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“Parallel ” Transport - Revisited

Jim Stasheff

Abstract

Parallel transport in a fibre bundle with respect to smooth paths
in the base spaceB have recently been extended to representations
of the smooth singular simplicial set Singsmooth(B). Inspired by
these extensions, I revisit the development of a notion of ‘parallel’
transport in the topological setting of fibrations with the homotopy
lifting property and then extend it to representations of Sing(B)
on such fibrations. Closely related is the notion of (strong or ∞)
homotopy action, which has variants under a variety of names.

1 Introduction/History

In classical differential geometry (“a language the muse did not sing at
my cradle” - see below), parallel transport is defined in the context of
a connection on a smooth bundle p : E → B. The latter can mean a
covariant derivative operator, a differential 1-form or a set of horizontal
subspaces in the tangent bundle Tp : TE → TB. The corresponding
parallel transport τ : E ×B BI → E is constructed by lifting a path in B
to a unique! path in E with specified starting point. The holonomy is
given by the evaluation of τ on ΩB, the space of based loops in B. The
holonomy group is the image as a subgroup of the structure group of the
bundle. That it is a group follows from the uniqueness of the lifting. It
is well defined up to conjugation depending on the choice of base point.

If p : E → B is only a fibration of topological spaces, the situation is
different: we still can lift paths but not uniquely. However, the lifts are
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related by homotopies, so that the right action of ΩB on the fibre F is
well behaved up to homotopy, i.e.

F × ΩB × ΩB
m×1
−−−−→ F × ΩB

1×a





y





y

a

F × ΩB
a

−−−−→ F

is homotopy commutative, where m is multiplication in ΩB and a is the
action. In fact, there is a whole sequence of coherent higher homotopies,
which we review below. (Because λµ denotes travelling along λ first and
then along µ, the action will be written as right action: (f, λ) 7→ fλ.)

Perhaps the oldest treatment in algebraic topology (I learned it as a
grad student from Hilton’s Introduction to Homtopy Theory [10] - the
earliest textbook on the topic) is to consider the long exact sequence,
where F is the fibre over a chosen base point in B,

· · · → πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ · · ·

ending with

· · · → π1(B)→ π0(F )→ π0(E)→ π0(B).

Of course, exactness is very weak at the end since the last three are in
general only sets, but exactness at π0(F ) is in terms of the action of
π1(B) on π0(F ). This passage to homotopy classes obscures the ‘action’
of ΩB on F . Initially, this was referred to as a homotopy action, meaning
only that λ(µf) was homotopic to (λµ)f for f ∈ F and λ, µ ∈ ΩB.

In those days, at least at Princeton, there was no differential geometry
until Milnor gave an undergrad course my final year there. Notice that
our book ‘Characteristic Classes’ [14] considers differential forms only in
Appendix C, added much later. I think this lack of de Rham theory in
my graduate education was the result of Serre’s thesis which triumphed
over characteristic 0, cf. Colloque de Topologie, Bruxelles (1950). Only
recently have I learned of even greater significance of the metric geometry
for the boundary map πn(B)→ πn−1(F ) [5].

Similarly, I learned only much lateer of the notion of thin homotopy
which quotients ΩB to a group without losing so much information. Just
recently, Johannes Huebschman led me to a paper of Kobayashi (from
1954!) where he is already using what is now called thin homotopy



“Parallel ”Transport - Revisited 193

in terms of parallel transport and holonomy for smooth bundles with
connection.

Back in 1966, in the Mexican Math Bulletin [21], a journal not read-
ily available[21] (although summarized in [19, 20]), I showed that in the
topological setting of fibrations (satisfying the homotopy lifting prop-
erty), there was a notion of ‘parallel’ transport not dependent on having
a connection. This meant not only the above homotopy action, but in
fact an sh (or A∞)-action, which is to say the adjoint ΩB → End(F )
was an A∞-map. (Not long after, Nowlan [16] studied more general
A∞-actions of fibres on total spaces.) Note that the homotopy lifting
property does not imply unique lifting, so even the composition of paths
is not necessarily respected when lifting.

For my purposes, it was sufficient to consider transport along based
loops in the base, though the arguments allow for transport along any
path in the base.

