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B-field transformations of Poisson groupoids

Cristián Ortiz

Abstract

This is a survey devoted to the study of B-field transformations
of multiplicative Poisson bivectors on a Lie groupoid G. We are
concerned with B-fields given by multiplicative closed 2-forms on
G. We extend the results in [5] by viewing Poisson groupoids and
their B-field symmetries as special instances of multiplicative Dirac
structures [24]. We also describe such symmetries infinitesimally.

Dedicado a la memoria de Leonor González

1 Introduction

The concept of Poisson groupoid was introduced by Alan Weinstein [30]

as a common generalization of Poisson Lie groups [13] and symplectic

groupoids [10]. A Poisson groupoid is a pair (G, πG) where G is a Lie

groupoid and πG is a Poisson bivector on G suitably compatible with the

groupoid multiplication. Poisson group(oid)s are interesting by them-

selves, but one of the main motivations for studying such geometric ob-

jects is due to their interaction with the theory of integrable systems.

On one hand, Poisson Lie groups help to study Hamiltonian properties

of the group of dressing transformations of certain integrable systems

where this group plays the role of hidden symmetries [26], on the other

hand Poisson groupoids are useful for describing the geometry of solu-

tions of the classical dynamical Yang-Baxter equation [15].
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It was proven in [21] that the compatibility of a Poisson bivector

with a groupoid multiplication on G is reflected infinitesimally by the

fact that (AG,A∗G) is a Lie bialgebroid. Here AG is the Lie algebroid

of G and A∗G is the dual vector bundle of AG. Hence, Lie bialgebroids

are regarded as the infinitesimal data of Poisson groupoids. The inte-

gration of Lie bialgebroids to Poisson groupoids was carried out in [22].

More precisely if A is the Lie algebroid of a source simply connected Lie

groupoid G(A) and the pair (A,A∗) is a Lie bialgebroid, then there exists

a unique Poisson bivector πG(A) on G(A) making the pair (G(A), πG(A))

into a Poisson groupoid whose Lie bialgebroid is (A,A∗). The relation be-

tween Poisson groupoids and Lie bialgebroids generalizes the well known

Drinfeld’s correspondence between Poisson Lie groups and Lie bialgebras

[13].

Since Poisson groupoids are important examples of Poisson mani-

folds, it is interesting to study symmetries of these structures. In [28] it

was observed that a Poisson structure π on a smooth manifold M can be

transformed by a closed 2-form B ∈ Ω2(M) into another Poisson man-

ifold as follows: look at the symplectic foliation determined by π and

add to the leafwise symplectic form the pull-back of B to the symplectic

leaves; if the resulting leafwise 2-form is symplectic, then it is given by a

Poisson structure πB on the same manifoldM . The Poisson structure πB
is called a gauge transformation of π by the closed 2-form B ∈ Ω2(M)

or a B-field transformation of (M,π). If the resulting 2-form is not

symplectic, then it does not come from a Poisson structure. Instead, the

underlying geometry is the one determined by a Dirac structure [11, 28].

Dirac structures were introduced in [11] as a unified approach to Poisson

structures, pre-symplectic forms and regular foliations.

In this work we study B-field transformations of Poisson groupoids.

In order to preserve the compatibility of the geometric structure with

the groupoid multiplication, we restrict our attention to multiplicative

B-fields, that is, B-field transformations given by multiplicative closed

2-forms. Given a Lie groupoid G over M with source and target maps

s, t : G −→ M and multiplication mG : G(2) −→ G, where G(2) :=

{(g, h) ∈ G × G | t(h) = s(g)}, we say that a 2-form ωG ∈ Ω2(G) is

multiplicative if
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m∗
GωG = pr∗1ωG + pr∗2ωG,

where pr1, pr2 : G(2) −→ G are the canonical projections. Our main

goal is to understand how the infinitesimal data of a Poisson groupoid

(G, πG) changes after applying a multiplicative B-field. This problem is

closely related to the concept of IM-2-form on a Lie algebroid [7]. Given

a Lie algebroid A over M with anchor ρA : A −→ TM , a bundle map

σ : A −→ T ∗M is called an IM-2-form on A if the following identities

hold

〈σ(a), ρA(b)〉 =− 〈σ(b), ρA(a)〉

σ[a, b]A =LρA(a)σ(b)− LρA(a)σ(b) + d〈σ(a), ρA(b)〉.

for every a, b ∈ Γ(A). Alternatively, a bundle map σ : A −→ T ∗M is

an IM-2-form on the Lie algebroid A if and only if the 2-form ωA :=

−σ∗ωcan ∈ Ω
2(A) induces a Lie algebroid morphism

ω
♯
A : TA −→ T ∗A X 7→ ωA(X, ·),

between the tangent and cotangent Lie algebroids. Here ωcan is the

canonical symplectic form on T ∗M (see [6]). Throughout this paper,

such 2-forms on a Lie algebroid are called morphic. As shown in [7]

multiplicative closed 2-forms on a source simply connected Lie groupoid

are in one-to-one correspondence with IM-2-forms on the Lie algebroid of

G. Equivalently [6], multiplicative closed 2-forms on G are in bijection

with morphic 2-forms on the Lie algebroid of G. This will be useful

for describing multiplicative B-field transformations at the infinitesimal

level.

First we study B-field transformations of symplectic groupoids. We

observe that a B-field transformation of a Poisson manifold induces nat-

urally an IM-2-form [7, 6] on the Lie algebroid of the Poisson manifold.

This allows us to use the techniques developed in [6] to describe the

symplectic groupoid integrating gauge transformations of Poisson mani-

folds, providing an alternative proof of the results in [4]. We also observe

that multiplicative B-field transformations of Poisson groupoids can be

studied by using multiplicative Dirac structures [24]. These are geo-

metric structures that unify both multiplicative Poisson bivectors and
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multiplicative closed 2-forms. Concretely, a Dirac structure LG on a Lie

groupoid G is called multiplicative if LG ⊆ TG ⊕ T ∗G is a Lie sub-

groupoid of the direct sum Lie groupoid. It was proved in [24] that,

for every Lie groupoid G with Lie algebroid AG, a multiplicative Dirac

structure LG on G corresponds to a Dirac structure LAG on AG suit-

ably compatible with both the linear and algebroid structures on AG.

Using this terminology, we prove that multiplicative closed 2-forms on a

Lie groupoid G act on the space of multiplicative Dirac structures, via

B-field transformations. We show that this action is infinitesimally de-

scribed by the B-field action of the corresponding morphic 2-form on the

space of Dirac structures on AG compatible with both the vector bundle

and Lie algebroid structures on AG. We also show that if (G, πG) is a

Poisson groupoid with Lie bialgebroid (AG,A∗G), then a multiplicative

B-field transformation of (G, πG) corresponds infinitesimally to a mor-

phic B-field transformation of the linear Poisson structure πAG induced

by the dual Lie algebroid A∗G. If the resulting B-field transformation

gives rise to a Poisson structure, we conclude that this Poisson structure

is also multiplicative and our infinitesimal description recovers the re-

sults proved in [5]. One can also study Poisson groupoids equipped with

a Poisson action of a Lie group. If we assume that this action has the

additional property of being given by groupoid automorphisms, then we

can describe these actions at the infinitesimal level. This will be done in

a separate paper.

This work is organized as follows: In section 2 we review the main

definitions and examples of Lie groupoids and Lie algebroids. We also

recall the definition of the tangent and cotangent groupoids as well as

the tangent and cotangent Lie algebroids. In section 3 we study both

multiplicative Poisson bivectors and closed 2-forms, explaining what is

the infinitesimal data of multiplicative Poisson bivectors [21, 22] and

also saying how closed multiplicative 2-forms are described infinitesimally

according to [7, 6]. Then in section 4 we study symmetries of Poisson

structures viewed as special instances of Dirac structures. In section 5

we introduce multiplicative Dirac structures, describing such structures

infinitesimally. We use this description to provide a conceptually clear

setting for studying B-field transformations of Poisson groupoids.
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1.2 Notations

Let M be a smooth manifold. The tangent bundle of M is denoted by

pM : TM −→ M . We use cM : T ∗M −→ M to indicate the cotangent

bundle of a smooth manifold. Vector bundles are always denoted by

qA : A −→M and the fiber over a point x ∈M is Ax.

