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played on Cartesian product of graphs
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Abstract

Solitaire Clobber is a game played on a graph G by placing a

stone, black or white, on each vertex of the graph. We pick up a

stone and clobber another one of opposite color located on an ad-

jacent vertex; the clobbered stone is removed from the graph and

it is replaced by the picked one. The goal is to find a succession

of moves that minimizes the number of remaining stones, when no

move is possible. In 2008, Dorbec et al. proposed a more restric-

tive question related to determining the color and the location of

the remaining stones. A graph G is strongly 1-reducible if, for any

vertex v of G, for any arrangement of stones on G such that G \ v is

non-monochromatic, and for any color c, there exists a succession of

moves that yields a single stone of color c on v. This question was

studied by those authors for multiple cartesian product of cliques

(Hamming graphs). In this paper, we show a generalization of this

result by proving that if G and H are two strongly 1-reducible con-

nected graphs (both graphs with at least seven vertices), then the

cartesian product G□H is strongly 1-reducible.
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1 Introduction

Albert et al. [1] introduced a combinatorial game called Clobber which

is played as follows. Black and White stones are placed on a subset of

squares of an n x m checkerboard. The two players, Black and White,

move alternately by picking up one of their own stones and clobbering

an opponent’s stone on a horizontally or vertically adjacent square. The

clobbered stone is removed from the board and it is replaced by the picked

one. The game ends when one player, on their turn, is unable to move,

and then this player loses.

We investigate Solitaire Clobber, a 1-player version of the game, which

was proposed by Demaine et al. [4]. We play Solitaire Clobber on a graph

G by placing a stone, black or white, on each vertex of the graph. A move

consists of picking a stone and clobbering another one of opposite color

located on an adjacent vertex. The clobbered stone is removed from the

graph and it is replaced by the picked one. Now, the vertex with no stone

is deleted from the graph (together with their induced incident edges).

The goal is to find a succession of moves that minimizes the number of

remaining stones, when no further move is possible.

Let G = (V,E) be a simple graph where V = V (G) is the set of vertices

and E = E(G) is the set of edges. A configuration Φ of a graph G is a

mapping from V to Φ : V → { t, d}. We say that (G,Φ) is k-reducible

(for a positive integer k) if there exists a succession of moves that leaves

k stones on the graph.

Many authors have been studied the Clobber game. For example, one

of the contributions of Blondel et al. [3] was the proof that Clobber is

equivalent to an optimization problem on a set of words. This helped

Duchêne et al. [6] to present some new results on Solitaire Clobber, mostly

regarding the complexity aspect of the game. More results on this subject

can be found in the survey by Beaudou et al [2].

It was shown by Itáı et al. [7] that the hamiltonian path problem is

NP-complete on graphs in general, and for grid graphs in particular. Since
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there is a reduction from the hamiltonian path problem for grid graphs

to the problem of deciding 1-reducibility of a given pair (G,Φ), solitaire

clobber is NP-hard for grid graphs.

We need some few definitions before introducing one more complex

question about Solitaire Clobber proposed by Dorbec et al. [5].

Given a configuration Φ of G, if Φ(v) = d (resp. t), for all v ∈ V (G),

then Φ is called monochromatic; otherwise, Φ is non-monochromatic.

The cartesian product of G and H, written G□H, is the graph with

vertex set V (G)×V (H) with (u, v) adjacent to (u′, v′) if and only if u = u′

and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G). Graph G□H is composed by

|V (G)| = nG vertical copies of H, called Hj , and |V (H)| = nH horizontal

copies of G, called Gi, 1 ≤ i ≤ nH , 1 ≤ j ≤ nG. We say that vertex

(i, j) ∈ V (G□H) is located in line Gi and column Hj .