Inspired by Block-Smith [3] and Igusa [12], Abad and Schaetz [1]
showed that ‘flat’ smooth parallel transport (e.g. as in [12, 3]) can be
derived from the A∞ version of de Rham’s theorem due to Gugenheim
[9]; this allows them to extend parallel transport to an A∞-functor. They
work with what is known as the ∞-groupoid Π∞(B) of a space B and
its representations up to homotopy on a fibre bundle E → B. The ∞-
groupoid Π∞(B) can be represented as a simplicial set: the singular
complex Sing(B). This led me to revisit my earlier work on ‘parallel’
transport and extend work to the fibrations setting, i.e. without any
smoothness or connection operator or differential form or any infinitesi-
mal input. (For general smooth parallel transport from a different point
of view, see [7].)

What I am after here is an analog of parallel transport along paths ex-
tended to parallel transport over (maps of) simplices, not just 1-simplices.

Remark 1.1. Just as there is only linguistic difference between an action
of a group on an object and a representation of that group, the same is
true in the homotopy setting, but sometimes a homotopy action means
only the existence of a single homotopy and some times the usual coherent
collection of higher homotopies; when in doubt, it is best to prepend A∞
or strong homotopy.
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2 The ‘classical’ topological case

We first recall what are rightly known as Moore paths [15] on a topolog-
ical space X.

Definition 2.1. Let R+ = [0,∞) be the nonnegative real line. For a

space X, let Moore(X) be the subspace of Moore paths ⊂ XR+

× R+ of
pairs (f, r) such that f is constant on [r,∞). There are two maps

• ∂−, ∂+ : Moore(X)→ X,

• ∂−(f, r) = f(0),

• ∂+(f, r) = f(r).

Recall composition ◦ of Moore paths in Moore(X) is given by sending
pairs (λ, r), (µ, s) ∈Moore(X) such that λ(r) = µ(0) to λµ ∈Moore(X)
which is constant on [r+s,∞), λµ|[0, r] = λ|[0, r] and λµ(t) = µ(t−r) for
t ≥ r. An identity function ǫ : X →Moore(X) is given by ǫ(x) = (x̂, 0)
where x̂ is the constant map on R+ with value x.

Composition is continuous and gives, as is well known, a category/∞-
groupoid structure on Moore(X).

If we had used the ‘ancient’ Poincaré paths I → X, we would have
had to work with an A∞-structure on XI . Indeed, it was working with
that standard parameterization which led to A∞-structures [22, 17].

For a category C, we denote by C(n) the set of n-tuples of composable
morphisms. In partcular, we will be concerned with Moore(B)(n). We

will write t for (t1, · · · , tn) and t̂i for (t1, · · · , ti−1, ti+1, · · · , tn), Back in
1988 [18], I referred to strong homotopy representations, but today I will
use the representation up to homotopy terminology, having in mind the
generalization that comes next.

Definition 2.2. A representation up to homotopy of Moore(B) on
a fibration E → B is an A∞-morphism (or shm-morphism [23]) from
Moore(B) to EndB(E); that is, a collection of maps

θn : In−1 × E ×B Moore(B)(n) → E

(where E ×B Moore(B)(n) consists of n + 1-tuples (e, λ1, . . . , λn) where
the λi are composable paths, constant on [ri,∞), and p(e) = λ1(0)) such
that

p(θn(t, e, λ1, . . . , λn)) = λn(rn),
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θn(t,−−, λ1, . . . , λn)

is a fibre homotopy equivalence and satisfies the usual/standard relations:

• θn(t1, · · · , ti = 0, · · · , tn−1, e, λ1, . . . , λn)) = θn−1(t̂i, e, · · · , λiλi+1, · · · ))

• θn(t1, · · · , ti = 1, · · · , tn−1, e, λ1, . . . , λn)) =
= θi(· · · , ti−1, θn−i(ti+1, · · · , tn−1, λi, · · · , λn, e), λ1, . . . , λi−1, ).

Remark 2.3. That the parameterization is by cubes, as for Sugawara’s
strongly homotopy multiplicative maps rather than more general poly-
topes, reflects the fact that Moore(X) and EndB(E) are strictly asso-
ciative. Strictly speaking, referring to Moore(B) → EndB(E) as an
A∞-map raises issues about a topology on EndB(E); the adjoint formu-
las above avoid this difficulty.