2 Lie theory

2.1 Lie groupoids

A groupoid is a small category where all morphisms are invertible. More

concretely, a groupoid is determined by a set M of objects, a set G

of morphisms and structural maps s, t : G −→ M called source and

target, respectively; a unit section ǫM : M −→ G an inversion map

iG : G −→ G and a partially defined multiplication mG : G(2) −→ G,

where G(2) = {(g, h) ∈ G × G | t(h) = s(g)} is the set of composable

groupoid pairs. We require that all these maps satisfy the axioms of

a category. See [20] for more details. In this case we say that G is a

groupoid over M .

A groupoid G over M is called a Lie groupoid if both G and M

are smooth manifolds, the source and target maps s, t : G −→ M are

surjective submersions, and all the other structural maps are smooth.

The submersion condition on s, t ensures that G(2) inherits the structure

of smooth manifold, so the smoothness of mG : G(2) −→ G makes sense.

Throughout this work we only consider Lie groupoids.
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Example 2.1. A Lie group can be thought of a as Lie groupoid whose

space of units consist of only one point.

Example 2.2. Let H be a Lie group acting on a smooth manifold M .

We endow H ×M with a Lie groupoid structure over M as follows. The

source and target maps are defined by

s(h, x) = x, t(h, x) = hx.

The multiplication is defined by (h, h′x)(h′, x) = (hh′, x). The unit sec-

tion is ǫ(x) = (e, x) where e ∈ H is the identity element. Finally the

inversion map is defined by i(h, x) = (h−1, hx). These maps define a Lie

groupoid structure on H × M , called the transformation groupoid.

We usually denote the transformation groupoid by H ⋉M . See [20] for

more details.

The previous examples show that Lie groupoids generalize not only

Lie groups, but also Lie group actions.

Let G1 and G2 be Lie groupoids over M1 and M2, respectively. A

morphism of Lie groupoids is a pair (Φ, ϕ) of smooth maps Φ : G1 −→

G2 and ϕ : M1 −→ M2, compatible with all the structural maps, in the

sense that Φ is a functor between the underlying categories. When Φ is

injective we say that G1 is a Lie subgroupoid of G2.

2.2 Lie algebroids

A Lie algebroid is a vector bundle qA : A −→ M equipped with a Lie

bracket [·, ·]A on the space of smooth sections ΓM (A) and a vector bundle

map ρA : A −→ TM called the anchor, such that

[a, fb]A = f [a, b]A + (LρA(a)f)b,

for every a, b ∈ ΓM (A) and f ∈ C∞(M).

Example 2.3. If A is a Lie algebroid over a point we recover the notion

of Lie algebra.

Example 2.4. Let h be a Lie algebra acting on a smooth manifold M .

That is, there exists a Lie algebra morphism
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h −→ X(M)

a 7→ aM .

We endow the trivial bundle Ah = h × M with the structure of a Lie

algebroid over M . The anchor map is defined by

ρ : h×M −→ TM

(a, x) 7→ aM (x).

The Lie bracket [·, ·]Ah
on Γ(Ah) ∼= C∞(M)

⊗
h is given by

[a, b]Ah
:= [a, b],

for a, b ∈ h, and we extend it by requiring the Leibniz rule. The bundle

Ah −→ M with this Lie algebroid structure is referred to as the trans-

formation Lie algebroid. See [20] for more details.

Just as in the groupoid case, these examples show that Lie algebroids

generalize both Lie algebras and their actions.

A Lie algebroid defines a differential graded algebra Ω•(A) := ΓM (∧
•A∗)

with a degree 1 operator dA : Ω•(A) −→ Ω•+1(A) given by

dA(ξ)(a1, ..., ap+1) =

p∑

i=0

(−1)p+1LρA(ai)ξ(a1, ..., âi, ...ap+1)+

+
∑

i<j

(−1)i+jξ([ai, aj ]A, a1, ..., âi, ..., âj , ..., ap+1).

A direct computation shows that d2A = 0 and that dA is a derivation of the

exterior product. The operator dA determines the algebroid structure on

A in the sense that there is a one-to-one correspondence between degree

1 derivations D on Ω•(A) such that D2 = 0 and Lie algebroid structures

on the vector bundle qA : A −→M . See for instance [14].

The latter description of Lie algebroids is useful to define morphisms

between Lie algebroids. Let A1 and A2 be Lie algebroids over M1 and
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M2, respectively. A bundle map φ : A1 −→ A2 covering ϕ : M1 −→ M2

induces an operator φ̃∗ : Γ(A∗
2) −→ Γ(A∗

1) defined by

(φ̃∗ξ)xax := (ξ ◦ ϕ)(x)φ(ax),

where ξ ∈ Γ(A∗
2), a ∈ Γ(A1) and x ∈ M . This operator comes from the

base preserving bundle map φ∗ : ϕ∗(A∗
2) −→ A∗

1. We can extend this

operator to higher wedge powers yielding an operator φ̃∗ : Ω•(A2) −→

Ω•(A1). We say that the bundle map φ : A1 −→ A2 is a Lie algebroid

morphism if the induced operator φ̃∗ : Ω•(A2) −→ Ω•(A1) is a chain

map.

If φ : A1 −→ A2 is injective, we say that A1 is a Lie subalgebroid

of A2.

Example 2.5. (Lie algebroids vs Poisson geometry)

Recall that a Poisson structure on a smooth manifold M consists on

a Lie bracket

{·, ·} : C∞(M)× C∞(M) −→ C∞(M),

such that {f, ·} : C∞(M) −→ C∞(M) is a derivation for every f ∈

C∞(M). Equivalently, a Poisson structure on M is given by a smooth

bivector on M (i.e. π is a smooth section of the exterior bundle ∧2TM −→

M) such that [π, π] = 0, where [·, ·] denotes the Schouten bracket of mul-

tivector fields [14]. The correspondence is given by {f, g} = π(df, dg).

The pair (M,π) is referred to as a Poisson manifold. Alternatively,

a Poisson structure on M corresponds to a Lie algebroid structure on

the cotangent bundle cM : T ∗M −→ M , where the anchor map is π♯ :

T ∗M −→ TM , defined by

β(π♯(α)) := π(α, β), (2.1)

where α, β ∈ T ∗M . The Lie bracket on Γ(T ∗M) = Ω1(M) is defined by

[α, β]π = Lπ♯(α)β − Lπ♯(β)α− dπ(α, β). (2.2)

Thus, Lie algebroids arise naturally in Poisson geometry. Throughout

this work, the Lie algebroid determined by a Poisson structure π on M

will be denoted by (T ∗M)π.
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It will be useful to give an alternative description of Lie algebroids in

terms of Poisson structures. For that we observe that every Lie algebroid

A induces a Poisson structure on its dual bundle A∗ which is linear in

the sense that the space of fiberwise linear functions C∞
lin(A

∗) ∼= Γ(A) ⊆

C∞(A∗) is a Poisson subalgebra. More precisely, the Poisson bracket

{·, ·}A∗ on C∞(A∗) is given by

i) {f ◦ qA∗ , g ◦ qA∗}A∗ = 0, for every f, g ∈ C∞(M).

ii) {a, qA∗ ◦ f}A∗ = qA∗ ◦ (LρA(a)f), for every f ∈ C∞(M) and a ∈

Γ(A) ∼= C∞
lin(A

∗).

iii) {a, b}A∗ = [a, b]A, for every a, b ∈ Γ(A) ∼= C∞
lin(A

∗).

It can be easily verified that this Poisson structure on A∗ determines

completely the Lie algebroid structure on A. See e.g. [8].

