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Grothendieck Categories and their Deformations with an

Application to Schemes

Wendy Lowen∗

Abstract

After presenting Grothendieck abelian categories as linear sites
following [9], we present their basic deformation theory as devel-
oped in [14] and [10]. We apply the theory to certain categories
of quasi-coherent modules over Z-algebras, which can be consid-
ered as non-commutative projective schemes. The cohomological
conditions we require constitute an improvement upon [5].

1 Introduction

This overview consists of two main sections. In §2, we introduce

Grothendieck categories as the abelian categories closest to module cat-

egories. We explain how to extend the famous Gabriel-Popescu theo-

rem in order to obtain other interesting representations of Grothendieck

categories as linear sheaf categories. As an example, we give a sheaf

theoretic description of categories of quasi-coherent modules, considered

as non-commutative replacements of projective schemes in the approach

to non-commutative algebraic geometry due to Artin, Tate, Stafford,

Van den Bergh and others. In [3], Z-algebras were used in order to de-

scribe non-commutative planes. In [22] and [23], Van den Bergh obtained
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explicit descriptions of the Grothendieck categories representing non-

commutative planes, quadrics and P
1-bundles over commutative schemes.

The stability of these descriptions under deformation motivated the gen-

eral development of a deformation theory for abelian, and in particular

Grothendieck categories, which was started in [14]. In §3, we present

the basics of this theory, and the application to quasi-coherent module

categories. The details of this application can be found in [5]. In the

current paper, we fine tune the approach in order to obtain applicability

to all projective schemes with H1(X,OX) = H2(X,OX) = 0.

2 Grothendieck categories

2.1 Linear categories

In algebra, rings and algebras over fields or more general commutative

ground rings are among the most basic objects of study. The algebraic ge-

ometry of affine schemes is entirely encoded in commutative ring theory.

To model projective schemes, we will make use of an algebraic structure

which is only slightly more general than that of an algebra. Throughout,

let k be a commutative ground ring.

Definition 2.1. A k-linear category or k-category a is a small category

such that the hom-sets a(A,B) = Hom(A,B) for objects A,B ∈ a are

k-modules and the composition is k-bilinear.

Linear categories can be thought of as algebras with several objects,

a point of view due to Mitchell [15].

Examples 2.2. 1. If A is a k-algebra, it can naturally be considered

as a k-linear category with a single object ∗ and End(∗, ∗) = A.

2. Let A and B be k-algebras and AMB an A-B-bimodule. Then there

is a corresponding k-linear category with two objects ∗A and ∗B

and with End(∗A) = A, End(∗B) = B, Hom(∗A, ∗B) = AMB and

Hom(∗B, ∗A) = 0.

3. The opposite category a
op

of a k-linear category a is again k-linear.
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Remark 2.3. Linear categories offer alternative ways to organize alge-

braic structures that are classically organized into matrix algebras. For

instance, Example 2.2 (2) corresponds to the matrix algebra

(

A AMB

0 B

)

.

Let Mod(k) denote the category of k-modules.

Definition 2.4. A k-linear functor f : a −→ b between k-linear cate-

gories is a functor such that every fA,A′ : a(A,A′) −→ b(f(A), f(A′)) is

k-linear. A right (resp. left) module over a or right (resp. left) a-module

is a k-linear functor a
op

−→ Mod(k) (resp. a −→ Mod(k)).

Remark 2.5. In this paper, we will always work with right modules and

call them simply modules.

The category of a-modules is denoted by Mod(a).

Example 2.6. If a is the k-linear category associated to an algebra A as in

Example 2.2 (1), then a-modules correspond precisely to right A-modules

and Mod(a) ∼= Mod(A).

2.2 Grothendieck categories

Grothendieck categories are the large abelian categories that are some-

how closest to module categories. In this section we recall the definition

and basic facts. For excellent introductions to the subject we refer the

reader to the books [17] by Popescu and [21] by Stenström.

Definition 2.7. Let C be a cocomplete category and g a set of objects

in C. We say that g is a set of generators for C or that g generates C

or that g is (a) generating (set) (for C) if for every object C ∈ C, there

is an epimorphism ⊕i∈IGi −→ C with I some index set and Gi ∈ g. A

generating set consisting of a single object is simply called a generator.

Definition 2.8. A Grothendieck category is a cocomplete abelian cate-

gory with exact directed colimits (i.e., directed colimits commute with

finite limits) and a generating set.
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Remark 2.9. 1. In the original definition [8], Grothendieck used the

“AB axioms” to define additional properties for abelian categories.

In this terminology, cocompleteness is axiom AB3 and cocomplete-

ness combined with exactness of directed colimits is axiom AB5.

2. The fact that we require the collection of generators to be a set is

crucial. Indeed, if we would allow classes of generators, then every

category trivially has the collection of all its objects as a generating

class.

3. If a cocomplete category C has a set g of generators, it also has a

single generator G′ obtained as

G′ = ⊕G∈gG.