Even more difficult, at least for exposition and detailed proofs, would
be the use of ‘Poincaré’ loops requiring θn to use Kn+1 instead of In−1.

Since our construction uses in a crucial way the homotopy lifting
property, we first construct maps

Θn : In × E ×B Moore(B)(n) → E

such that the desired θn are then recovered at t1 = 1.
The idea is that if Θj has been defined satisfying these relations for

all j < n, the Θn−1 will fit together to define Θn on all faces of the cube
except for the face where t1 = 1. In analogy with the horns of simplicial
theory, we will talk about filling an open box, meaning the boundary of
the cube minus the open face, called a lid, where ti = 1 (compare horn-
filling in the simplicial setting). Use the homotopy lifting property to
‘fill in the box’ in E after filling in the trivial image box in B. That box
in B is a trivial box since it is just the composite path λ1 · · ·λn.

It might help to consider the cases n = 1, 2. Consider (λ, r) ∈Moore(B).
Lift λ to a path (λ̄, r) starting at e ∈ E.Define Θ1 : I×E →Moore(B)→
E by

Θ1(t, e, (λ, r)) = (λ̄, r)(tr) ∈ E

and θ1(e, (λ, r)) = Θ1(1, e, (λ, r)) =: e(λ, r).
Now lift (µ, s) to a path (µ̄, s) starting at e(λ, r) ∈ E and lift (λ, r)(µ, s)

to a path (λµ, r+s) starting at e. These lifts fit together to define a map
to E, which will be the restriction of the desired map on the open 2-
dimensional box of the desired map Θ2. This open box has an image in
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B which can trivially be filled in. Regarding the filling as a homotopy,
the map to E on the open 2-dimensional box can be filled in by lifting
that homotopy.

Theorem 2.4. (cf. Theorem A in [21]) For any fibration p : E → B,
there is an A∞-action {θn} of Moore(B) on E such that θ1 is a fibre
homotopy equivalence. This action is unique up to homotopy in the A∞-
sense.

In Theorem B in [21], I proved further:

Theorem 2.5. Given an A∞-action {θn} of the Moore loops ΩB on a
space F , there is a fibre space pθ : Eθ → B such that, up to homotopy,
the A∞-action {θn} can be recovered by the above procedure. If the A∞-
action {θn} was originally obtained by the above procedure from a fibre
space p : E → B, then pθ is fibre homotopy equivalent to p.

This construction gave rise to the slightly more general (re)construction
below. It can also be generalized to give an ∞-version of the Borel con-
struction/homotopy quotient: G→ X → XG = X//G for an A∞-action
[13].

3 Upping the ante to Sing

Inspired by Block-Smith [3] and Igusa [12], Abad and Schaetz [1] look
not at just composable paths, but rather look at the singular complex
Sing(B). For a singular k-simplex σ : ∆k → B, there are several k-tuples
of composable paths from vertex 0 to vertex k by restriction to edges, in
fact, k! such. Given σ, we denote by Fi the fibre over vertex i ∈ σ.

Following e.g. Abad-Schaetz [1] (based on Abad’s thesis and his ear-
lier work with Crainic), we make the following definition of a represen-
tation up to homotopy, where we take a singular k-simplex σ to be (the
image of )
< 0, 1, · · · , k > with the p-th face ∂pσ being< 0, · · · , p−1, p+1, · · · , k > .
However, we keep much of the notation above rather than switch to
theirs.

Definition 3.1. A representation up to homotopy of Sing(B) on a fi-
bration E → B is a collection of maps {θk}k≥0 which assign to any
k-simplex σ : ∆k → B a map θk(σ) : I

k−1 × F0 → Fk satisfying, for any
e ∈ F0, the relations:
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θ0 is the identity on F0

For any (t1, · · · , tk−1),
θk(σ)(t1, · · · , tk−1,−) : F0 → Fk is a homotopy equivalence.

For any 1 ≤ p ≤ k − 1 and e ∈ F0,

θk(σ)(· · · , tp = 0, · · · , e) = θk−1(∂pσ)(· · · , t̂p, · · · , , e)

θk(σ)(· · · , tp = 1, · · · , e) =

= θp(< 0, · · · , p >)(t1, · · · , tp−1, θq(< p, · · · , k >)(tp+1, · · · , tk, e)).

