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Abstract

A probe graph for a graph class C is a graph G = (V,E), such that

it is possible to add some edges between vertices of an independent

set N in order to obtain a graph G′ belonging to C [7]. If the inde-

pendent set N ⊂ V is given as input, we have a special case of graph

sandwich problem [6], called partitioned probe problem. A graph

partition of a graph G = (V,E) is a partition of V into a number of

parts. A graph partition problem consists in finding a graph parti-

tion where the parts satisfy some internal or external constraints. A

three nonempty part problem is a graph partition problem, such that

V must be partitioned in exactly three nonempty parts. All possible

such nonempty part problems, reflecting the various combinations of

internal and external constraints, are classified as polynomial or NP-

complete in both recognition and sandwich versions [14]. We focus

on three nonempty part partitioned probe problems, for which their

sandwich version is NP-complete and their recognition version is

polynomial. We show that most of those partitioned probe problems

have a behavior strongly similar to their recognition version, despite
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of being a special case of a NP-complete sandwich problem. This

result completely classifies into polynomial time or NP-complete all

three nonempty part partitioned probe problems with the exception

of the clique cutset partitioned probe problem.

1 Introduction

In the past, computer science researchers worked hard on hardware and

software in order to make computers useful for people. Now, we note that

the main need of the population turns out to be communication. The large

scale computer’s use on social networks leads the investment on science

to problems like communities location. These problems can be modeled,

with the use of graph theory, as graph partition problems which is the

focus of this work [9].

We say that a graph G = (V,E) is a sandwich graph for the pair G1 =

(V,E1), G2 = (V,E2) if E1 ⊆ E ⊆ E2. The graph sandwich problem

for property Π is defined by Golumbic et al. as follows [6]:

graph sandwich problem for property Π

Instance: Vertex set V , forced edge set E1, optional edge set

E2 \ E1.

Question: Is there a graph G = (V,E) such that E1 ⊆ E and

E ⊆ E2, and G satisfies property Π?

Golumbic et al. [6] have considered sandwich problems with respect to

several subclasses of perfect graphs, and proved that the graph sand-

wich problem for split graphs remains in P.

A three nonempty part partition of a graph is a partition of its vertex

set into three nonempty subsets satisfying internal or external constraints.

An internal constraint refers to constraints within the parts as to be a

clique, or an independent set. An external constraint refers to constraints

between different parts as to be completely adjacent or nonadjacent to

other parts. The full complexity dichotomies into P or NP-complete of the
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three nonempty part for both recognition [8] and sandwich versions [14]

have been determined.

Polynomial sandwich problems are rare, so the particular instance where

the optional edges of E2\E1 are required to have both endpoints in a given

independent set of the forced graphG1 was considered as the partitioned

probe problem.

partitioned probe problem for property Π

Instance: Vertex set V , edge set E, partition of V = (N ,P),

where N is an independent set.

Question: Is there a graph G′ = (V,E′) such that E ⊆ E′, all

edges of E′ \E have both endpoints in N , and G′ satisfies

property Π?

Several partitioned probe problems have been studied, all of them so

far classified as polynomial: cographs [12], P4-parse [10], permutation

graphs [11], threshold [1], chordal graphs [2], chain graphs [7], and triv-

ially perfect graphs [1], leading to the Probe Graph Conjecture (PGC):

“Partitioned probe graphs of C are polynomially recognizable whenever

C is polynomially recognizable” [12]. More results and open problems on

partitioned probe graphs can be found in [3].

Looking at sandwich problems as a generalization of recognition prob-

lems, the first and natural approach is to consider a property Π that can

be recognized in polynomial time and to generalize the recognition algo-

rithm. For partitioned probe problems, in addition to this approach, we

consider sandwich problems for which property Π turns out to be NP-

complete. Thus the studies on the three nonempty part partitioned probe

problem were focused on those problems which are interesting in terms

of their complexity, i.e., NP-complete sandwich problems and polynomial

recognition problems. Such problems are twenty one: clique cutset [13],

(2, 1)-partition [4] and other nineteen solved in [14].

We note that a graph G satisfies the complementary property Π if, and

only if, G satisfies Π. While for graph sandwich problem, property Π
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has trivially the same complexity as property Π, in partitioned probe

problem, it may not occur. In this paper, we establish the complexity

dichotomy for all three nonempty part partitioned probe prob-

lems, in which property Π is the membership to a class defined by three

nonempty parts, with the exception of clique cutset and (2, 1)-partition

problems, by proving that the remaining nineteen problems cited above

and their complementary versions are in P.