Examples 2.10. 1. The first and foremost examples of Grothendieck

categories are module categories. Indeed, for a small linear category

a, the representable functors

a(−, A) : a −→ Mod(k) : B 7−→ a(B,A)

for A ∈ a consitute a generating set for Mod(a), and, just like in

ordinary module categories over rings, directed colimits are exact.

2. For a ringed space (X,OX), the category Mod(X) of scheaves of

OX -modules on X is a Grothendieck category.

3. For a quasi-compact, semi-separated schemeX, the category Qch(X)

of quasi-coherent sheaves on X is Grothendieck.

The following theorem, due to Mitchel, characterizes module cate-

gories among Grothendieck categories:

Theorem 2.11. Let C be a Grothendieck category and a ⊆ C a linear

subcategory. The following are equivalent:

1. C −→ Mod(a) : C 7−→ C(−, C)|a is an equivalence of categories.

2. a is a set of finitely generated projective generators of C.
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2.3 Gabriel-Popescu

Let C be a Grothendieck category with a generator G, and put A =

C(G,G), the endomorphism algebra of G in C. By the famous Gabriel-

Popescu theorem [18], C is a localization of Mod(A), more precisely the

functor

C −→ Mod(A) : C 7−→ C(G,C)

is fully faithful and its left adjoint is exact. It follows that Grothendieck

categories are precisely the localizations of module categories over alge-

bras.

Of course, using different generators for C, we can realize C as a

localization of module categories over different rings. As we will see later

on, it will be useful to also consider more general realizations of C as

a localization of module categories over small linear categories. More

precisely, we are interested in the following general setup:

Let u : a −→ C be a k-linear functor from a small k-category a to a

Grothendieck k-category C. Consider the adjoint pair (a, i) with

i : C −→ Mod(a) : C 7−→ C(u(−), C)

and a : Mod(a) −→ C its left adjoint extending u over the Yoneda em-

bedding a −→ Mod(a).

We will say that the functor u is localizing provided (a, i) is a local-

ization, i.e. i is fully faithful and a is exact.

2.4 Linear topologies

Let a be a small k-category. Consider a representable a(−, A) ∈ Mod(a)

and a subobject R ⊆ a(−, A) in Mod(a). The subobject (also called

subfunctor) corresponds to a sieve
∐

A′∈aR(A′) of a-morphisms landing

in A.

A covering system on a consists of collections T(A) of subobjects

of a(−, A) in Mod(a) for every A ∈ a. The subfunctors R ∈ T(A) are

called coverings of A. The definition of a topology on a is a linearized

version (obtained by replacing Set by Mod(k) and enrichement over k of
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all involved notions, for instance replacement of the presheaf category

Fun(a
op

, Set) by Mod(a)) of the notion of a Grothendieck topology on a

small category [1] [4]. Consider the following conditions for a covering

system T on a:

1. T satisfies the identity axiom if a(−, A) ∈ T(A) for every A ∈ a.

2. T satisfies the pullback axiom if for every f : B −→ A in a and

R ∈ T(A), the pullback f−1R ⊆ a(−, B) is in T(B).

3. T satisfies the glueing axiom if S ∈ T(A) as soon as there exists an

R ∈ T(A) and for every f : Af −→ A in R(A) an Rf ∈ T(Af ) with

Rf ⊆ f−1S.

4. T is a topology if it satisfies the identity, pullback and glueing ax-

ioms.

With respect to a covering system T on a, a module F : a
op

−→

Mod(k) is called a sheaf provided every cover R ⊆ a(−, A) induces a

bijection

F (A) ∼= Hom(a(−, A), F ) −→ Hom(R,F ).

Remark 2.12. For a covering R ⊆ a(−, A), a morphism R −→ F corre-

sponds to the datum of elements (xf )f∈R with xf ∈ F (Af ) for f : Af −→

A in R, such that for g : Afg −→ Af we have xfg = F (g)(xf ). Thus, just

like for an ordinary Grothendieck topology, morphisms R −→ F corre-

spond to compatible collections of elements in F , and the sheaf property

expresses that a compatible collection has a unique glueing x ∈ F (A)

with F (f)(x) = xf for every f ∈ R.

Let T be a topology on a, and let Sh(a,T) be the category of sheaves

on a with respect to T. Then the inclusion i : Sh(a,T) ⊆ Mod(a) is part of

a localization, and the exact left adjoint is given by “sheafification” with

respect to T. In fact, if T is a covering system which satisfies the identity

and pullback axiom, there is a smallest topology T′ on a containing T,

and for this topology Sh(a,T) = Sh(a,T′). Imposing the glueing axiom

rigidifies the situation in the following sense:
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Proposition 2.13. Let a be a k-linear category. Taking sheaf categories

defines a 1-1-correspondence between:

1. Topologies on a;

2. Localizations of Mod(a) (up to equivalence of categories).

For a given localization i : C −→ Mod(a) with left adjoint a :

Mod(a) −→ C, the corresponding topology TC on a consists of the C-

epimorphic subfunctors R ⊆ a(−, A), i.e. the subfunctors R for which

⊕f∈R(Af )u(Af ) −→ u(A)

is an epimorphism in C. This defines an inverse to the map sending a

topology T to the localization Sh(a,T) of Mod(a) (see [4] for details in a

more general enriched setup).