2.3 The Lie functor

Here we recall the construction of the Lie functor from the category of Lie

groupoids to the category of Lie algebroids. Let G be a Lie groupoid over

M and g ∈ G. The right translation by g is the map rg : s
−1(t(g)) −→

s
−1(s(g)) defined by rg(h) = hg. A vector field X on G is said to be

right invariant if

TrgXh = Xhg,

for every (h, g) ∈ G(2). The space Xr(G) of right invariant vector fields

on G is closed under the bracket of vector fields, so Xr(G) becomes a Lie

subalgebra of X(G).

The space of tangent directions to the source fibers is T sG =

ker(T s), which restricts to a vector bundle AG := ǫ∗MT sG overM . Given

a section a of AG we define ar ∈ Xr(G) by arg = Trg(at(g)), yielding an

identification ΓM (AG) ∼= Xr(G). In particular, we have a well defined

Lie bracket [·, ·]AG on ΓM (AG) given by

[a, b]rAG = [ar, br] (2.3)
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The vector bundle AG with the bracket (2.3) and the bundle map

ρAG := T t|AG make AG into a Lie algebroid over M . We say that AG is

the Lie algebroid of the Lie groupoid G. This construction is functorial

in the sense that, given a morphism of Lie groupoids Φ : G1 −→ G2

covering a map ϕ : M1 −→ M2, the tangent map TΦ : TG1 −→ TG2

restricts to a bundle map A(Φ) : AG1 −→ AG2 which defines a Lie

algebroid morphism. In this way, we get a functor A : G −→ A from the

category of Lie groupoids to the category of Lie algebroids. This functor

is referred to as the Lie functor.

We say that a Lie groupoid G is an integration of a Lie algebroid

A if AG is isomorphic to A, as Lie algebroids. Unlike Lie algebras, the

integration of Lie algebroids to Lie groupoids is not possible in general.

Obstructions to the existence of integrations were given by Crainic and

Fernandes in [12]. However, if we assume that a Lie algebroid A inte-

grates to a Lie groupoid, then there exists a unique Lie groupoid G with

simply connected s-fibers and whose Lie algebroid is A. Also Lie’s second

theorem holds in the category of Lie algebroids.

Theorem 2.6. (Lie’s second theorem)

Let φ : A1 −→ A2 be a Lie algebroid morphism between integrable

Lie algebroids. Let G1 and G2 be Lie groupoids integrating A1 and A2,

respectively. If G1 has connected and simply connected s-fibers, then there

exists a unique groupoid morphism Φ : G1 −→ G2 such that A(Φ) = φ.

See [12] for a proof of these facts.

2.4 Tangent and cotangent groupoids

Given a Lie groupoid G over M , we can endow the tangent bundle TG

with a Lie groupoid structure over TM as follows. The tangent functor

applied to all the structural maps of G gives rise to structural maps

T s, T t : TG −→ TM , TǫM : TM −→ TG, T iG : TG −→ TG and

TmG : TG2 −→ TG, satisfying the axioms of a Lie groupoid. We refer

to TG with these structural maps as the tangent groupoid associated

to G. It will be helpful to use the following notation for the tangent

multiplication
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Xg • Yh = TmG(Xg, Yh),

for every (Xg, Yh) ∈ (TG)(2) composable groupoid pair.

Example 2.7. Let G be a Lie group with Lie algebra g. The tangent

bundle TG is also a Lie group, since the space of units consist of only

one point. One easily checks that the multiplication on TG is given by

Xg • Yh = Tgrh(Xg) + Thlg(Yh).

We can use right translations to trivialize TG in such a way that

TG ∼= G × g. With respect to this identification, it is easy to see that

the group structure on the tangent bundle corresponds to the semi-direct

group G⋉ g determined by the adjoint representation.

Just as the tangent bundle, the cotangent bundle T ∗G inherits a Lie

groupoid structure over A∗G. The source and target maps are defined

by

s̃(ξg)a = ξg(T lg(a− T t(a))) and t̃(ηg)b = ηg(Trg(b))

where ξg ∈ T ∗
gG, a ∈ As(g)G and ηg ∈ T ∗

gG, b ∈ At(g)G. The multiplica-

tion on T ∗G is defined by

(ξg ◦ ηh)(Xg • Yh) = ξg(Xg) + ηh(Yh)

for (Xg, Yh) ∈ T(g,h)G(2).

We refer to T ∗G with the groupoid structure over A∗G as the cotan-

gent groupoid of G. See [10] for more details.

Example 2.8. Let G be a Lie group with Lie algebra g. Then the cotan-

gent groupoid T ∗G has base manifold g∗. We can use right trivializations

to identify T ∗G ∼= G × g∗. In terms of this identification, the cotangent

groupoid corresponds to the transformation groupoid G⋉ g∗ with respect

to the coadjoint action.
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Remark 2.9. Given a Lie groupoid G over M we have constructed two

natural Lie groupoids out of G, namely TG over TM and T ∗G over

A∗G. Both the tangent and cotangent Lie groupoids are examples of

more general objects called VB-groupoids, that is, Lie groupoids objects

in the category of vector bundles. See [20] for more details.

2.5 Tangent and cotangent algebroids

Let A
qA−→M be a vector bundle. The tangent bundle TA has a natural

structure of vector bundle over TM , defined by applying the tangent

functor to each of the structural maps that define the vector bundle

A
qA−→M . More specifically, we have a square

TA

A

TM

M

TqA
//

qA
//

pA

��

pM

��

(2.4)

where all the structural maps of the vector bundle TqA : TA −→ TM

are vector bundle morphisms over the corresponding structural maps

defining qA : A −→M . The vector bundle TqA : TA −→ TM is referred

to as the tangent prolongation of A. See [25, 20] for more details

about this construction.

Similarly, the cotangent bundle T ∗A determines the following square

of vector bundles

T ∗A

A

A∗

M

rA
//

qA
//

cA

��

qA∗

��

(2.5)

where the top arrow rA : T ∗A −→ A∗ is given locally by rA(x
i, ar, pi, ξr) =

(xi, ξr). Here (xi, ar) ∈ Ax, (x
i, pi) ∈ T ∗

xM and (xi, ξr) ∈ A∗
x, for
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x = (x1, ..., xn) ∈ M . The reader can see [20] for a coordinate free

definition. Again, the structural maps of the top horizontal vector bun-

dle are morphisms of vector bundles over the corresponding structural

maps of A.

Remark 2.10. Both the tangent and cotangent vector bundles are spe-

cial examples of more general objects called double vector bundles,

introduced in [25] and further studied by K. Mackenzie [20].

It was shown by Mackenzie and Xu in [21] that whenever qA : A −→

M carries a Lie algebroid structure, then TqA : TA −→ TM is a Lie al-

gebroid as well. For that we observe that the space of sections ΓTM (TA)

is spanned by two types of sections; given a section a ∈ Γ(A) the tangent

functor applied to a determines a section Ta ∈ ΓTM (TA). Also a ∈ Γ(A)

induces a section â ∈ ΓTM (TA) defined by

â(X) = T0A(X) +pA a(pM (X)),

where a(pM (X)) = d
dt
(ta(pM (X)))|t=0. We refer to â as the core section

induced by a. Now the Lie algebroid structure on TA is defined by

[Ta, T b]TA = T [a, b]A

[Ta, b̂]TA = ̂[a, b]A
[â, b̂]TA = 0

ρTA = JM ◦ TρA

Here JM : TTM −→ TTM is the canonical involution, which is locally

defined by

JM (x
j , ẋj , δxj , δẋj) = (xj , δxj , ẋj , δẋj). (2.6)

The reader can see [29, 20] for more details about this map, including a

coordinate free definition.

Similarly, the vector bundle (2.5) can be endowed with a natural

Lie algebroid structure. Concretely, the dual vector bundle A∗ inherits a

linear Poisson structure. In this case, the cotangent bundle T ∗A∗ −→ A∗
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has a Lie algebroid structure as explained in Example 2.5. There is a

Legendre type map, which can be defined locally by

RA : T ∗A∗ −→ T ∗A

(xi,ξr, pi, a
r) 7→ (xi, ar,−pi, ξr)

One can use this isomorphism to induce a Lie algebroid structure on the

vector bundle rA : T ∗A −→ A∗.