In 2008, Dorbec et al. [5] posed the following question: for any vertex v

of G, for any configuration of G (provided G \ v is non-monochromatic),

for any color c (black or white), does there exist a way to play that yields

a single stone of color c on v? If the answer is yes, then the graph G

is strongly 1-reducible. The authors have proved that all cliques of size

n ≥ 3 are strongly 1-reducible. Also, they have shown the result below

concerning the cartesian product of a clique and a strongly 1-reducible

graph G.

Theorem 1.1. [5] Let G be a strongly 1-reducible graph containing at

least four vertices. Then for any positive integer n, Kn□G is strongly

1-reducible. ■

In our previous work [9], we have proved that powers of paths P r
n and

powers of cycles Cr
n, r ≥ 3 are strongly 1-reducible. In this work we show

a generalization of Theorem 1.1 [5] by proving the following result:

Theorem 1.2. Let G and H be two strongly 1-reducible connected graphs,

with |V (G)| ≥ |V (H)| ≥ 7, then G□H is strongly 1-reducible.

Next section presents notation and our main results. Due to space limit,
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some proofs will be omitted. We conclude with some remarks about the

small cases.

2 Main Results

A color c is rare on G if there exists exactly one vertex v ∈ V (G) such

that Φ(v) = c. We can also say that vertex v is rare in Φ. In this case,

we have a quasi-monochromatic configuration, or more precisely, a quasi-

monochromatic configuration on vertex v. A non-quasi-monochromatic

configuration Φ of G is a configuration with no rare color on G. We

remark that a non-quasi-monochromatic configuration Φ on vertex v is a

configuration in which the rare color is not in v, that is, Φ can be quasi-

monochromatic with rare color in v′ ̸= v, v′ ∈ V (G).

We say that (G,Φ) is (1, v, c)-reducible if (G,Φ) is 1-reducible on v with

color c. Therefore G is strongly 1-reducible if (G,Φ) is (1, v, c)-reducible

for all v and for all c such that G \ v is non-monochromatic.

Let G′ be a subgraph of G□H. We call ΦG′ the restriction of Φ to the

vertices of V (G′). If c = d (resp. t), then c̄ = t (resp. d). From now

on, |V (H)| ≥ |V (G)| ≥ 7 and, without loss of generality, we consider that

vertex v, on which we have to leave the last stone, is in line G1 and column

H1, i.e., v = (1, 1).

Lemma 2.1. Let G and H be two strongly 1-reducible connected graphs

of order at least seven. Let Φ of G□H be non-monochromatic. If there

exist i, i′ ∈ {1, . . . , nH}, such that for all u ∈ V (Gi− (i, 1)), Φ(u) = tand,
for all u′ ∈ V (Gi′ − (i′, 1)), Φ(u′) = d, then G□H is (1, v, c∗)-reducible.

Proof. Let G and H be two strongly 1-reducible graphs with at least seven

vertices. Assume that v is the vertex on which we leave the last stone. Let

c∗ ∈ { t, d} be the color of vertex v in the end of the game. We consider

any arrangement of stones such that for all u ∈ V (Gi − (i, 1)), Φ(u) = t
and, for all u′ ∈ V (Gi′ − (i′, 1)), Φ(u′) = d, i, i′ ∈ {1, . . . , nH}. We play

on Hj columns, j ̸= 1, clobbering and reducing them to a unique line Gi′′ ,
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and then we play on Gi′′ reducing it to one stone of color c′ on vertex

(i′′, 1). Finally, we play on column H1 which contains v. We have three

different cases.

If Φ(i, 1) = t and Φ(i′, 1) = d then let i′′ ∈ {1, . . . , nH} such that

i′′ ̸= i, i′′ ̸= i′ and w.l.o.g. let c′ = t. For all j > 1, (Hj ,ΦHj ) is

(1, (i′′, j), c)-reducible for any chosen c ∈ { d, t} such that Φ restricted to

V (Gi′′ − (i′′, 1)) is non-monochromatic. Thus (Gi′′ ,Φ
′
Gi′′

) is (1, (i′′, 1), c′)-

reducible. Hence, (H1,Φ
′
H1

) is (1, v, c∗)-reducible. This case is depicted

in Figure 1.
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Figure 1: Case Φ(i, 1) = • and Φ(i′, 1) = ◦.

