

AVD-total-colouring of complete equipartite graphs

A. G. Luiz^b C. N. Campos^b C. P. de Mello

Abstract

An AVD-total-colouring of a simple graph G is a mapping ϕ : $V(G) \cup E(G) \to \mathcal{C}$, with \mathcal{C} a set of colours, such that: (i) for each adjacent or incident elements $x, y \in V(G) \cup E(G)$, $\phi(x) \neq \phi(y)$; (ii) and for each pair of adjacent vertices $x, y \in V(G)$, sets $\{\phi(x)\} \cup$ $\{\phi(xv) : xv \in E(G)\}$ and $\{\phi(y)\} \cup \{\phi(yv) : yv \in E(G)\}$ are distincts. The AVD-total-chromatic number, $\chi''_a(G)$, is the smallest number of colours for which G admits an AVD-total-colouring. In 2005, Zhang et al. conjectured that $\chi''_a(G) \leq \Delta(G) + 3$ for any simple graph G. In this article this conjecture is verified for complete equipartite graphs G and it is also shown that $\chi''_a(G) = \Delta(G) + 2$, if G has even order.

1 Introduction

Let G := (V(G), E(G)) be a simple graph with vertex set V(G) and edge set E(G). The cardinality of V(G) is the *order* of G. We denote an edge $e \in E(G)$ by uv when u and v are its ends. An *element* of G is a

²⁰⁰⁰ AMS Subject Classification: 60K35, 60F05, 60K37.

Key Words and Phrases: colourings, adjacent-vertex-distinguishing-totalcolourings, complete equipartite graphs.

^{*}Partially Supported by CNPq and FAPESP.

vertex or an edge of G. As usual, we denote by d(v) the *degree* of a vertex $v \in V(G)$, and by $\Delta(G)$ the maximum degree of G.

Let $S := V(G) \cup E(G)$ and let \mathcal{C} be a set of colours. A total-colouring of G is a mapping $\phi : S \to \mathcal{C}$, such that for each adjacent or incident elements $x, y \in S$, we have $\phi(x) \neq \phi(y)$. If $|\mathcal{C}| = k$, then mapping ϕ is called a *k*-total-colouring of G. If S = V(G), then ϕ is a vertex-colouring of G, and if S = E(G), then ϕ is an edge-colouring of G.

The chromatic number of G, $\chi(G)$, is the smallest number of colours for which G admits a vertex-colouring. Similarly, we define the chromatic index of G, $\chi'(G)$, as the smallest number of colours for which G admits an edge-colouring; and the total-chromatic number of G, $\chi''(G)$, as the smallest number of colours for which G admits a total-colouring.

Let ϕ be a total-colouring of G and let $C(u) := \{\phi(u)\} \cup \{\phi(uv) : uv \in E(G)\}$ be the set of colours that *occurs* in a vertex $u \in V(G)$. Two vertices u and v are *distinguishable* when $C(u) \neq C(v)$. If this property is true for every pair of adjacent vertices, then ϕ is an *adjacent-vertex-distinguishing-total-colouring* (AVD-total-colouring). The AVD-total-chromatic number, $\chi''_a(G)$, is the smallest number of colours for which G admits an AVD-total-colouring. If ϕ uses k colours, then it is called a k-AVD-total-colouring.

A vertex-distinguishing-proper-edge-colouring is an edge-colouring of G that requires $C(u) \neq C(v)$ for each $u, v \in V(G)$. This colouring was first examined by Burris and Schelp [3], and further investigated by many others, including Bazgan et al. [2] and Balister et al. [1]. The motivation for studying vertex-distinguishing-proper-edge-colourings came from irregular networks. In these networks, it is necessary to associate positive integer weights to the edges in such a way that the sum of weights of the edges incident with each vertex form a set of distinct numbers [2]. Zhang et al. [9] considered edge-colourings in which only adjacent vertices were distinguishable. After that, around 2005, they studied the problem of distinguishable vertices in the context of total-colourings [10], giving rise to AVD-total-colourings. In their seminal article, Zhang et al. determined the AVD-total-chromatic number for some classes of graphs and, based on

their results, the authors posed the following conjecture:

Conjecture 1.1 (AVD-total-colouring conjecture). If G is a simple graph, then $\chi''_a(G) \leq \Delta(G) + 3$.

This conjecture has been verified for some classes of graphs, which include complete graphs, complete bipartite graphs, trees [10], hypercubes [4], graphs with $\Delta(G) = 3$ [6], outerplanar graphs [8], indifference graphs [7], and Halin graphs [5]. In this work, we consider the class of complete equipartite graphs. We prove that the AVD-total-colouring conjecture holds for this class and we determine the AVD-total-chromatic number for complete equipartite graphs of even order.

2 Main results

A subset of $V(G) \cup E(G)$ is *independent* if its elements are pairwise nonadjacent and nonincident. For positive integers r and n, a *complete equipartite graph*, $K_{r(n)}$, is a simple graph whose vertex set can be partitioned into r independent sets (*parts*) of cardinality n, where any two vertices that belong to different parts are joined by an edge. In this note, we verify the AVD-total-colouring conjecture for complete equipartite graphs. We consider graphs $K_{r(n)}$ with $r \ge 2$ and $n \ge 2$ since the results when r < 2 or n < 2 are known [10]. Moreover, we also determine the AVDtotal-chromatic number for even order complete equipartite graphs.