We will refer to (2.4) as the tangent algebroid associated to A, and

(2.5) will be referred to as the cotangent algebroid of A. See [20, 21]

for more details about these structures.

Remark 2.11. The Lie algebroids (2.4) and (2.5) are special examples

of double structures. Concretely, each of them is a LA-vector bundle,

that is, a vector bundle object in the category of Lie algebroids.

Consider now a Lie groupoid G over M . We can apply the Lie

functor to the tangent groupoid TG over TM , yielding a Lie algebroid

A(TG) −→ TM . The canonical involution JG : TTG −→ TTG (2.6)

restricts to a Lie algebroid isomorphism

jG : T (AG) −→ A(TG). (2.7)

Similarly, the Lie functor applied to the cotangent groupoid T ∗G gives

rise to a Lie algebroid A(T ∗G) −→ A∗G. Notice that the canonical pair-

ing T ∗G ×G TG −→ R is a groupoid morphism, where R is viewed as

the additive group. Applying the Lie functor to this pairing, we ob-

tain a nondegenerate pairing A(T ∗G) ×AG A(TG) −→ R, as a conse-

quence the vector bundle A•(TG), dual to A(TG) −→ AG, is isomor-

phic to A(T ∗G) −→ AG. The composition of this isomorphism with

j∗G : A•(TG) −→ T ∗(AG), defines a Lie algebroid isomorphism

θG : A(T ∗G) −→ T ∗(AG). (2.8)

We conclude that, up to canonical identifications, the Lie algebroid of

the tangent groupoid TG (resp. cotangent groupoid T ∗G) is given by

the tangent algebroid T (AG) (resp. cotangent algebroid T ∗(AG)). The

reader can see [20] for more details about these identifications.
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3 Bivectors and 2-forms on Lie groupoids

In this section we study Lie groupoids equipped with bivectors or 2-forms

suitably compatible with the groupoid multiplication.

3.1 Multiplicative bivectors

Let π be a Poisson bivector on a smooth manifold M (see Example 2.5).

We say that a submanifold Q ⊆ M is coisotropic if π♯(N∗Q) ⊆ TQ,

where NQ denotes the normal bundle of Q.

Consider now a Lie groupoid G. Let πG ∈ Γ(∧
2TG) be a bivector on

G. We say that πG is multiplicative if

Graph(mG) ⊆ G×G× Ḡ,

is a coisotropic submanifold, where the last factor on the right hand side

is equipped with the Poisson structure πG followed by a minus sign. A

Poisson groupoid [30] is a Lie groupoid G equipped with a Poisson

bivector πG which is also multiplicative. Poisson groupoids were intro-

duced by A. Weinstein in [30], generalizing both Poisson Lie groups and

symplectic groupoids. This is explained in the following examples.

Example 3.1. (Poisson Lie groups)

Let G be a groupoid over a point, i.e. G is a Lie group. A bivector

πG on G is multiplicative if and only if the multiplication map mG :

G × G −→ G is a Poisson map, which is exactly the definition of a

Poisson Lie group [13, 19].

Example 3.2. (Nondegenerate case)

Let (G, πG) be a Poisson groupoid. Assume that the bundle map

π
♯
G : T ∗G −→ TG is an isomorphism. Then the inverse of π♯

G defines

a 2-form ωG on G. Notice that the property of πG being Poisson is

equivalent to saying that ωG is a closed 2-form, while the multiplicativity

of πG reads

m∗
GωG = pr∗1ωG + pr∗2ωG, (3.1)



128 C. Ortiz

where mG : G(2) −→ G is the groupoid multiplication and pr1, pr2 :

G(2) −→ G denote the canonical projections. We refer to (G,ωG) as a

symplectic groupoid.

The reader can see [9], where symplectic groupoids are realized as

the phase-spaces of certain sigma models. See also [31] where symplectic

groupoids arise in connection with the quantization of Poisson manifolds.

3.1.1 Infinitesimal description of Poisson groupoids

We would like to express the multiplicativity of a Poisson bivector πG on

G in terms of Lie algebroid data. For that one observes that the space

of units M of a Poisson groupoid G defines a coisotropic submanifold

of (G, πG). As a consequence, the conormal bundle N∗M ⊆ T ∗G is a

Lie subalgebroid with respect to the structure defined in (2.1) and (2.2).

Notice that there is a canonical decomposition

TxG = TxM ⊕AxG,

for every x ∈M . As a consequence, the conormal bundle N∗M is canon-

ically isomorphic to A∗G, the dual bundle of the Lie algebroid of G.

Thus, we have a pair of Lie algebroids (AG,A∗G) in duality as vector

bundles. These algebroids are compatible in the sense that they define a

Lie bialgebroid.

Definition 3.3. [21]

Let A be a Lie algebroid and assume that A∗ is also a Lie algebroid.

Then the pair (A,A∗) is a Lie bialgebroid if

dA[ξ, η]A∗ = [dAξ, η]A∗ + [ξ, dAη]A∗ ,

where dA is the Lie algebroid differential of A.

Notice that if A is a Lie algebroid over a point, i.e. A is a Lie

algebra, then a Lie bialgebroid is nothing but a Lie bialgebra [13]. Just

as Lie bialgebras are the infinitesimal data of Poisson Lie groups [13], Lie

bialgebroids may be regarded as the infinitesimal counterpart of Poisson

groupoids.[21].
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Remark 3.4. It was observed in [21] that the multiplicativity of a bivec-

tor πG can be rephrased in terms of Lie groupoid morphisms. In fact,

one can check that πG is multiplicative if and only if the bundle map

π
♯
G : T ∗G −→ TG is a Lie groupoid morphism covering the anchor

ρA∗G : A∗G −→ TM of the dual algebroid A∗G. Moreover, applying

the Lie functor yields a Lie algebroid morphism A(π♯
G) : A(T

∗G) −→

A(TG), which up to the identifications (2.7) and (2.8), coincides with

π
♯
AG : T ∗(AG) −→ T (AG). Here πAG is the linear Poisson bivector on

AG, induced by the dual Lie algebroid A∗G.

In order to integrate Lie bialgebroids, K. Mackenzie and P. Xu ob-

served in [21] that the Lie bialgebroid condition can be understood in

terms of Lie algebroid morphisms. More concretely, the Poisson bivector

on the dual of a Lie algebroid A can be described explicitly by consid-

ering (x1, ..., xm) a system of local coordinates on M and {e1, ..., el} a

basis of local sections of A, this data determines coordinates (xi, ar) on

A. There are structure functions ρjr, Ct
rs for the Lie algebroid A, defined

by

i) ρA(er) = ρ
j
r

∂
∂xj , and

ii) [er, es]A = Ct
rset.

Now if {e1, ..., el} is a basis of local sections of A∗, dual to {e1, ..., el},

we introduce local coordinates (xi, ξr) on A∗. With respect to this local

description of A∗, the linear Poisson bivector πA∗ on A∗ induced by A

has the form

(πA∗)|(x,ξ) = ρir(x)
∂

∂xi
∧

∂

∂ξr
+
1

2
Ct
rs(x)ξt

∂

∂ξr
∧

∂

∂ξs
. (3.2)

Here we have used Einstein’s convention. The linearity of πA∗ is

equivalent to π
♯
A∗ : T ∗A∗ −→ TA∗ being a morphism of double vector

bundles [25]. It is natural now to find a condition which ensures that

π
♯
A∗ is also a Lie algebroid morphism.