Otherwise suppose w.l.o.g. Φ(i, 1) = d and Φ(i′, 1) = d. If there exists

l ∈ {1, . . . , nH} − {1, i, i′} such that Φ(l, 1) = d then we set i′′ = l and

c′ = t, and we proceed as in the previous case.

Else, for any l ∈ {1, . . . , nH} − {1, i, i′}, we have Φ(l, 1) = t. Let

i′′ = 1 and c′ = d. Now, for all j > 2, (Hj ,ΦHj ) is (1, (i
′′, j), t)-reducible

and (H2,ΦH2) is (1, (i
′′, j), d)-reducible. Thus (Gi′′ ,Φ

′
Gi′′

) is (1, (i′′, j), c′)-

reducible. Hence the choice of i′′ and c′ guarantee that (H1,Φ
′
H1

), is

(1, v, c∗)-reducible. ■

Corollary 2.1. Let G and H be two strongly 1-reducible connected

graphs of order at least seven. Let Φ of G□H be non-monochromatic.

If there exist j, j′ ∈ {1, . . . , nG}, such that for all u ∈ V (Hj − (1, j)),

Φ(u) = t and, for all u′ ∈ V (Hj′ − (1, j′)), Φ(u′) = d, then G□H is
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(1, v, c∗)-reducible. ■

Thanks to Lemma 2.1, one may assume that, for any pair (i, i′), if for all

u ∈ V (Gi − (i, 1)), Φ(u) = c1 and, for all u′ ∈ V (Gi′ − (i′, 1)), Φ(u′) = c2,

then c1 = c2, with i, i′ ∈ {1, . . . , nH}, c1, c2 ∈ { t, d}. Similarly for Hj .

If for all u ∈ V (Gi − (i, 1)), Φ(u) = c1, and for all u′ ∈ V (Hj −
(1, j)), Φ(u′) = c1, then Φ of G \ v is monochromatic (contradiction),

i ∈ {1, . . . , nH}, j ∈ {1, . . . , nG}, c1 ∈ { t, d}. Therefore, one may assume

that there exists i ∈ {1, . . . , nH} and u, u′ ∈ V (Gi − (i, 1)) such that

Φ(u) = d and Φ(u′) = t. Thus, there exists i ∈ {1, . . . , nH} such that

(Gi,ΦGi) is (1, (i, 1), c)-reducible for any c ∈ { t, d}.
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Figure 2: Example of a sequence M of moves in (Gi,ΦGi).

Let ΦGi be non-monochromatic and non-quasi-monochromatic on ver-

tex (i, 1). Then (Gi,ΦGi) is (1, (i, 1), c)-reducible, for all c ∈ { t, d}. Let

M be a sequence of moves in (Gi,ΦGi) corresponding to a (1, (i, 1), c)-

reduction. Observe that M induces a spanning tree T of Gi rooted on

(i, 1). See Figure 2.

The idea is to clobber the columns according to sequence M and to the

maximal quasi-stars of T , which we define next.

We define a star s with center m as a digraph with vertex set V (s) =

{i1, . . . , ip,m, o} with arcs
−→
ijm and

−→
mo, 1 ≤ j ≤ p. A model of star is

depicted in Figure 3. A quasi-star is either a star or a star minus vertex

o.

We can partition the edges of T into stars s1, s2, . . . , st−1 plus a quasi-
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Figure 4: Playing from Hij to Hm.

star st. Let sj be the maximal quasi-star with center m in T such that

m is a vertex where each vertex ij of arc
−→
ijm is a leaf in the subgraph

induced by T −
⋃
e∈sℓ

e, ℓ < j. Observe that any arc (move) of T belongs

to exactly one star of s1, . . . , st and that each vertex ij is associated with

column Hij . Moreover, all sj (j < t) are stars and st is a quasi-star which

is not a star.

