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Abstract

This article is an expanded version of the talk given by Ch. O.
at the Second Latin Congress on ”Symmetries in Geometry and
Physics” in Curitiba, Brazil in December 2010. In this version we
explain the topological and gauge-theoretical aspects of our paper
”Abelian Yang-Mills theory on Real tori and Theta divisors of Klein
surfaces” [15].

1 Introduction

In an ongoing research project we intend to develop a version of Seiberg-

Witten theory and gauge theoretic Gromov-Witten theory in the pres-

ence of Real structures. The main problem is that the corresponding

virtual fundamental class will be a homology class with coefficients in a

local system (i.e., a locally constant sheaf) which, in order to construct

Z-valued invariants, must be determined explicitly.

Example: Let (C, ι) be a Klein surface, i.e., a Riemann surface C en-

dowed with an anti-holomorphic involution ι. Put g := h0(ωC) and

suppose Cι �= ∅.
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For every d ∈ N we obtain induced Real structures ι̂ : Picd(C) →

Picd(C), and ι̃ : C(d) → C(d) on the complex manifolds Picd(C), and

C(d).

In the example illustrated in the picture above, we have (C(2))ι̃ ≃

T 2
∐

(P2
R
#P

2
R
). The fundamental class of the manifold (C(d))ι̃ is an element

[(C(d))ι̃] ∈ Hd((C
(d))ι̃, O(C(d))ι̃) ,

where O(C(d))ι̃ denotes its orientation sheaf. To understand this coefficient

system we use the cartesian diagram:

C × C(d) ✲ C(d)

❄

C × Picd(C)

id× ρ ρ

q̃

q
❄

Picd(C)✲

One has the following effective divisors:

1. the universal divisor ∆ := {(x, δ) ∈ C×C(d)| x ∈ δ} on the product

C × C(d);

2. the ample divisor Dx0 := {δ ∈ C(d)| x0 ∈ δ} on C(d), where x0 ∈ C

is a fixed point.

We denote by O(∆), respectively O(Dx0) the corresponding line bundles

on the manifolds C × C(d), C(d) respectively. On the other hand, on

C × Picd(C) we consider the Poincaré line bundle with respect to x0,

denoted Px0 , which is characterized up to isomorphism by the properties:

Px0 C×{[L]} ≃ L ∀[L] ∈ Picd(C) , Px0 {x0}×Pic
d(C) ≃ OPicd(C) .
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We have a universal short exact sequence on C × C(d):

0 −→ O −→ O(∆) −→ O∆(∆) −→ 0

Using the well known facts [1]

i) TC(d) = q̃∗O∆(∆),

ii) O(∆) = (1× ρ)∗Px0 ⊗ q̃∗O(Dx0),

and taking into account that determinant line bundles commute with

base change [10], we obtain:

detTC(d) = det(q̃∗O∆(∆)) = det(q̃!O∆(∆)) = det(q̃!O(∆))⊗ det(q̃!O)
∨ ≃

≃ det(q̃![(1× ρ)∗Px0 ⊗ q̃∗O(Dx0)]) ≃ ρ∗[det(q!Px0)]⊗ O((d+ 1− g)Dx0)

(1)

When x0 ∈ Cι all bundles in these formulae are naturally Real holo-

morphic line bundles, and the isomorphisms in (1) are isomorphisms of

Real line bundles. In particular we see that the orientation line bundle

detT(C(d))ι̃ of the manifold (C(d))ι̃ – which can be identified with the fixed

point locus of detTC(d) – is determined by the numerical data g, d and

the Real holomorphic line bundle det(q!Px0) on (Picd(C), ι̂). Therefore,

in order to determine the orientation sheaf O(C(d))ι̃ , we have to under-

stand this Real determinant line bundle. To this end consider the Real

isomorphism ϕx0 : Pic0(C) −→ Picd(C) given by

ϕx0([L]) = [L⊗ OC(dx0)] .

Proposition 1. Let Θ := {[L] ∈ Picg−1(C)| h0(L) > 0} be the geometric

theta divisor on Picg−1(C). There exists a canonical isomorphism of Real

holomorphic line bundles

ϕ∗x0
[det(q!Px0)] ≃ OPic0(C)(Θ− [OC((g − 1)x0)]) .