Remark 3.2. In definition 2.4, we worked with Moore paths so that
the A∞- map was between strictly associative spaces. Here instead the
compatible 1-simplices compose just as e.g. a pair of 1-simplices and are
related to a single 1-simplex only by an intervening 2-simplex. Associa-
tivity is trivial; the subtlety is in handling the 2-simplices and higher ones
for multiple compositions. The idea of constructing a representation up
to homotopy is very much like that of Theorem 1, the major difference
being that instead of comparing two different liftings of the composed
paths which are necessarily homotopic, we are comparing a lifting e.g.
of a path from 0 to 1 to 2 with a lifting of a path from 0 to 2 IF there is
a singular 2-simplex < 012 >. However, note that < 02 > plays the role
of λ1λ2 of Moore paths in the above formulas.

Theorem 3.3. For any fibration p : E → B, there is a representation
up to homotopy of Sing(B) on E.

Remark 3.4. The fact that the representation up to homotopy is by
fibre homotopy equivalence (as for the action of Moore(B)) is justified
by the following: Since a simplex σ is contractible, the pullback σ∗E is
fibre homotopy trivial over σ. Choose the requisite lifts in σ∗E using a
trivialization corresponding to the homotopy we want to lift and then
map back into E.

Remark 3.5. In contrast to the smooth bundle case where a connection
provides unique path lifting, the fibration case is considerably more subtle
since path and homotopy lifting is far from unique.

The proof is in essence the same as that for Theorem 2.4. The desired
θn will appear as the missing lid on an open box (defined inductively)
which is filled in by homotopy liftings Θn of a coherent set of maps

pn : In → ∆n,
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where ∆n is the set

{(t1, · · · , tn)|0 ≤ t1 ≤ t2... ≤ 1},

are given in terms of iterated convex linear functions.
For n = 1, define p1 : t 7→ t1. For n = 2, 3, write t1 = t, t2 = s, t3 = r.

For n = 2, define c := p2 : (t, s) 7→ (t · 1 + (1− t)s, s) and then

p3 : (t, s, r) 7→ (c(c(t, s), r), c(s, r), r) = (c(t · 1 + (1− t)s), r), c(s, r), r).

See Figure 1.
These have probably been written elsewhere; if you find them, let me

know.

3
p 

Figure 1: p3 : I
3 → ∆3

By coherent, I mean respecting the facial structure of the cubes and
simplices. Closely related are coherent maps

γn : In−1 → P∆n

where P denotes the set of paths, i.e. P∆n = Map(I,∆n). Such maps
were first produced by Adams [2] in the topological context by induction
using the contractability of ∆n. Later specific formulas were introduced
by Chen [4] and, most recently, equivalently but more transparently, by
Igusa [12].

More precisely:
γ1(0) is the trivial path, constant at 0
and γ2 : I → ∆1 is the ‘identity’.

For any 1 ≤ p ≤ k − 1,

γk(· · · , tp = 0, · · · ) = γk−1(· · · , t̂p, · · · )

and

γk(σ)(· · · , tp = 0, · · · ) = γp(t1, · · · , tp−1)γq(tp+1, · · · , tk−1).
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One way to describe the relation between the pn and the γn in words
is: travel from vertex 0 partway toward vertex 1 then straight partway
toward vertex 2 then straight partway toward vertex 3 etc. (See Figure2.)

Figure 2: The relation between the pn and the γn

Note that these are slighty different from the version of γn given by
Igusa; see Figure 3 taken from [11].

Hopefully the pattern is clear.
Correspondingly, the liftings Θn : In × E → E form a collection of

maps which assign to any k-simplex σ : ∆k → B a map Θk(σ) : I
k×F0 →

Fk satisfying, for any e ∈ F0, the relations :
Θ0(0) is the identity on F0.

For any (t1, · · · , tk),
Θk(σ)(t1, · · · , tk,−) : F0 → Fk is a homotopy equivalence.

For any 1 ≤ p ≤ k − 1,

Θk(σ)(· · · , tp = 0, · · · , e) = Θk−1(∂pσ)(· · · , t̂p, · · · , e)

Θk(σ)(· · · , tp = 1, · · · , e) =

Θp(< 0, · · · , p >)(t1, · · · , tp−1, θq(< p, · · · , k >)(tp+1, · · · , tk, e)).