Now, for induction purposes, let Sk = {sk, . . . , st}, 1 < k ≤ t, be the

set of stars plus the quasi-star st. Let T k be the subgraph of T induced

by vertices belonging to
t⋃

j=k

sj and let Gk be the subgraph induced by the

vertices of T k. Let Φk be an assignment of V (Gk) to { t, d} which satisfies

the following property (P).

(P): If configuration Φk
Hj

is monochromatic or quasi-monochromatic on

(i, j), then Φk
Hj

= ΦHj .

This property states that if, in an inductive step k, Φk
Hj

is monochro-

matic then this is its original configuration ΦHj , which means that our

strategy never turns a configuration of a column Hj monochromatic or

quasi-monochromatic on (i, j). In addition, we observe that each time we

modify a configuration of a column then it turns non-monochromatic and

non-quasi-monochromatic on (i, j).

We consider vertex v the vertex on which we leave the last stone and

let c∗ ∈ { t, d} be the color of vertex v in the end of the game. In the

next Claim we show how to play on the maximal quasi-stars, according
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to the columns represented by each vertex ij . We show strategies to

clobber columns Hij in such a way that the last one, Hm or Ho, is non-

monochromatic and non-quasi-monochromatic on v.

Claim 2.1. (Gk□H,Φk
H) is (1, v, c∗)-reducible.

Sketch of Proof. The proof works by induction on k. Let sk be a quasi-star

in T k. Let {i1, . . . , ip,m} be the vertices of sk (if t > 1, then sk contains

also a vertex o). We consider the following cases.

Case 1. First assume that each Φk
Hij

is non-monochromatic, ij ∈ {1, . . . , p}.
Play, step by step, from Hij to Hm in such a way that the resulting

labeling of Hm is non-monochromatic and non-quasi-monochromatic on

vertex (1,m). See Figure 4. For instance, choose two vertices (a,m) and

(b,m) distinct from (1,m) and having the same color c, with c in { t, d}.
These vertices exist due to the fact that |V (H)| ≥ 7.

By hypothesis, (Hij ,Φ
k
Hij

) is either (1, (a, ij), c̄)-reducible or (1, (b, ij), c̄)-

reducible. Suppose that (Hij ,Φ
k
Hij

) is (1, (a, ij), c̄)-reducible. Then, do

the corresponding moves. Move from (a, ij) to (a,m). We get a config-

uration of Hm that is non-monochromatic and non-quasi-monochromatic

on (1,m). One can iterate this process for all ij ∈ {2, . . . , p}. Let Φ′
Hm

be

the resulting configuration.

Now, to achieve the moves of s1, we consider the next cases t > 1 or

t = 1.

Case 1a. If t = 1, then v = (1,m). Since (Hm,Φ′
Hm

) is (1, (1,m), c∗)-

reducible, this completes the proof in this case.

Case 1b. If t > 1, then (again) let (a, o) and (b, o) be two vertices of Ho,

distinct from (1, o) and having the same color c. Without loss of general-

ity, one may assume that (Hm,Φ′
Hm

) is (1, (a,m), c̄)-reducible. Then do

the corresponding moves. Move from (a,m) to (a, o). We get a labeling

of Ho satisfying (P). Conclude by applying the induction hypothesis on

sk+1, ..., st, with Φk+1 = Φk, except for (a,m).
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Case 2. Assume now that there is some r ≤ p such that Φk
Hij

is monochro-

matic t, for all ij ≤ r.

We define ((x, y), c) → ((x′, y′), c̄) as a move from vertex (x, y) with color

c to vertex (x′, y′) with color c̄. Our goal is to clobber these r monochro-

matic columns Hij by producing a sequence that reduces (Hm,ΦHm) with

r moves d→ t or t→ d→ d. We proceed by guaranteeing a sufficient

number of black stones in Hm, by using the techniques below and by

applying the induction hypothesis.

