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Abstract

An AVD-total-colouring of a simple graph G is a mapping ϕ :

V (G) ∪ E(G) → C, with C a set of colours, such that: (i) for each

adjacent or incident elements x, y ∈ V (G) ∪ E(G), ϕ(x) ̸= ϕ(y);

(ii) and for each pair of adjacent vertices x, y ∈ V (G), sets {ϕ(x)} ∪
{ϕ(xv) : xv ∈ E(G)} and {ϕ(y)}∪{ϕ(yv) : yv ∈ E(G)} are distincts.

The AVD-total-chromatic number, χ′′
a(G), is the smallest number of

colours for which G admits an AVD-total-colouring. In 2005, Zhang

et al. conjectured that χ′′
a(G) ≤ ∆(G)+3 for any simple graph G. In

this article this conjecture is verified for complete equipartite graphs

G and it is also shown that χ′′
a(G) = ∆(G) + 2, if G has even order.

1 Introduction

Let G := (V (G), E(G)) be a simple graph with vertex set V (G) and

edge set E(G). The cardinality of V (G) is the order of G. We denote an

edge e ∈ E(G) by uv when u and v are its ends. An element of G is a
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vertex or an edge of G. As usual, we denote by d(v) the degree of a vertex

v ∈ V (G), and by ∆(G) the maximum degree of G.

Let S := V (G) ∪ E(G) and let C be a set of colours. A total-colouring

of G is a mapping ϕ : S → C, such that for each adjacent or incident

elements x, y ∈ S, we have ϕ(x) ̸= ϕ(y). If |C| = k, then mapping ϕ is

called a k-total-colouring of G. If S = V (G), then ϕ is a vertex-colouring

of G, and if S = E(G), then ϕ is an edge-colouring of G.

The chromatic number of G, χ(G), is the smallest number of colours

for which G admits a vertex-colouring. Similarly, we define the chromatic

index of G, χ′(G), as the smallest number of colours for which G admits

an edge-colouring; and the total-chromatic number of G, χ′′(G), as the

smallest number of colours for which G admits a total-colouring.

Let ϕ be a total-colouring of G and let C(u) := {ϕ(u)} ∪ {ϕ(uv) : uv ∈
E(G)} be the set of colours that occurs in a vertex u ∈ V (G). Two vertices

u and v are distinguishable when C(u) ̸= C(v). If this property is true for

every pair of adjacent vertices, then ϕ is an adjacent-vertex-distinguishing-

total-colouring (AVD-total-colouring). The AVD-total-chromatic number,

χ′′
a(G), is the smallest number of colours for which G admits an AVD-total-

colouring. If ϕ uses k colours, then it is called a k-AVD-total-colouring.

A vertex-distinguishing-proper-edge-colouring is an edge-colouring of G

that requires C(u) ̸= C(v) for each u, v ∈ V (G). This colouring was

first examined by Burris and Schelp [3], and further investigated by many

others, including Bazgan et al. [2] and Balister et al. [1]. The motiva-

tion for studying vertex-distinguishing-proper-edge-colourings came from

irregular networks. In these networks, it is necessary to associate positive

integer weights to the edges in such a way that the sum of weights of the

edges incident with each vertex form a set of distinct numbers [2]. Zhang

et al. [9] considered edge-colourings in which only adjacent vertices were

distinguishable. After that, around 2005, they studied the problem of dis-

tinguishable vertices in the context of total-colourings [10], giving rise to

AVD-total-colourings. In their seminal article, Zhang et al. determined

the AVD-total-chromatic number for some classes of graphs and, based on
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their results, the authors posed the following conjecture:

Conjecture 1.1 (AVD-total-colouring conjecture). If G is a simple

graph, then χ′′
a(G) ≤ ∆(G) + 3.

This conjecture has been verified for some classes of graphs, which

include complete graphs, complete bipartite graphs, trees [10], hyper-

cubes [4], graphs with ∆(G) = 3 [6], outerplanar graphs [8], indifference

graphs [7], and Halin graphs [5]. In this work, we consider the class of

complete equipartite graphs. We prove that the AVD-total-colouring con-

jecture holds for this class and we determine the AVD-total-chromatic

number for complete equipartite graphs of even order.

2 Main results

A subset of V (G) ∪ E(G) is independent if its elements are pairwise

nonadjacent and nonincident. For positive integers r and n, a complete

equipartite graph, Kr(n), is a simple graph whose vertex set can be parti-

tioned into r independent sets (parts) of cardinality n, where any two ver-

tices that belong to different parts are joined by an edge. In this note, we

verify the AVD-total-colouring conjecture for complete equipartite graphs.

We consider graphs Kr(n) with r ≥ 2 and n ≥ 2 since the results when

r < 2 or n < 2 are known [10]. Moreover, we also determine the AVD-

total-chromatic number for even order complete equipartite graphs.

A canonical labelling of Kr(n) is a labelling of the vertices of Kr(n),

such that for each part j, 1 ≤ j ≤ r, each vertex in the part receives a

distinct label uij , where 1 ≤ i ≤ n. For r ≥ 2, we define the canonical

decomposition [K,B] ofKr(n) as the union of edge-disjoint subgraphs. This

decomposition is described in the following.

Let Kr(n) be a complete equipartite graph endowed with canonical la-

belling. Considering G[S] denotes the subgraph induced by set S ⊆ V (G),

note that subgraphs Ki
r := G[{ui1, . . . , uir}], 1 ≤ i ≤ n, are isomorphic to

the complete graph Kr. Thus, Kr(n) has n disjoint copies of Kr as induced
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subgraphs. Figure 1 illustratesK4(2) endowed with canonical labelling and

two induced subgraphs K1
4 and K2

4 isomorphic to K4.