Remark:



64 Ch. Okonek A. Teleman

i) The isomorphism type of the underlying differentiable complex line

bundle of the right hand side can be computed using the Grothendieck-

Riemann-Roch theorem for proper morphisms, and the result is

independent of x0. On the other hand, we will see that the isomor-

phism type of the Real structure of this line bundle does depend on

x0, more precisely on the connected component of x0 in Cι. This

striking result shows that there cannot exist any Grothendieck-

Riemann-Roch-type theorem to compute this Real isomorphism

type.

ii) When one considers more generally quot-schemes QuotdE instead of

the symmetric power C(d) = QuotdO, one has to deal with virtual

fundamental classes in order to define in a coherent way Real gauge

theoretical Gromov-Witten invariants [14].

Therefore, our aim is now to determine OPic0(C)(Θ− [OC((g−1)x0)])

as a Real holomorphic line bundle on the Real torus (Pic0(C), ι̂).

2 Real line bundles

Let (X, τ) be a Real space, i.e. a CW space endowed with an involution.

A Real line bundle (in the sense of Atiyah [2]) over (X, τ) is a pair (L, τ̃),

where L → X is a complex line bundle, and τ̃ : L → L is a fibrewise

anti-linear isomorphism over τ such that τ̃2 = idL. The isomorphism

classes of Real line bundles over (X, τ) form a group, which is naturally

isomorphic to the Grothendieck cohomology group [8]

H1
Z2
(X,S1(1)) = H2

Z2
(X,Z(1)) ≃ [(X, τ), (P∞(C), )̄]Z2 ,

where S1(1) denotes the Z2-sheaf of germs of continuous S1-valued func-

tions on X endowed with the Z2-action defined by the involution induced

by τ and conjugation on S1, and Z(1) denotes the Z2-sheaf with fibre Z

endowed with the Z2-action defined by the involution induced by τ and

−idZ (see [8] for the cohomology theory of equivariant sheaves) .
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Proposition 2. Suppose that Xτ 6= ∅. There exists a canonical exact

sequence

0→ H1
Z2
(H1(X,Z)(1))→ H2

Z2
(X,Z(1))

c1−−→ H2(X,Z)−τ
∗

O−→ H2
Z2
(H1(X,Z)(1)) .

We also have a natural restriction map

H1
Z2
(X,S1(1)) = H2

Z2
(X,Z(1)) −→ H2(Xτ ,Z(1)) = H1(Xτ ,Z2) ,

which maps the isomorphism class [L, τ̃ ] of a Real line bundle on (X, τ)

onto w1(L
τ̃ ). Here Lτ̃ is regarded as a real line bundle on the fixed point

locus Xτ .

Example: For a Klein surface (C, ι) one has

H2
Z2
(C,Z(1)) ≃ H2(C,Z)×Z2 H

1(Cι,Z2) ,

the isomorphism being given by [L, ι̃] 7→ (c1(L), w1(L
ι̃)). The fact that

the pair on the right belongs to the fibre productH2(C,Z)×Z2H
1(Cι,Z2)

follows from the identity

〈c1(L), [C]〉 ≡ 〈w1(L
ι̃), [Cι]〉 (mod 2) .

3 Gauge theoretical relevance

Let (X, τ) be a compact Real Riemannian manifold (i.e., τ is an isometric

involution of X) and let L be a Hermitian line bundle on X. We denote

by T(L) the moduli space of Yang-Mills connections, and put

TX :=
∐

c∈H2(X,Z)

T(Lc) ,

where Lc is a Hermitian line bundle on X with c1(Lc) = c. Note that

T(Lc) depends only on c (i.e., is independent of the choice of Lc) up

to canonical isomorphism. The manifold TX comes with a natural Real

structure τ̂ : TX → TX defined by pull-back of Yang-Mills connections.

Proposition 3. Suppose Xτ 6= ∅.



66 Ch. Okonek A. Teleman

1. The following conditions are equivalent:

(a) T(Lc)
τ̂ 6= ∅,

(b) τ∗(c) = −c, O(c) = 0,

(c) Lc admits Real structures with respect to the fixed involution

τ on X.

2. There exists a natural morphism

F : Tτ̂
X −→ H2

Z2
(X,Z(1)) ,

which induces an isomorphism f : π0(T
τ̂
X) −→ H2

Z2
(X,Z(1)).