Theorem 3.5. [22]

If (A,A∗) is a pair of Lie algebroids in duality as vector bundles, then

(A,A∗) is a Lie bialgebroid if and only if
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T ∗A

A∗

TA

TM

π
♯
A

//

ρA∗

//

rA

��

TqA

��

(3.3)

is a Lie algebroid morphism between the tangent Lie algebroid (2.4) and

the cotangent Lie algebroid (2.5). Here the map ρA∗ is the anchor map

of the dual Lie algebroid A∗.

See [22] for the proof of this fact. This characterization of Lie bialge-

broids combined with remark 3.4 and Lie’s second Theorem 2.6 gives rise

to the integration of Lie bialgebroids to Poisson groupoids. See [21, 22]

for more details.

3.2 Multiplicative 2-forms

We proceed now to study Lie groupoids G endowed with a closed 2-

form ωG ∈ Ω2(G), which is multiplicative as in (3.1). Notice that Pois-

son groupoids do not include all multiplicative closed 2-forms as special

cases, since they only include those 2-forms which are nondegenerate (see

example 3.2). Most of the results in this subsection can be found in [6].

Notice that a 2-form on a manifold M determines a skew symmetric

bundle map ω♯ : TM −→ T ∗M defined by

ω♯(X) := ω(X, ·), (3.4)

for every X ∈ TM .

The analogue for 2-forms of remark 3.4 reads.

Proposition 3.6. [6]

Let G be a Lie groupoid over M . A 2-form ωG on G is multiplicative

if and only if the bundle map ω
♯
G : TG −→ T ∗G as in (3.4) is a groupoid

morphism between the tangent and cotangent Lie groupoids.
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If ωG is a multiplicative 2-form on G, then the groupoid morphism

given by Proposition 3.6 covers the bundle map λ : TM −→ A∗G, which

is the fiberwise dual map of −σωG
: AG −→ T ∗M , defined by

σωG
(a) = ωG(a, ·)|TM . (3.5)

The application of the Lie functor to the groupoid morphism ω
♯
G :

TG −→ T ∗G yields a Lie algebroid morphism A(ω♯
G) : A(TG) −→

A(T ∗G), which followed by the canonical identifications (2.7) and (2.8),

determines a morphism of Lie algebroids

T (AG)

TM

T ∗(AG)

A∗G

ω
♯
AG

//

−σt
ωG

//

TqAG

��

rAG

��

(3.6)

where the bottom map is given by the bundle map fiberwise dual to

−σωG
: AG −→ T ∗M . More concretely, the algebroid morphism (3.6) is

given by

ω
♯
AG = −σ∗

ωG
ωcan, (3.7)

where ωcan is the canonical symplectic structure on the cotangent bundle

T ∗M and σωG
is given by (3.5). A detailed proof of these statements can

be found in [6]. This discussion motivates the following definition.

Definition 3.7. A 2-form ωA on a Lie algebroid A −→ M is called

morphic if the induced bundle map ω
♯
A : TA −→ T ∗A is a Lie algebroid

morphism.

The 2-form ωAG ∈ Ω
2(AG) associated to a multiplicative 2-form ωG

is morphic. We refer to ωAG as the morphic 2-form of ωG. It turns out

that multiplicative 2-forms on a source simply connected Lie groupoid are

in one-to-one correspondence with morphic 2-forms on its Lie algebroid.
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Proposition 3.8. [6]

Let G be a Lie groupoid over M with Lie algebroid A −→M . Assume

that G has connected and simply connected source fibers. Then there is

a one-to-one correspondence

Lie : Ω2
cl,mult(G) −→ Ω2

cl,mor(A) (3.8)

ωG 7→ ωAG (3.9)

between multiplicative closed 2-forms on G and morphic closed 2-forms

on AG. Here ωAG is determined by (3.6).

It is worthwhile to mention here that the correspondence in Proposi-

tion 3.8 holds without the closedness assumption. For a detailed discus-

sion of the general case see [6].

Since a multiplicative 2-form ωG induces a map σωG
as in (3.5), and

the morphic 2-form (3.6) associated to ωG is related to (3.5) via (3.7),

we would like to understand this relation deeply. For that, let us recall

some terminology introduced in [7].

Definition 3.9. Let A be a Lie algebroid over M . A bundle map σ :

A −→ T ∗M is called an IM-2-form on A if the following identities hold

〈σ(a), ρA(b)〉 =− 〈σ(b), ρA(a)〉 (3.10)

σ[a, b]A =LρA(a)σ(b)− LρA(b)σ(a) + d〈σ(a), ρA(b)〉. (3.11)

for every a, b ∈ Γ(A).

It was proved in [7] that the bundle map (3.5) associated to a closed

multiplicative 2-form ωG ∈ Ω2(G) defines an IM-2-form. This explains

why this terminology was introduced, since IM stands for infinitesimally

multiplicative. It was also shown in [7] that if G is a Lie groupoid with

connected and simply connected source fibers, then there is a one-to-one

correspondence between multiplicative closed 2-forms on G and IM-2-

forms on the Lie algebroid AG of G. The correspondence is given by

(3.5). The technical point of this results is, as usual, the integration

procedure. This is based on the construction of a closed 2-form on the
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space of A-paths of the Lie algebroid A, which is basic with respect to A-

homotopies, therefore it defines the desired multiplicative closed 2-form

on the A-paths model of the Lie groupoid integrating A. See Theorem

2.5 of [7].

One can avoid A-paths and infinite dimensional tools as follows.

Given a Lie algebroid qA : A −→ M , consider the canonical sym-

plectic form ωcan on the cotangent bundle T ∗M . Every bundle map

σ : A −→ T ∗M can be used to define a 2-form on A via

Λ := −σ∗ωcan. (3.12)

This 2-form is linear in the sense that Λ♯ : TA −→ T ∗A is a morphism

of double vector bundles [6]. We would like to find a purely infinitesimal

condition on σ : A −→ T ∗M in such a way that Λ be, not only linear,

but also a morphic 2-form. It turns out that the conditions are the ones

defining an IM-2-form, as established in the following result.

Theorem 3.10. [6]

Let A be a Lie algebroid over M . Consider a bundle map σ : A −→

T ∗M and Λ ∈ Ω2(A) given by (3.12). Then σ is an IM-2-form if and only

if the induced bundle map Λ♯ : TA −→ T ∗A is a Lie algebroid morphism

between the tangent Lie algebroid (2.4) and the cotangent Lie algebroid

(2.5).

The morphism Λ♯ : TA −→ T ∗A in Theorem 3.10 covers the bundle

map λ := −σt : TM −→ A∗, which is the fiberwise dual of σ : A −→

T ∗M . The proof of Theorem 3.10 consists on a long computation involv-

ing special sections of the double vector bundles TqA : TA −→ TM and

rA : T ∗A −→ A∗. The reader can find a detailed proof in [6].

Combining Lie’s second Theorem 2.6 with Proposition 3.6 and The-

orem 3.10 we recover the correspondence between multiplicative closed

2-forms and IM-2-forms proved previously in [7]. See [6] for this alterna-

tive and simpler proof. See also [3] for an extension of these results to

multiplicative forms of arbitrary degree.

The following corollary of Theorem 3.10 will be useful later.

Corollary 3.11. Let G be a Lie groupoid with Lie algebroid AG. As-

sume that G has connected and simply connected source fibers. Then a
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multiplicative closed 2-form ωG on G is nondegenerate if and only if the

associated IM-2-form σωG
: AG −→ T ∗M is a vector bundle isomor-

phism.

Proof. It is well known that the nondegeneracy of ωG implies that σωG
is

an isomorphism. See for instance [10]. Assume now that σωG
: AG −→

T ∗M is an isomorphism. Consider the linear 2-form on AG defined by

ωAG = −σ∗
ωG

ωcan. Since σωG
is an isomorphism, we conclude that ωAG is

nondegenerate. In particular, the bundle map ω
♯
AG : T (AG) −→ T ∗(AG)

is a vector bundle isomorphism. Since σωG
is an IM-2-form on AG it

follows from Theorem 3.10 that ω♯
AG is a Lie algebroid isomorphism which

integrates to the Lie groupoid isomorphism ω
♯
G. This shows that ωG is

nondegenerate.