A canonical labelling of $K_{r(n)}$ is a labelling of the vertices of $K_{r(n)}$, such that for each part j, $1 \leq j \leq r$, each vertex in the part receives a distinct label u_j^i , where $1 \leq i \leq n$. For $r \geq 2$, we define the canonical decomposition $[\mathcal{K}, \mathcal{B}]$ of $K_{r(n)}$ as the union of edge-disjoint subgraphs. This decomposition is described in the following.

Let $K_{r(n)}$ be a complete equipartite graph endowed with canonical labelling. Considering G[S] denotes the subgraph induced by set $S \subseteq V(G)$, note that subgraphs $K_r^i := G[\{u_1^i, \ldots, u_r^i\}], 1 \leq i \leq n$, are isomorphic to the complete graph K_r . Thus, $K_{r(n)}$ has n disjoint copies of K_r as induced subgraphs. Figure 1 illustrates $K_{4(2)}$ endowed with canonical labelling and two induced subgraphs K_4^1 and K_4^2 isomorphic to K_4 .

(a) $K_{4(2)}$ endowed with canonical labelling. The four parts of $K_{4(2)}$ are identified by P1, P2, P3, and P4.

(b) Two disjoint induced subgraphs of $K_{4(2)}$ isomorphic to K_4 .

Figure 1: $K_{4(2)}$ and its induced subgraphs K_4^1 and K_4^2 that are isomorphic to K_4 .

The subgraph induced by edges joining vertices of K_r^i to vertices of K_r^j , is a bipartite graph, denoted by $B_{ij} = G[V(K_r^i), V(K_r^j)], 1 \le i < j \le n$. Moreover, B_{ij} is an (r-1)-regular graph. In fact, edges $u_x^i u_x^j$ $(1 \le x \le r)$ do not exist since vertices u_x^i and u_x^j are in the same part of $K_{r(n)}$. Figure 2 illustrates a $K_{4(2)}$ endowed with canonical labelling and its unique bipartite subgraph, B_{12} , induced by the edges joining vertices from K_4^1 to vertices of K_4^2 .

Using the above notation, we define the canonical decomposition $[\mathcal{K}, \mathcal{B}]$ of $K_{r(n)}$ as:

$$\mathcal{K} := \bigcup_{1 \le i \le n} K_r^i$$
, and $\mathcal{B} := \bigcup_{1 \le i < j \le n} B_{ij}$.

The previous definition implies that $K_{r(n)} \cong (\mathcal{K} \cup \mathcal{B})$. Also, note that \mathcal{K} is a disconnected graph composed by exactly n components K_r^i , each one isomorphic to a complete graph K_r .

(a) $K_{4(2)}$ endowed with canonical labelling. The bold edges induce the bipartite subgraph B_{12} .

(b) The bipartite subgraph B_{12} . Note that edges $u_j^1 u_j^2$, $1 \le j \le 4$, do not exist.

Figure 2: $K_{4(2)}$ endowed with canonical labelling and its induced bipartite subgraph B_{12} .

Let G_R be the underlying simple graph obtained from $[\mathcal{K}, \mathcal{B}]$ by shrinking each K_r^i into a vertex v_i . Graph G_R is called the *representative graph* of $K_{r(n)}$ since the previous decomposition can be represented by G_R in the following way: each vertex $v_i \in V(G_R)$ represents a component $K_r^i \subseteq \mathcal{K}$ and each edge $v_i v_j \in E(G_R)$ represents a bipartite graph $B_{ij} \subseteq \mathcal{B}$. Note that $G_R \cong K_n$. For example, observe that the representative graph of $K_{4(2)}$ is the complete graph K_2 . Figure 3 illustrates the canonical decomposition of $K_{4(3)}$ and its representative graph.

Now, we are ready to establish our main result.

Theorem 2.1. Let $G := K_{r(n)}$ be a complete equipartite graph with $r \ge 2$ and $n \ge 2$. If G has even order, then $\chi''_a(G) = \Delta(G) + 2$; otherwise, $\chi''_a(G) \le \Delta(G) + 3$.

Proof. (Sketch)

Initially, note that $\chi_a''(G) \ge \Delta(G) + 2$ since G has two adjacent vertices of maximum degree. Therefore, to prove Theorem 2.1, it is enough to build a $(\Delta(G) + 2)$ -AVD-total-colouring for G of even order and a $(\Delta(G) + 3)$ -AVD-total-colouring for G of odd order.

In order to build the required colouring, we decompose $K_{r(n)}$ into the

(a) $K_{4(3)}$ endowed with canonical labelling.

(b) The subgraph \mathcal{K} composed by 3 componentes isomorphic to K_4 .