Problem: Compute the group H2
Z2
(X,Z(1)) classifying Real line bun-

dles on a given Real 4-manifold (X, τ). Note that this is taken care of

by Proposition 2 when the first Betti number of X vanishes.

4 Abelian Yang-Mills connections on a torus

Let V be an Euclidian vector space, Λ ⊂ V a maximal lattice, and

T := V/Λ the associated flat torus. Recall that we have canonical isomor-

phisms Hk(T,Z) = Altk(Λ,Z). Fix u ∈ H2(T,Z), denote by the same

symbol the corresponding anti-symmetric bilinear form u : Λ × Λ → Z,

and by uR its R-linear extension, which can also be regarded as a har-

monic 2-form on T . Using the notations of the previous section we have

T(Lu) =

{

[A] ∈ A(Lu)
/

G
i

2π
FA = uR

}

.

Definition 4. A u-character on Λ is a map α : Λ→ S1 such that

α(λ+ λ′) = α(λ)α(λ′)eπiu(λ,λ
′) ∀λ, λ′ ∈ Λ .

Note that the set Homu(Λ, S
1) of u-characters on Λ has a natural

Hom(Λ, S1)-torsor structure.

Associated to any element λ ∈ Λ one has a standard loop cλ : [0, 1]→

V/Λ given by cλ(t) := [λt].
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Proposition 5. Taking holonomy along standard loops induces a bijec-

tion

h : T(Lu)→ Homu(Λ, S
1) ,

which maps a Yang-Mills class [A] ∈ T(Lu) to the u-character λ 7→ h̄Acλ.

Idea: The holonomy along the boundary of a 2-simplex is determined

by the curvature form. We apply this principle to the image in T of

a 2-simplex [0, λ, λ′] ⊂ V , and see that the holonomy of a Yang-Mills

connection along the standard loops defines a u-character. Letting u

vary in Alt2(Λ,Z) we obtain

Theorem 6. (Appel-Humbert theorem for Abelian Yang-Mills connec-

tions). The holonomy map defines a canonical isomorphism

h : TT −→
∐

u∈Alt2(Λ,Z)

Homu(Λ, S
1) .

Remark: The classical Appel-Humbert theorem, describing holomor-

phic line bundles on complex tori, follows from this result and the Kobayashi-

Hitchin correspondence [12]: if J is a compatible complex structure on

V , we define a Hermitian form Hu on the complex vector space (V, J) by

Hu(v, w) := uR(v, Jw) + iuR(v, w) .

Clearly one has imHu = uR. We obtain a commutative diagram

∐

H Hermitian

imH(Λ×Λ)⊂Z

HomimH(Λ, S1)
∐

u∈Alt2(Λ,Z)

J∗(uR)=uR

Homu(Λ, S
1)

❄

Pic(T, J)

AH h−1

KH
❄

∐

u∈NS(T,J)

T(Lu)✛ ,

where the map KH is the Kobayashi-Hitchin correspondence between
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equivalence classes of HE connections and isomorphism classes of polystable

holomorphic bundles. We recall that a Hermitian connection on a differ-

entiable Hermitian bundle over a compact Kähler manifold is Hermitian-

Einstein if and only if it is Yang-Mills and its curvature has type (1,1).

Remark: Theorem 6 gives an interesting geometric interpretation of the

classical Appel-Humbert data (H,α) as curvature, respectively holonomy

of Hermitian-Einstein connections.

Problem 2: Generalize Theorem 6 to higher harmonic Deligne coho-

mology, i.e., higher Abelian gerbes with harmonic curvature. For the

definition of these spaces we refer to [6].

5 Real line bundles on Real tori

Let V be an Euclidian vector space, τ : V → V a linear isometric in-

volution, and Λ ⊂ V a τ -invariant maximal lattice. We denote by the

same symbol τ the induced involution on the torus T := V/Λ, and by

τ̂ : TT → TT the induced involution on the total moduli space TT of

Yang-Mills connections on Hermitian line bundles over T . Using the no-

tations and the results of the previous section we see that τ̂ acts – via

the AH description given by Theorem 6 – by the formula

τ̂(u, α) = (−τ∗u, τ∗α) ,

which shows that a fixed point (u, α) of τ̂ must satisfy the equations

1. α Λτ ∈ Hom(Λτ , {±1}),

2. α(λ+ τλ) = eπiu(λ,τλ) ∀λ ∈ Λ.