A move ((a,m), d) → ((b,m), t) in Hm, i.e. d→ t for short, is played

as follows. We refer to Figure 5. Move ((a,m), d) → ((a, ij), t) with

ij ≤ r. Now consider the (1, (b, ij), d)-reduction of (Hij ,ΦHij
). Move

((b, ij), d) → ((b,m), t).
Hi j

Hm

2

1
(a, m)

(b, m)

Figure 5: A move ◦ → •.

Hi j
Hm

1

2

3

(a, m)

(b, m)

(c, m)

Figure 6: A move • → ◦ → ◦.

A move ((a,m), t) → ((b,m), d) → ((c,m), d) in Hm, i.e. t→ d→ d
for short, is played as follows. We refer to Figure 6. Move ((b,m), d) →
((a,m), t) and then ((a,m), d) → ((a, ij), t) with ij ≤ r. Now consider

the (1, (c, ij), t)-reduction of (Hij ,ΦHij
). Move ((c, ij), t) → ((c,m), d).

Similarly to Case 1, we consider the following cases: Case 2a (t > 1)

and Case 2b (t = 1). Finally, we conclude this sketch of the proof by

showing the last technique used in case Case 2b.

A move ((a,m), t) → ((b,m), d) in Hm, i.e. t → d for short, is de-

fined if there exists some ij′ > r such that (Hij′ ,Φ
k
Hij′

) is non-quasi-

monochromatic on (a, ij′). First, consider a (1, (a, ij′), d)-reduction of

(Hij′ ,Φ
k
Hij′

). We refer to Figure 7. Move ((a, ij′), d) → ((a,m), t) and

then ((a,m), d) → ((a, ij), t) for some ij ≤ r. Then, apply a (1, (b, ij), t)-
reduction of (Hij ,Φ

k
Hij

) and move ((b, ij), t) → ((b,m), d).
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Hi j

Hi j

..
.

..
.

3

2

1

H m

(a, m)

(b, m)

Figure 7: A move • → ◦.

■

Our main result, Theorem 1.2, is a direct consequence of Claim 2.1.

3 Conclusion

The strong reducibility of Solitaire Clobber was studied for certain

classes of graphs and the state of the art can be summarized in Table 1.

Graph classes References

Hamming graphs, except hypercubes and K2□K3 Dorbec et al. [5]

All cliques of size n ≥ 3 Dorbec et al. [5]

Powers of cycles Cr
n, r ≥ 3 Pará et al. [8]

G□Kn, n ≥ 4, where G is S1R with at least 4 vertices Dorbec et al. [5]

G□H, where both G and H are S1R with at least 7 vertices This paper

Table 1: Strongly 1-Reducible (S1R) graph classes.

In this paper we complete Table 1 by proving that if G and H are

two connected S1R graphs with at least seven vertices, then the Solitaire

Clobber game played on G□H is strongly 1-reducible. We verify that if

3 ≤ |V (G)| ≤ 7 and 3 ≤ |V (H)| ≤ 7, then Theorem 1.2 remains true;

and these small cases can be checked by hand. There are graphs which

admit a coloring for which they are not strongly 1-reducible: K2□K2 and
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K2□K3, as shown by Dorbec et al. [5]. And, thanks to Theorem 1.1, if

|V (G)| = 2 and |V (H)| ≥ 4 then G□H is strongly 1-reducible.
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[8] Pará, T., Gravier, S., and Dantas, S., Strong reducibility of powers of

paths and powers of cycles on Impartial Solitaire Clobber, Eletronic

Notes in Discrete Mathematics, 37, pp. 177–182, 2011.
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Simone Dantas

IME, Universidade Federal

Fluminense, Brazil.
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COPPE, Universidade Fede-

ral do Rio de Janeiro, Brazil.
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