(a) K4(2) endowed with canonical la-

belling. The four parts ofK4(2) are iden-

tified by P1, P2, P3, and P4.

(b) Two disjoint induced

subgraphs of K4(2) isomor-

phic to K4.

Figure 1: K4(2) and its induced subgraphs K1
4 and K2

4 that are isomorphic

to K4.

The subgraph induced by edges joining vertices of Ki
r to vertices of Kj

r ,

is a bipartite graph, denoted by Bij = G[V (Ki
r), V (Kj

r )], 1 ≤ i < j ≤ n.

Moreover, Bij is an (r − 1)-regular graph. In fact, edges uixu
j
x (1 ≤ x ≤

r) do not exist since vertices uix and ujx are in the same part of Kr(n).

Figure 2 illustrates aK4(2) endowed with canonical labelling and its unique

bipartite subgraph, B12, induced by the edges joining vertices from K1
4 to

vertices of K2
4 .

Using the above notation, we define the canonical decomposition [K,B]
of Kr(n) as:

K :=
⋃

1≤i≤n

Ki
r, and B :=

⋃
1≤i<j≤n

Bij .

The previous definition implies that Kr(n)
∼= (K ∪ B). Also, note that

K is a disconnected graph composed by exactly n components Ki
r, each

one isomorphic to a complete graph Kr.
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(a) K4(2) endowed with canonical la-

belling. The bold edges induce the

bipartite subgraph B12.

(b) The bipartite subgraph

B12. Note that edges u1
ju

2
j ,

1 ≤ j ≤ 4, do not exist.

Figure 2: K4(2) endowed with canonical labelling and its induced bipartite

subgraph B12.

Let GR be the underlying simple graph obtained from [K,B] by shrink-

ing each Ki
r into a vertex vi. Graph GR is called the representative graph

of Kr(n) since the previous decomposition can be represented by GR in the

following way: each vertex vi ∈ V (GR) represents a component Ki
r ⊆ K

and each edge vivj ∈ E(GR) represents a bipartite graph Bij ⊆ B. Note

that GR
∼= Kn. For example, observe that the representative graph of

K4(2) is the complete graph K2. Figure 3 illustrates the canonical decom-

position of K4(3) and its representative graph.

Now, we are ready to establish our main result.

Theorem 2.1. Let G := Kr(n) be a complete equipartite graph with

r ≥ 2 and n ≥ 2. If G has even order, then χ′′
a(G) = ∆(G) + 2; otherwise,

χ′′
a(G) ≤ ∆(G) + 3.

Proof. (Sketch)

Initially, note that χ′′
a(G) ≥ ∆(G)+ 2 since G has two adjacent vertices

of maximum degree. Therefore, to prove Theorem 2.1, it is enough to build

a (∆(G) + 2)-AVD-total-colouring for G of even order and a (∆(G) + 3)-

AVD-total-colouring for G of odd order.

In order to build the required colouring, we decompose Kr(n) into the
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(a) K4(3) endowed with

canonical labelling.

(b) The subgraph K composed by 3 com-

ponentes isomorphic to K4.

(c) A scheme showing the canonical de-

composition of K4(3). Each square repre-

sents a component Ki
r ⊆ K. Thick lines

joining squares represent the edges of bi-

partite graphs B12, B13, and B23.

(d) The representative graph

GR of K4(3). Note that GR
∼=

K3.

Figure 3: Canonical decomposition of K4(3) and its representative graph

GR.

canonical decomposition [K,B] and consider four cases depending on the

parity of n and r. In each case, using the representative graph GR, we

assign suitable edge-colourings to subgraph B and an AVD-total-colouring

to subgraph K in such a way that the result is an AVD-total-colouring of

Kr(n).

As an illustration, for the case n and r even, the components of subgraph

K receive an AVD-total-colouring with r + 1 colours, while subgraph B
receives an edge-colouring with (n − 1)(r − 1) new colours. The result

is a (∆(Kr(n)) + 2)-AVD-total-colouring of Kr(n). For example, using
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the canonical decomposition [K,B] of K4(2), Figure 4(a) shows a 5-AVD-

total-colouring of subgraph K and Figure 4(b) shows a 3-edge-colouring

of subgraph B. The result is an 8-AVD-total-colouring of K4(2).

■

(a) A 5-AVD-total-colouring of subgraph K
using colours 1, 2, 3, 4, 5.

(b) The subgraph B endowed

with a 3-edge-colouring using

colours 6, 7, 8.

Figure 4: A canonical decomposition of K4(2) showing its 8-AVD-total

colouring.

3 Concluding Remarks

According to Theorem 2.1, the AVD-total-colouring conjecture holds

for complete equipartite graphs. Although the conjecture holds for Kr(n)

of odd order, the AVD-total-chromatic number is not determined for this

case. Nevertheless, we have obtained (∆(Kr(n))+2)-AVD-total-colourings

for some equipartite graphs of odd order. Based on these findings, we pose

the following conjecture.

Conjecture 3.1. If Kr(n) has odd order, then χ′′
a(Kr(n)) = ∆(Kr(n))+ 2.

It is well known that the restriction of an AVD-total-colouring to a

proper subgraph H of G is not necessarily an AVD-total-colouring of H.

However, we observe that the restriction of our AVD-total-colouring of

Kr(n), with r and n even, to certain subgraphs of Kr(n) is an AVD-total

colouring for these subgraphs. Therefore, an extension of this work could
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be the study of the conditions under which the restriction of AVD-total-

colourings of complete equipartite graphs to their proper subgraphs results

in AVD-total colourings for these subgraphs.
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