4 Symmetries of Poisson structures

In this section we study symmetries of Poisson structures. In order to

give a conceptually clear exposition we will view Poisson structures as

instances of more general geometric structures called Dirac structures.

4.1 Dirac structures

Let M be a smooth manifold. Consider the direct sum vector bundle

TM := TM⊕T ∗M , equipped with the nondegenerate symmetric pairing

〈(X,α), (Y, β)〉 := α(Y ) + β(X).

The space of sections Γ(TM) = X(M) ⊕ Ω1(M) is endowed with the

Courant bracket

[[(X,α), (Y, β)]] := ([X,Y ],LXβ − iY dα).

A Dirac structure on M [11] is a sub-bundle L ⊆ TM which is

Lagrangian (i.e. L⊥ = L) and involutive in the sense that [[Γ(L),Γ(L)]] ⊆

Γ(L). Dirac structures were introduced in [11] motivated by the study of

mechanical systems with constraints. The complex analogue yields to the

so called generalized complex geometry, see [16] for further information.
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The following examples of Dirac structures will be fundamental along

this note.

Example 4.1. Let ω be a 2-form on M . One can view ω as the skew-

symmetric bundle map ω♯ : TM −→ T ∗M given by (3.4). The graph

Lω := {(X,ω♯(X)) | X ∈ TM} of ω♯ is naturally a sub-bundle of TM

which, due to the skew-symmetry of ω, is Lagrangian. The involutivity

of Lω with respect to the Courant bracket is equivalent dω = 0.

Example 4.2. Let π be a bivector on M and consider the bundle map π♯ :

T ∗M −→ TM defined in (2.1).Then the graph Lπ := {(π♯(α), α) | α ∈

T ∗M} is a Lagrangian sub-bundle of TM . The involutivity condition with

respect to the Courant bracket is equivalent to π being a Poisson structure,

i.e. [π, π] = 0, where [·, ·] is the Schouten bracket of multivectorfields.

One observes that a Dirac structure L on M defines a Lie algebroid

structure on the vector bundle L −→ M , where the bracket is given

by the Courant bracket and the anchor map is the restriction to L of

the canonical projection prTM : TM −→ TM . In the case of Dirac

structures as in Example 4.2 the canonical projection Lπ −→ T ∗M is an

isomorphism of vector bundles. Since Lπ is a Lie algebroid over M , we

can use this isomorphism Lπ
∼= T ∗M to induce a Lie algebroid structure

on the cotangent bundle T ∗M . One easily verifies that this algebroid

structure on T ∗M coincides with the one defined by (2.1) and (2.2).

Since Dirac structures define Lie algebroids, we can ask for a Lie

groupoid integrating a Dirac structure. For instance, it was proved in [9]

that if the Lie algebroid (T ∗M)π associated to a Poisson manifold (M,π)

is integrable, then the source simply connected Lie groupoid G integrat-

ing (T ∗M)π inherits a symplectic structure ωG making the pair (G,ωG)

into a symplectic groupoid. That is, Poisson manifolds may be regarded

as the infinitesimal objects associated with symplectic groupoids. The

general problem of the integration of Dirac structures was solved by

Bursztyn et al in [7].

4.2 Symmetries of (TM, 〈·, ·〉, [[·, ·]])

Given a diffeomorphism f :M −→M , we can induce a natural automor-

phism Tf of TM by Tf(X,α) = (Tf(X), (Tf−1)∗α). One easily checks
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that Tf is an isometry of (TM, 〈·, ·〉). A straightforward computation

shows that Tf preserves also the Courant bracket. There is another type

of symmetries of the data (TM, 〈·, ·〉, [[·, ·]]), these are given by the action

of closed 2-forms. More specifically, for any 2-form B on M , define the

bundle map

τB :TM −→ TM (4.1)

(X,α) 7→ (X,α+ iXB). (4.2)

It follows from the skew-symmetry of B that τB preserves the pairing

〈·, ·〉. The following well known result characterizes those 2-forms B for

which τB preserves also the Courant bracket.

Proposition 4.3. The bundle automorphism τB : TM −→ TM pre-

serves the Courant bracket if and only if dB = 0.

Proof. Let (X,α) and (Y, β) be sections of TM . Then

[[(X,α+iXB), (Y, β+iY B)]] = ([X,Y ],LXβ−iXdα+LX iY B−iY diXB),

and using the formula i[X,Y ] = [LX , iY ] one can see that B is closed if

and only if

[[(X,α+ iXB), (Y, β + iY B)]] = ([X,Y ],LXβ − iXdα+ i[X,Y ]B),

which is equivalent to saying that τB preserves the Courant bracket.

Actually, the group of symmetries of (TM, 〈·, ·〉, [[·, ·]]) is given by

Diff(M)⋉Ω2
cl(M). See for instance [16]. As a consequence, the space of

Dirac structures onM is invariant under the action of Diff(M)⋉Ω2
cl(M).

If L is a Dirac structure on M and B ∈ Ω2
cl(M) then the Dirac structure

τB(L) is referred to as a gauge transformation of L by the closed 2-

form B. In the literature, closed forms acting as above are also called

B-field transformations. See for instance [16, 28].

Remark 4.4. One immediatly observes that the algebroid structure of

a Dirac structure L on M is preserved along its orbit by the action of

Ω2
cl(M).
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4.3 B-field transformations of Poisson manifolds

Here we are concerned with B-fields acting on Poisson manifolds. For

that, let (M,π) be a Poisson manifold and B ∈ Ω2(M) a closed 2-form.

Lemma 4.5. The bundle map ΦB := (Id +B♯ ◦ π♯) : (T ∗M)π −→ T ∗M

is an IM-2-form on the Lie algebroid (T ∗M)π.

Proof. The tangent bundle TM is a Lie algebroid over M , where the

anchor map is the identity and the Lie bracket is the usual bracket of

vector fields. Notice that a 2-form B on M is closed if and only if

the induced bundle map B♯ : TM −→ T ∗M is an IM-2-form on the

Lie algebroid TM . Combining this observation with the fact that π♯ :

(T ∗M)π −→ TM is a Lie algebroid morphism, the result follows.

We will see that the IM-2-form ΦB of Lemma 4.5 arises naturally in

the study of B-field transformations of Poisson structures.

Definition 4.6. Let (M,π) be a Poisson manifold. A closed 2-form

B ∈ Ω2(M) is called π-admissible if the Dirac structure τB(Lπ) is also

given by the graph of a Poisson bivector πB ∈ Γ(∧
2TM).

One can easily check that B is π-admissible if and only if the IM-2-

form ΦB : (T ∗M)π −→ T ∗M of Lemma 4.5 is a vector bundle isomor-

phism. As a result, the bundle map ΦB is a Lie algebroid isomorphism

between (T ∗M)π and (T
∗M)πB

. Combining this observation with remark

4.4 we conclude that if (M,π) integrates to a source simply connected

symplectic groupoid (G,ωG), then G also integrates the Lie algebroid

(T ∗M)πB
. We would like to determine how the symplectic structure

on G changes under a B-field transformation of the Poisson manifold

(M,π). The answer is not difficult, since ΦB is an IM-2-form on the Lie

algebroid (T ∗M)π, we can use Theorem 3.10 to integrate ΦB to a closed

multiplicative 2-form ωB
G on G, which is necessarily symplectic due to

Corollary 3.11. In order to give an explicit formula for ωB
G , we need the

following lemma.

Lemma 4.7. Let G be a Lie groupoid over M. For every closed 2-form

B on M , the closed 2-form

BG := t
∗B − s

∗B,
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is a multiplicative form on G with associated IM-2-form σBG
= B♯ ◦ρAG.