(c) A scheme showing the canonical decomposition of $K_{4(3)}$. Each square represents a component $K_r^i \subseteq \mathcal{K}$. Thick lines joining squares represent the edges of bipartite graphs B_{12} , B_{13} , and B_{23} .

(d) The representative graph G_R of $K_{4(3)}$. Note that $G_R \cong K_3$.

Figure 3: Canonical decomposition of $K_{4(3)}$ and its representative graph G_R .

canonical decomposition $[\mathcal{K}, \mathcal{B}]$ and consider four cases depending on the parity of n and r. In each case, using the representative graph G_R , we assign suitable edge-colourings to subgraph \mathcal{B} and an AVD-total-colouring to subgraph \mathcal{K} in such a way that the result is an AVD-total-colouring of $K_{r(n)}$.

As an illustration, for the case n and r even, the components of subgraph \mathcal{K} receive an AVD-total-colouring with r + 1 colours, while subgraph \mathcal{B} receives an edge-colouring with (n - 1)(r - 1) new colours. The result is a $(\Delta(K_{r(n)}) + 2)$ -AVD-total-colouring of $K_{r(n)}$. For example, using

the canonical decomposition $[\mathcal{K}, \mathcal{B}]$ of $K_{4(2)}$, Figure 4(a) shows a 5-AVDtotal-colouring of subgraph \mathcal{K} and Figure 4(b) shows a 3-edge-colouring of subgraph \mathcal{B} . The result is an 8-AVD-total-colouring of $K_{4(2)}$.

(a) A 5-AVD-total-colouring of subgraph \mathcal{K} using colours 1, 2, 3, 4, 5.

(b) The subgraph \mathcal{B} endowed with a 3-edge-colouring using colours 6, 7, 8.

Figure 4: A canonical decomposition of $K_{4(2)}$ showing its 8-AVD-total colouring.

3 Concluding Remarks

According to Theorem 2.1, the AVD-total-colouring conjecture holds for complete equipartite graphs. Although the conjecture holds for $K_{r(n)}$ of odd order, the AVD-total-chromatic number is not determined for this case. Nevertheless, we have obtained ($\Delta(K_{r(n)})+2$)-AVD-total-colourings for some equipartite graphs of odd order. Based on these findings, we pose the following conjecture.

Conjecture 3.1. If $K_{r(n)}$ has odd order, then $\chi''_a(K_{r(n)}) = \Delta(K_{r(n)}) + 2$.

It is well known that the restriction of an AVD-total-colouring to a proper subgraph H of G is not necessarily an AVD-total-colouring of H. However, we observe that the restriction of our AVD-total-colouring of $K_{r(n)}$, with r and n even, to certain subgraphs of $K_{r(n)}$ is an AVD-total colouring for these subgraphs. Therefore, an extension of this work could be the study of the conditions under which the restriction of AVD-totalcolourings of complete equipartite graphs to their proper subgraphs results in AVD-total colourings for these subgraphs.

References

- [1] P. Balister, B. Bollobás, and R. Schelp. Vertex distinguishing colourings of graphs with $\Delta(G) = 2$. Discrete Mathematics, 252(2):17–29, 2002.
- [2] C. Bazgan, A. Harkat-Benhamdine, H. Li, and M. Woźniak. On the vertexdistinguishing proper edge-colouring of graphs. *Journal of Combinatorial Theory, Series B*, 75(2):288–301, 1999.
- [3] A. C. Burris and R. H. Schelp. Vertex-distinguishing proper edge colourings. *Journal of Graph Theory*, 26(2):73–82, 1997.
- M. Chen and X. Guo. Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes. *Information Processing Letters*, 109:599–602, 2009.
- [5] X. Chen and Z. Zhang. Avdtc numbers of generalized Halin graphs with maximum degree at least 6. Acta Mathematicae Applicatae Sinica, English Series, 24(1):55–58, 2008.
- [6] J. Hulgan. Concise proofs for adjacent vertex-distinguishing total colourings. Discrete Mathematics, 309:2548–2550, 2009.
- [7] V. Pedrotti and C. P. de Mello. Adjacent-vertex-distinguishing total colouring of indifference graphs. *Matemática Contemporânea*, 39:101–110, 2010.
- [8] Y. Wang and W. Wang. Adjacent vertex distinguishing total colourings of outerplanar graphs. J Comb. Optim., 19:123–133, 2010.
- [9] Z. Zhang, L. Liu, and J. Wang. Adjacent strong edge colouring of graphs. Applied Mathematics Letters, 15:623–626, 2002.
- [10] Z. Zhongfu, C. Xiang, L. Jingwen, Y. Bing, L. Xinzhong, and W. Jianfang. On adjacent vertex-distinguishing total colouring of graphs. *Science* in China Series. A Mathematics, 48(3):289–299, 2005.

A. G. Luiz Instituto de Computação, Universidade Estadual de Campinas Brazil gomes.atilio@gmail.com C. N. Campos Instituto de Computação, Universidade Estadual de Campinas Brazil campos@ic.unicamp.br

C. P. de Mello Instituto de Computação, Universidade Estadual de Campinas Brazil celia@ic.unicamp.br