Therefore, restricting the map h of Theorem 6 to the fixed point locus

of τ̂ we get a map

hτ : Tτ̂
T −→ Alt2(Λ,Z)−τ

∗

×Hom((id+τ)Λ,Z2) Hom(Λτ ,Z2)
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given by hτ (u, α) := (u, α Λτ ). Note that Proposition 3 yields a natural

bijection f : π0(T
τ̂
T ) → H2

Z2
(T,Z(1)); clearly hτ factorizes through f .

Note also that one has canonical identifications

Alt2(Λ,Z)−τ
∗

= H2(T,Z)−τ
∗

, Hom(Λτ ,Z2) = H1(T τ
0 ,Z2) ,

where T τ
0 = V τ/Λτ is the connected component of 0 in the fixed point

locus T τ .

Theorem 7. Let (T, τ) be a Real torus with T τ 6= ∅. The mixed charac-

teristic class (c1, w1) induces an isomorphism

cw : H2
Z2
(T,Z(1)) −→ H2(T,Z)−τ

∗

×H1(T,Z2) H
1(T τ

0 ,Z2)

given by cw([L, τ̃ ]) = (c1(L), w1(L
τ̃

T τ
0
)).

Remark: The essential facts used in the proof are:

1. The second component α of an Appel-Humbert datum describes

the holonomy of the corresponding Yang-Mills connection,

2. The connected component decomposition of the fixed point locus

T τ has the form

T τ =
∐

[µ]∈ 1
2
Λ−τ/ 1

2
(id−τ)Λ

T τ
[µ] ,

where T τ
[µ] := T τ

0 +[µ]; the Stiefel-Whitney class w1(L
τ̃ ) ∈ H1(T τ ,Z2)

is determined by the Stiefel-Whitney class w1(L
τ̃

T τ
0
) of the restric-

tion of Lτ̃ to T τ
0 . This follows from the difference formula

w1(L
τ̃

T τ
[µ]
)− w1(L

τ̃
T τ
0
) = u(2µ, ·) (mod 2) .

Problem 3: Silhol [16] constructed moduli spaces of Real Abelian

varieties (A, τ) endowed with a compatible principal polarization c ∈

H2(A,Z)−τ
∗

. For certain questions it is more natural to have moduli

spaces of Real principally polarized Real Abelian varieties, i.e., triples

(A, τ, cw), where cw ∈ H2
Z2
(A,Z(1)) is a class defining a principal polar-

ization. These moduli spaces will be finite covers of Silhol’s spaces.
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6 Determinant bundles of Klein surfaces

Let (C, ι) be a Klein surface, Cι =
∐n

i=1Ci the connected component

decomposition of the fixed point locus Cι, and let x0 ∈ Cι. Our goal is

to determine the topological type of the Real line bundle

Lx0 := OPic0(C)(Θ− [OC((g − 1)x0)]) .

Taking into account the results explained in the previous section, this

topological type is determined by the mixed characteristic class

cw(Lx0) ∈ Alt2(H1(X,Z),Z)(ι
∗)∗×Hom((id−ι∗)H1(C,Z),Z2)Hom(H1(C,Z)−ι

∗

,Z2) .

The Grothendieck-Riemann-Roch theorem allows us to identify the first

component of the pair cw(Lx0) [1]; the result is c1(Lx0) = uC , where

uC ∈ H2(Pic0(C),Z) = Alt2(H1(C,Z),Z)

is the cup form:

uC : H1(C,Z)×H1(C,Z)→ Z , (λ, λ′) 7→ 〈λ ∪ λ′, [C]〉

Therefore, it suffices to determine explicitly the Stiefel-Whitney class

w1(L
ι̃
x0 Pic0(C)ι̂0

) : H1(C,Z)−ι
∗

−→ Z . (2)

Using topological arguments [5], one can show that H1(C,Z)−ι
∗

is

generated by the subgroup (id−ι∗)H1(C,Z) and the classes [C1]
∨, . . . , [Cn]

∨,

where [Ci]
∨ denotes the Poincaré dual of the 1-homology class [Ci] de-

fined by an arbitrary orientation of the circle Ci. Since the restriction of

w1(L
ι̃
x0 Pic0(C)ι̂0

) to (id − ι∗)H1(C,Z) is known (it is determined by the

Chern class uC , see section 5) we conclude that it suffices to compute

the values of (2) on the classes [Ci]
∨.