The desired θn is again recovered at t1 = 1.

The maps pn can be interpreted as homotopies qn : I → (∆n)I
n−1

and
so subject to the homotopy lifting property. For example, γ1 : 0→ P∆1

is a path which can be lifted as in Theorem 1 to give Θ1 : I × F0 → E.
Then γ2 : I → P∆2 such that 0 maps to the ‘identity’ path I →< 02 >
while 1 maps to the concatenated path < 01 >< 12 > . (Henceforth, we
will assume paths have been normalized to length 1 where appropriate.)
Now lift the homotopy γ2 to a homotopy Θ2(< 012 >) : I × I × E → E
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w1 = 0 w1 =
1
3 w1 =

2
3 w1 = 1

w2 = 0

w2 =
1
3

w2 =
2
3

w2 = 1

Figure 3: Igusa’s Figure 3
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between Θ1(< 02 >) and Θ1(< 01 >< 12 >). In particular, Θ2(< 012 >
) : 1× I × E → E gives the desired homotopy θ2 : I × F0 → Fk.

The situation becomes slightly more complicated as we increase the
dimension. The case ∆3 is illustrative. The faces < 023 > and < 013 >
lift just as < 012 > had via Θ2, but that lift must then be ‘whiskered’
by a rectangle over < 23 > which glues onto Θ3(< 012 >. In a less
complicated way < 123 > is lifted so that vertex 1 agrees with the end of
the ‘whisker’ which is the lift of < 01 >. Thus the total lift of < 0123 >
ends with the desired θ3 : I2 × F0 → F3. The needed whiskering (of
various dimensions) is prescribed by the tp = 1 relations of Definition 2.2
to be satisfied.

0

2

3 

1

Figure 4: Θ3

Further details are left to the industrious reader.

4 (Re)-construction of fibrations

In [21], I showed how to construct a fibration from the data of an strong
homotopy action of ΩB on a ‘fibre’ F . If the action came from a given
fibration F → E → B, the constructed fibration was fibre homotopy
equivalent to the given one. For representations up to homotopy, a similar
result applies using analogous techniques, with some additional subtlety.

First we try to construct a fibration naively. Over each 1-simplex σ of
Sing(B), we take σ×F0 and attempt to glue these pieces appropriately.
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For the one simplices < 01 > and < 12 >, we have θ1 : F0 → F1 which
tells us how to glue < 01 > ×F0 to < 12 > ×F1 at vertex 1, but, since
θ1 : F0 → F2 is not the composite of θ1 : F0 → F1 and θ? : F1 → F2, we
can not simply plug in < 012 > ×F0 over < 012 >. However, we can
plug in I2×F0 since θ2 : I ×F0 → F2 will supply the glue over vertex 2.

To describe the total space of the fibration (or at least a quasi-
fibration), we use the special maps pn : In → ∆n. Now return to the
description of the fibration p̄2 : E2 → ∆2 above. In greater precision,

E2 =< 01 > ×F0 ∪1 < 12 > ×F1 ∪0 < 02 > ×F0 ∪ I2 × F0.

The attaching maps over the vertices 0 and 1 are obvious as are the
projections to the edges of ∆2. On I2×F0, the attaching maps are obvious
except for the face t2 = s = 1 where it is given by θ2 : I × F0 → F2, so
as to be compatible with the projection p̄2 : I

2 × F0 → ∆2.
The result is at least a quasi-fibration q : Eθ → B and can be replaced

up to fibre homotopy equivalence by a true fibration (cf. [8].
Notice that although the definition of representation up to homotopy

was in terms of fibrations, in fact it really needs only the collection of
fibres Fσ for the 0-simplices of Sing(B). The equivalence in the ap-
propriate sense between representations up to homotopy of Sing(B) and
fibrations over B follows as for Theorem B in [21].

5 Coda

Physics is often written in terms of smooth structures, differential forms
and ‘geometrically’ in terms of connections. From a topological point of
view, parallel transport is the more basic notion. In particular, string
theory and string field theory has inspired string topology, inititiated
by Chas and Sullivan, and a variety of ∞-algebras. I look forward to
the corresponding representation-up-to-strong homotopy theory feeding
back into physics.
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