Proof. We need to check that BG satisfies identity (3.1). It follows from

the definition of ωB
G that

m∗
GBG = (t ◦ pr1)

∗B − (s ◦ pr2)
∗B, (4.3)

where pr1, pr2 : G(2) −→ G are the canonical projections. One can also

see that

pr∗1BG = (t ◦ pr1)
∗B − (s ◦ pr1)

∗B, (4.4)

and

pr∗2BG = (t ◦ pr2)
∗B − (s ◦ pr2)

∗B. (4.5)

Since (3.1) is an identity of forms defined on G(2) and t◦pr2 = s◦pr1
on G(2), one combines equations (4.3), (4.4) and (4.5) to conclude that

BG is multiplicative.

Recall that the IM-2-form of a closed multiplicative form is given by

(3.5). Therefore, the IM-2-form of BG is given at every a ∈ AG by

σBG
(a) =BG(a, ·)|TM

=B(T t(a), ·)|TM −B(T s(a), ·)|TM

=B(ρAG(a), ·)|TM

where in the last equality we have used that AG := kerT s|M .

The symplectic groupoid (G,ωG) defines an IM-2-form σωG
: AG −→

(T ∗M)π which is a Lie algebroid isomorphism. For every a ∈ AG we

define α = σωG
(a), then

σBG
(a) = B♯(ρAG(a)) = B♯(π♯(α)).

This says that identifying AG ∼= (T ∗M)π via σωG
, the IM-2-form of

BG = t
∗B−s

∗B corresponds to the bundle map B♯ ◦π♯ : T ∗M −→ T ∗M .

We summarize these observations in the following proposition.
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Proposition 4.8. The IM-2-form ΦB = (Id + B♯ ◦ π♯) : (T ∗M)π −→

(T ∗M)πB
integrates to the multiplicative closed 2-form on G, given by

ωB
G = ωG +BG.

Moreover, since ΦB is an isomorphism, the pair (G,ωB
G) is a sym-

plectic groupoid integrating the Poisson manifold (M,πB).

This result was proved first in [4] without using IM-2-forms. The

discussion done in this section provides a conceptually clear proof of

some results in [4].

5 Symmetries of multiplicative Poisson struc-

tures

We want to study B-field symmetries of Poisson groupoids. Just as

symmetries of Poisson structures are well understood in terms of Dirac

geometry, we will see that B-field transformations of Poisson groupoids

can be studied via Dirac structures suitably compatible with a groupoid

multiplication.

5.1 Multiplicative Dirac structures

Let G be a Lie groupoid over M . One observes that since TG and T ∗G

are Lie groupoids over TM and A∗G, respectively, then the direct sum

vector bundle TG = TG ⊕ T ∗G inherits a Lie groupoid structure over

TM ⊕A∗G. The following definition can be found in [24].

Definition 5.1. A Dirac structure LG on G is called multiplicative if

LG is a Lie subgroupoid of the direct sum groupoid TG.

The space of all multiplicative Dirac structures on G will be denoted

by Dirmult(G). Let us see some natural examples.

Example 5.2. (Poisson groupoids)

Let πG be a Poisson structure on a Lie groupoid G. We have seen

that (G, πG) is a Poisson groupoid if and only if π♯
G : T ∗G −→ TG is a

groupoid morphism. Equivalently, the Dirac structure LπG
= {(π♯

G(α), α) |
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α ∈ T ∗G} of Example 4.2 is a subgroupoid. That is, the Dirac structure

induced by πG is multiplicative.

Example 5.3. (Multiplicative closed 2-forms)

Let ωG be a closed 2-form on G. It follows from Proposition 3.6 that

ωG is multiplicative if and only if ω♯
G : TG −→ T ∗G is a groupoid mor-

phism. Equivalently, the corresponding Dirac structure LωG
= {(X,ω

♯
G(X)) |

X ∈ TG} ⊆ TG of Example 4.1 is a subgroupoid. This shows that LωG

is a multiplicative Dirac structure.

Multiplicative Dirac structures were introduced by the author in his

doctoral thesis [24]. These structures unify both multiplicative closed

2-forms and Poisson bivectors, offering a conceptually clear framework

for studying geometric structures compatible with a group(oid) multipli-

cation. See also [17] where homogeneous spaces for multiplicative Dirac

structures are studied.

Let AG be the Lie algebroid of G. The tangent and cotangent al-

gebroids induce a Lie algebroid structure on the direct sum T(AG) =

T (AG)⊕ T ∗(AG) with base TM ⊕A∗. It turns out that the direct sum

Lie algebroid T(AG) is isomorphic to the Lie algebroid of TG, via the

map

j−1
G ⊕ θG : A(TG)⊕A(T ∗G) −→ T(AG),

where jG : T (AG) −→ A(TG) and θG : A(T ∗G) −→ T ∗(AG) are defined

by (2.7) and (2.8), respectively.

Definition 5.4. Let A be a Lie algebroid over M . An IM-Dirac struc-

ture on A is a Dirac structure LA which is a Lie subalgebroid of the direct

sum Lie algebroid TA.

The space of all IM-Dirac structures onA will be denoted by DirIM (A).

The following examples are important.

Example 5.5. (Lie bialgebroids)

Let πA be a Poisson bivector on A. Then the Dirac structure LπA
as

in example 4.2 is an IM-Dirac structure if and only if π♯
A : T ∗A −→ TA

is a Lie algebroid morphism. Due to Theorem 3.5, an IM-Dirac structure
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given by the graph of a Poisson bivector is equivalent to (A,A∗) being a

Lie bialgebroid.

Example 5.6. (IM-2-forms)

Let ωA = −σ∗ωcan be a closed 2-form on A. Then the Dirac structure

LωA
is an IM-Dirac structure if and only if ωA is a morphic 2-form (see

definition 3.6).

The following result generalizes the correspondence between Poisson

groupoids (resp. multiplicative 2-forms) and Lie bialgebroids (resp. IM-

2-forms).

Theorem 5.7. [24]

Let G be a Lie groupoid with Lie algebroid AG. Assume that G

has connected and simply connected source fibers. There is a one-to-one

correspondence

Lie : Dirmult(G) −→ DirIM (AG)

LG 7→ LAG

where LAG := (j−1
G ⊕ θG)(A(LG)), and A(LG) ⊆ A(TG) is the Lie func-

tor.

The reader can find a proof of this result in the author’s work [24].

5.2 Symmetries of (TG, 〈·, ·〉, [[·, ·]])

Let G be a Lie groupoid overM with Lie algebroid AG. Throughout this

subsection we denote by BG an arbitrary multiplicative closed 2-form on

G with induced morphic 2-form BAG.

Proposition 5.8. The bundle map τBG
: TG −→ TG defined in (4.1) is

a groupoid morphism.

Proof. This follows directly from the definition of τBG
and Proposition

3.6.
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As a consequence of this proposition we observe that multiplicative

closed 2-forms act on multiplicative Dirac structures via B-field trans-

formations.

Corollary 5.9. Let LG be a multiplicative Dirac structure on G. Suppose

that BG is a closed multiplicative 2-form on G, then the Dirac structure

LB
G := τBG

(LG) is also multiplicative.

Proof. This is a straightforward consequence of the proposition above

and definition 5.1.

Now we want to find the infinitesimal data of the multiplicative Dirac

structure τBG
(LG) in the sense of Theorem 5.7. For that we need to

study B-field transformations of the data (TA, 〈·, ·〉) for an arbitrary Lie

algebroid A. Let A be a Lie algebroid over M and let BA be an arbitrary

morphic 2-form on A.

Proposition 5.10. The bundle map τBA
: TA −→ TA is a Lie algebroid

morphism.

Proof. This is a straightforward consequence of definition 3.7.

Corollary 5.11. Let LA be an IM-Dirac structure on a Lie algebroid

A. Suppose that BA is a morphic closed 2-form on A, then the Dirac

structure LB
A := τBA

(LA) is also an IM-Dirac structure on A.