We will proceed in two steps:

1. compute cw(L[κ]), where L[κ] is a symmetric theta line bundle,

2. compare cw(Lx0) to cw(L[κ]).
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(1) We recall that a theta characteristic is square root of [ωC ]. Denote

by θ(C) the set of theta characteristics of C, i.e.,

θ(C) := {[κ] ∈ Picg−1(C)| κ⊗2 ≃ ωC} .

The cardinality of this set is 22g, and for every [κ] ∈ θ(C) we have an

associated Mumford theta form q[κ] : Pic
0(C)2 −→ Z2, defined on the

2-torsion subgroup Pic0(C)2 ⊂ Pic0(C) by

q[κ]([η]) := h0(η ⊗ κ)− h0(κ) (mod 2)

(see [1]). Using the natural identification

Pic0(C)2 =

1

2
H1(C,Z)/

H1(C,Z)
= H1(C,Z2) ,

we obtain a form q[κ] : H1(C,Z2)→ Z2 satisfying the Riemann-Mumford

relations:

q[κ](a+ b) = qa + qa + a · b (3)

The main idea is to use the translation by a theta characteristic instead

of translation by [OC((g − 1)x0)] to identify Picg−1 with Pic0(C). More

precisely, we define

L[κ] := OPic0(C)(Θ− [κ]) .

Theorem 8. Let [κ] ∈ θ(C). Then the Appel-Humbert data of the holo-

morphic line bundle L[κ] is (uC , α[κ]), where α[κ] : H1(C,Z) → S1 is

defined by

α[κ](λ) := (−1)q[κ](λ∩[C]) .

Here λ ∩ [C] ∈ H1(C,Z) is the Poincaré dual of λ and λ ∩ [C]) denotes

its image in H1(C,Z2).

Idea of proof: Since L[κ] is symmetric in the sense that (−1)∗(L[κ]) ≃ L[κ],

it follows that

α[κ](λ) = (−1)
mult

[ 12λ]
(Θ−[κ])−mult[0](Θ−[κ])
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(see [4]). Now we use Riemann’s singularity theorem, which states

mult[L]Θ = h0(L) .

Note that the uC-character α[κ] given by Theorem 8 involves the algebraic

geometric data q[κ]. Therefore, we have to make an additional step, which

will give a purely topological interpretation of the values q[κ]([Ci]2) when

ι̂[κ] = [κ].

Proposition 9. Suppose [κ] ∈ θ(C)ι̂. Then

q[κ]([Ci]2) = 〈w1(κ
ι̃), [Ci]2〉+ 1 .

Idea of proof: We use the diagram

θ(C)
❍
❍❥

❄

Spin(C)

ξ

q

ω

Q(H1(C,Z2), ·)
✟
✟✯

,

where Spin(C) denotes the set of isomorphism classes of Spin-structures

on C, Q(H1(C,Z2), ·) is the set of maps H1(C,Z2) → Z2 satisfying the

Riemann-Mumford relations (3), q is the assignment [κ] 7→ q[κ] given by

the Mumford theta form, ξ is the bijection defined by Atiyah [3], and ω is

a bijection defined by Johnson [9] in purely topological terms. We know

by Mumford that q is a morphism of H1(C,Z2)-torsors, according to

Atiyah [3] ξ is a bijection, by Johnson [9] ω is a bijection, and according

to Libgober [11] the diagram commutes. Combining these results, and

using a direct geometrical argument, we obtain the following formula:

ωξκ([Ci]2) = 〈w1(κ
ι̃), [Ci]2〉+ 1 (4)

This completes step (1); for step (2) we use the fact that every component

of Picg−1(C)ι̂ contains 2g Real theta characteristics. Concluding, we get
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the following explicit formula which, combined with the results of section

6, completes the computation of the topological type of the Real line

bundles Lx0 .

Proposition 10.

w1(L
ι̃
x0 Pic0(C)0

)[Ci]
∨
2 =

{

1 when x0 6∈ Ci

g (mod 2) when x0 ∈ Ci .
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Norm. Sup., 4e série 14 (1981), 157–182.

[8] A. Grothendieck: Sur quelques points d’algébre homologique, II,
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