2 Solution

Consider the nineteen problems depicted in Table 1, representing the

three nonempty part sandwich problems classified as NP-complete by [14].

The first seven columns represent: the numbering of problems following

[14]; and the internal and the external constraints imposed by each prob-

lem.

Let U,U ′, U ′′ ∈ {A,B,C} with U ̸= U ′ ̸= U ′′. We note that a column

entry corresponding to part U equal to 0 (resp., 1, ∗) requires that part

U induces a stable set (resp., clique, arbitrary subgraph). An entry in a

column UU ′ equal to 0 (resp., 1, ∗) requires ‘no edges’ (resp., ‘all edges’,

‘no constraint’) between a vertex placed in part U and a vertex placed in

part U ′.

Next, we prove that each corresponding partitioned probe version is

classified as polynomial. In order to solve these problems, we present a

single tool which uses similar techniques shown in [5, 15] for recognition

or sandwich problems.

Let V = (N ,P) be a partition of V . First, each vertex of V receives a

list ABC. During the process, these vertices will have their lists reduced,

according to the internal or external constraints imposed by each problem,

so that a solution corresponds to a successful reduction of each list to a

unitary list. Every time all list sizes are reduced to at most 2, we can

solve the problem by using 2-SAT. The algorithm tries three possibilities

for set P with respect to the target partition into parts A, B and C: first,
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all vertices of P belong to the same part; second, there is precisely one

part without vertices of P; and third there is no part without vertices of

P.

In the first possibility, the problem can be easily solved. In the sec-

ond possibility, there exists only one part U without vertices of P then,

each pair of vertices of P are placed in a distinct part, w.l.o.g., we place

xU ′ , xU ′′ ∈ P in parts U ′ and U ′′ respectively. So vertices xU ′ , xU ′′ have

list U ′ and U ′′, respectively, each vertex of P\{xU , xU ′′} receives list U ′U ′′,

and each vertex of N receives list ABC. This procedure can be applied

to all problems with the exception of four (i.e., (14), (16), (42) and (43))

for which there exist vertices with list of size three. In these cases, this

problem admits a solution if, and only if, there also exists a particular

solution with the part U = {xU}, with xU ∈ N , so we eliminate list U of

all vertices but xU .

In the third possibility, each triple of vertices of P are placed in a distinct

part, w.l.o.g., we place xA, xB, xC ∈ P in parts A, B, and C, respectively.

So, vertices xA, xB and xC have list A, B and C respectively, and each

vertex of V \ {xA, xB, xC} receives list ABC. We refer to Table 1 for the

nineteen problems and their respective lists. We recall that if a vertex v

has list AC, this means that v cannot be placed in part B.

If during the process, the list of a vertex is reduced to the empty set,

then the procedure stops with the answer NO, and the instance in question

does not have such a corresponding three nonempty part partitioned probe

partition.

We note that each one of the nineteen complementary problems for

property Π has the same set of lists of the corresponding problem for Π.

Hence, all problems can be solved by using the very same procedure.

3 Conclusion

We have shown a procedure for the nineteen three nonempty part

partitioned probe problems (and their complementary versions) for
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which the corresponding graph sandwich problems were classified as

NP-complete [14]. For each O(n3) feasible assignment of one vertex to

each part, this process update the list of each vertex v ∈ V (G) in O(n2)

in order to keep the internal and external constraints satisfied. The solu-

tion arises from a polynomial reduction to a 2-SAT instance that can be

solved in linear time. Finally, we highlight in Table 2 the matrix entries of

the constraints imposed by (2, 1) and clique cutset partition problems. We

observe that (2, 1) partitioned probe problem was recently shown to

be polynomial [16], so this classifies into polynomial time or NP-complete

all three nonempty part partitioned probe problems with the ex-

ception of only one problem, the clique cutset partitioned probe

problem, which we set as candidate to be NP-complete.

Problem A B C AB AC BC Complexity

Clique cutset 1 * * * * 0 Open

(2, 1) 0 0 1 * * * P[16]

Table 2: The only open three nonempty part partitioned probe

problem.
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