On one hand, as proved in Proposition 3.8, given a multiplicative

closed 2-form BG on G, we can think of the induced morphic 2-form BAG

on AG as the result of applying the Lie functor to BG. On the other hand,

one can apply the Lie functor to the groupoid morphism of Proposition

5.8, yielding a Lie algebroid morphism A(τBG
) : A(TG) −→ A(TG),

which composed with the Lie algebroid isomorphism j−1
G ⊕ θG, gives rise

to the Lie algebroid morphism τBAG
: T(AG) −→ T(AG), where BAG is

the morphic 2-form on AG associated to BG (See Proposition 3.8). This

gives rise to the main result of this note.
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Theorem 5.12. Let G be a Lie groupoid over M with Lie algebroid AG.

Consider a multiplicative closed 2-form BG on G with induced morphic 2-

form BAG on AG. The map Lie : Dirmult(G) −→ DirIM (AG) conjugates

the B-field transformations τBG
and τBAG

. That is,

Lie(τBG
(LG)) = τBAG

(Lie(LG)).

This theorem says that the multiplicative Dirac structure τBG
(LG),

obtained by a multiplicative B-field transformation of LG, is described

infinitesimally by the IM-Dirac structure τBAG
(LAG), defined by the as-

sociated morphic B-field transformation of LAG.

5.3 B-field transformations of Poisson groupoids

Let (G, πG) be a Poisson groupoid overM with Lie bialgebroid (AG,A∗G).

Consider an arbitrary multiplicative 2-form BG on G with induced mor-

phic 2-form BAG. Combining Corollary 5.9 and Theorem 5.12 we con-

clude the following.

Proposition 5.13. The Dirac structure τBG
(LπG

) is a multiplicative

Dirac structure, which is infinitesimally described by τBAG
(LπAG

), where

πAG is the linear Poisson bivector on AG dual to the Lie algebroid A∗G.

We will study the special case where BG = s
∗B− t

∗B for some closed

2-form B on M .

Remark 5.14. A Lie bialgebroid (A,A∗) over M induces a Poisson

structure π on M given by π♯ := ρA ◦ ρ
∗
A∗. This Poisson bivector will be

called the Poisson structure induced by (A,A∗). See [21].

The Lie bialgebroid (AG,A∗G) determined by (G, πG) induces a Pois-

son structure π on M according to remark 5.14. One can check that a

closed 2-form B onM is π-admissible if and only if BG = s
∗B−t

∗B is πG-

admissible (see [5, 4]). As a consequence, the Dirac structure τBG
(LπG

)

of Proposition 5.13 is given by the graph of the multiplicative Poisson

bivector πB
G . We are concerned with the effect of τBG

on the Lie bialge-

broid of (G, πG).
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Lemma 5.15. Assume that G has connected and source simply connected

source fibers. Then BG is πG-admissible if and only if BAG is πAG-

admissible.

Proof. On one hand, example (5.2) shows that the multiplicativity of πG
is equivalent to saying that the map π

♯
G : T ∗G −→ TG is a groupoid

morphism between the cotangent and tangent groupoids. Similarly, due

to the fact that BG is multiplicative, one concludes from example (5.3)

that B♯
G : TG −→ T ∗G is a groupoid morphism. As a result, the map

(Id +B
♯
G ◦ π

♯
G) : T

∗G −→ T ∗G is a composition of groupoid morphisms.

On the other hand, the fact that BG is πG-admissible is equivalent to

(Id + B
♯
G ◦ π

♯
G) : T

∗G −→ T ∗G be a bijection. Combining these obser-

vations we conclude that (Id + B
♯
G ◦ π

♯
G) : T

∗G −→ T ∗G is a groupoid

isomorphism. The application of the Lie functor, followed by the Lie

algebroid isomorphism (2.8) gives rise to the Lie algebroid isomorphism

(Id + B
♯
AG ◦ π

♯
AG) : T

∗(AG) −→ T ∗(AG). As a consequence, BAG is

πAG-admissible. The converse follows from Lie’s second theorem.

According to Proposition 5.13, the infinitesimal data of the multi-

plicative Poisson bivector πB
G on G corresponds to the Poisson bivector

πB
AG on AG, defined by

(πB
AG)

♯ = π
♯
AG ◦ (Id +B

♯
AG ◦ π

♯
AG)

−1.

Since (πB
AG)

♯ is given by the composition of Lie algebroid morphisms,

it follows from Theorem 3.5 that the B-field transformation of πAG by

BAG maps the Lie bialgebroid (AG,A∗G) into another Lie bialgebroid

(AG, (A∗G)B). We will describe the Lie algebroid (A∗G)B explicitly. For

that, we use Theorem 3.5 applied to the Lie algebroid morphism

T ∗A

A∗

TA

TM

(πB
AG)♯

//

ρB
A∗G

//

rA

��

TqA

��

(5.1)



B-field transformations of Poisson groupoids 145

where ρBA∗G := ρA∗G ◦ (Id − ρ∗AG ◦ B
♯ ◦ ρA∗G)

−1, to conclude that the

dual vector bundle A∗G inherits a new Lie algebroid structure in such

a way that the map (Id − ρ∗AG ◦ B
♯ ◦ ρA∗G) : A

∗G −→ (A∗G)B is a Lie

algebroid isomorphism. This is in agreement with the results of [5]. The

Lie bialgebroid (AG, (A∗G)B) is called the gauge transformation of

(AG,A∗G) by the closed 2-form B on M , see [5] for more details.

Using this terminology, the infinitesimal data of the Poisson groupoid

(G, πB
G) is given by the gauge transformation of (AG,A∗G) associated to

the closed 2-form B on M . Thus we see that Theorem 5.12 recovers the

following result shown in [5].

Theorem 5.16. [5]

Let (G, πG) be a Poisson groupoid over M with Lie bialgebroid (AG,A∗G)

and induced Poisson structure π on M . Let B be a closed 2-form on M

and let BG = s
∗B− t

∗B the associated multiplicative 2-form on G. Then

B is π-admissible if and only if BG is πG-admissible. In this case, the Lie

bialgebroid of the Poisson groupoid (G, πB
G) is given by (AG, (A∗G)B).

Given a Poisson groupoid (G, πG) overM with induced Poisson struc-

ture π on M and B a π-admissible closed 2-form on M , then combining

the previous theorem with Lemma 5.15 one concludes that BAG is πAG-

admissible, where BAG is the morphic form of BG = t
∗B − s

∗B. The

gauge transformation Lie bialgebroid (AG, (A∗G)B) induces a Poisson

structure on M , given by

π
♯
B = ρAG ◦ (ρ

B
A∗G)

∗,

where ρBA∗G := ρA∗G◦(Id−ρ∗AG◦B
♯◦ρA∗G)

−1. A straightforward compu-

tation shows that π♯
B = τB(πM ). That is, the Poisson structure induced

by the gauge transformation Lie bialgebroid (AG, (A∗G)B) coincides with

the gauge transformation, via B, of the Poisson structure induced by the

Lie bialgebroid (AG,A∗G).

We have seen that Theorem 5.16 follows from a more general result,

namely Theorem 5.12 where multiplicative Dirac structures played a fun-

damental role. As we have mentioned, multiplicative Dirac structures

unify both multiplicative closed 2-forms and Poisson bivectors, yield-

ing a natural framework for studying B-field transformations of Poisson
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groupoids. One of the advantages of introducing multiplicative Dirac

structures is that they provide a conceptually clear framework, where we

can treat all multiplicative structures in a unified manner, often simpli-

fying existing results and proofs.

Remark 5.17. There is another interesting class of multiplicative Dirac

structures, namely those given by foliations compatible with a groupoid

multiplication, e.g. if G is a Lie groupoid equipped with a free and proper

Lie group action by groupoid automorphisms, then the vertical space of

this action defines a multiplicative foliation on G. It was proved in [23]

that multiplicative foliations on a Lie group G can be explicitly described

in terms of connected normal subgroups of G. Infinitesimally, if G is a

Lie group with Lie algebra g, then multiplicative foliations on G corre-

spond to Lie subalgebras of g, which are also ideals. The general case of

multiplicative foliations on Lie groupoids is treated in a work in progress

with M. Jotz [18].
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