a = q(p− 1 + q), calculating

the index λ. We do this dividing the analysis in two cases: when p is odd

and when p is even.

If p = 2t + 1 (t ≥ 1), then (p − 1)2 + 4a = 4(t2 + a) is a perfect

square if and only if t2 + a = x2, for some positive integer x. Hence,

a = (x + t)(x − t). Considering q = x − t, we have a = q(q + 2t) and so,

a = q(q + p − 1). It follows that (p − 1)2 + 4a = 4x2 = 4[q + p−1
2 ]2 and

λ = p−1
2 + [q + p−1

2 ] = q + p− 1.

If p = 2t (t ≥ 2), then (p − 1)2 + 4a = 4(t2 − t + a) + 1 is odd.

Thus, it is a perfect square if and only if there is a positive integer x

such that 4(t2 − t + a) + 1 = (2x + 1)2, ie t2 − t + a = x2 + x. Hence,

a = (x+ t)(x− t+ 1). In this case, consider q = x− t+ 1, which enables

us to write a = q(q+2t−1) = q(q+p−1). As (p−1)2+4a = (2x+1)2 =

(2q + p− 1)2, we have λ = q + p− 1, as we wanted.

To finish the proof, it remains to verify that 1 + 4a is a perfect square

if and only if there is a positive integer s such that a = s(s+ 1). Indeed,

1 + 4a = x2, for some odd positive x, if and only if a = (x−1
2 )(x+1

2 ), since

x− 1 and x+1 are both even. As x+1
2 = x−1

2 +1, the assertion is proved.

□

From this proposition we see that, if p = a, (p − 1)2 + 4a = (p + 1)2.

Then, Kp ⊓ B(p; 1) has integer index, namely, λ = p. But this graph is

not always integral. Indeed, it will be integral, if we have p = s(s+1), for

some positive integer s ≥ 2. So, p must be even.

Corollary 3.1. Given an integer p ≥ 3, Kp ⊓ B(p; 1) has integer index

λ = p. It is integral if and only if p is even and is given by the product of

two consecutive positive integers.

In what follows, we apply Proposition 3.1 in order to obtain infinite

families of integral graphs Kp ⊓B(a; 1), for which p ̸= a. Clearly, we will
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consider the case where they have integer index: a = q(q + p− 1), where

q ≥ 1 is integer. First, however, we observe:

Corollary 3.2. For all a ≥ 1, the graphs K3 ⊓B(a; 1) and K4 ⊓B(a; 1)

are not integral.

In the following corollary we prove, for each p ≥ 5, the existence of an

integral graph Kp ⊓B(a; 1).

Corollary 3.3. For each pair of p and a below, we have that Kp⊓B(a; 1)

is integral:

(i) p = 2t + 1 and a = t2(t2 − 1), for t ≥ 2 integer. In this case,

λ = t(t+ 1).

(ii) p = 2t and a = (t−2)(t−1)
2 · t(t+1)

2 , for t ≥ 3 integer. In this case,

λ = t(t+1)
2 .

(iii) p = 6t − 1 and a = 4t(4t − 1), for t ≥ 1 integer. In this case,

λ = 8t− 2.

(iv) p = 6t + 3 and a = 4t(4t + 1), for t ≥ 1 integer. In this case,

λ = 8t+ 2.

4 Conclusion

As noted before, the problems of characterizing, in a specific class, which

graphs are determined, up to isomorphism, by its eigenvalues and graphs

which are integral are considered in the literature as difficult issues. In

the class of p-broom-like graphs, we have obtained positive answers to

both problems. Regarding the first question, the answer was obtained by

ordering the indices of the graphs in this class. Note that, although it is

possible to calculate the index of a graph from its adjacency matrix, the

same is not true when we know only structural properties of the graph.

Actually, for r = 1, we calculate the index of Kp ⊓ B(a; 1) in function of

a, but we do not know an expression for the index of Kp ⊓ B(a; r) (valid
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for any a and r). We managed however, to get an order of p-broom-like

graphs, described in Theorem 2.1.

Regarding the second proposal, we exhibit infinite families of Kp ⊓
B(a; 1) integral graphs. Note that to obtain an integral p-broom-like graph

corresponds to a solution of a system of non linear Diophantine equations,

and we prove that there are no solutions of this system if p = 3, 4. Consid-

ering the case where p ≥ 5 is odd, we get more than one distinct family of

such graphs. We observed that the same occurs if p is even, although we

have not determined in this case, another infinite family, parameterized

by a single parameter.
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