Before stating the main theorem of this section, we introduce relative

versions of some familiar notions.

Definition 2.14. Let T be a covering system on a and let f : M −→ N

be a morphism in Mod(a).

1. f is a T-epimorphism if the following holds: for every y ∈ N(A)

there is an R ∈ T(A) such that N(g)(y) ∈ N(Ag) is in the image

of fAg : M(Ag) −→ N(Ag) for every g : Ag −→ A in R.

2. f is a T-monomorphism if the following holds: for every x ∈M(A)

with fA(x) = 0 ∈ N(A), there is an R ∈ T(A) such that M(g)(x) =

0 ∈M(Ag) for every g : Ag −→ A in R.

Definition 2.15. Consider a linear functor u : a −→ C from a small

k-linear category a to a Grothendieck category C and a covering system

T on a.

1. u is generating if the images u(A) for A ∈ a are a collection of

generators for C.

2. u is T-full if for every A ∈ a the canonical morphism a(−, A) −→

C(u(−), u(A)) is a T-epimorphism.
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3. u is T-faithful if for everyA ∈ a the canonical morphism a(−, A) −→

C(u(−), u(A)) is a T-monomorphism.

4. u is T-projective if for every C-epimorphism c : X −→ Y , the

morphism

i(c) : C(u(−), X) −→ C(u(−), Y )

is a T-epimorphism.

5. u is T-finitely presented if for every filtered colimit colimiXi in C

the canonical morphism

φ : colimiC(u(−), Xi) −→ C(u(−), colimiXi)

is a T-epimorphism and a T-monomorphism.

6. u is T-ample if for every R ∈ T(A), the canonical morphism

⊕f∈R(Af )u(Af ) −→ u(A)

is a C-epimorphism.

Theorem 2.16. [5] Consider u : a −→ C as above and let T be a topology

on a. The following are equivalent:

1. u induces a localization and i : C −→ Mod(a) factors through an

equivalence C ∼= Sh(a,T).

2. u is generating, T-full, T-faithful, T-projective, T-finitely presented

and T-ample.

Remarks 2.17. 1. Theorem 2.16 can be decomposed into two parts.

First, the case where we take T = TC (we know by Proposition 2.13

that this is actually the only possibility for T in (1)). In this case, we

automatically get TC-projectivity, TC -finitely presentedness and TC-

ampleness. The resulting characterization of localizing functors u

was first obtained in [9]. Second, if the T we start from is arbitrary,

these additional conditions are intended to ensure that T = TC.
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2. If we take T = Ttriv the trivial topology on a, for which the only

coverings are the representable functors, Theorem 2.16 becomes

Theorem 2.11.

2.5 Quasi-coherent modules

Next we look at some applications of §2.4 to schemes.

First, let us recall the situation for affine schemes. For a scheme

X = Spec(A) with A a commutative ring, we have

Qch(X) ∼= Mod(A).

Thus, the relevant Gothendieck categories are precisely module categories

over commutative rings.

Next, we look into the situation for projective schemes. Consider

a projective scheme X = Proj(A) for some positively graded algebra

A = (Ai)i∈Z with Ai = 0 for i < 0. By Serre’s theorem [19], we have

Qch(X) ∼= Qgr(A),

Where Qgr(A) = Gr(A)/Tors(A) is the quotient of the category Gr(A) of

graded right A-modules by the category Tors(A) of torsion modules, i.e

filtered colimits of right bounded modules.

Our aim is to describe Qgr(A) in terms of the tools of §2.4.

First, we look at Gr(A). Let A be a Z-graded k-algebra and let Gr(A)

be the category of Z-graded right A-modules. Let (1) be the shift to the

left on Gr(A), (n) = (1)n, and consider the shifted objects (A(n))n∈Z in

Gr(A). For any M ∈ Gr(A), we have

Gr(A)(A(n),M) ∼= M−n

and consequently the objects A(n) constitute a set of finitely generated

projective generators of Gr(A). Let a = a(A) be the full linear subcate-

gory of Gr(A) spanned by the (A(n))n∈Z, and rename the object A(−n)

by n. We then have

a(n,m) = Gr(A)(A(−n), A(−m)) = An−m.
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There is an induced equivalence of categories

Gr(A) ∼= Mod(a) : M 7−→ Gr(A)(A(−?),M) = M?

by Theorem 2.11.

A linear category with Ob(a) = Z is called a Z-algebra in [3]. If

moreover a(n,m) = 0 unless n ≥ m, then a is called a positively graded

Z-algebra. Thus for a positively graded algebra A, the associated a(A)

is a positively graded Z-algebra.

From now on, we let a be an arbitrary positively graded Z-algebra.

We will now define a localization Qmod(a) of Mod(a) by means of a linear

topology on a, which recovers Qgr(A) for a = a(A).

For m ∈ Z, consider the subobject

a(−,m)≥n ⊆ a(−,m)

defined by

a(k,m)≥n =

{

a(k,m) if k ≥ n

0 otherwise.

We first define the covering system Ltails on a for which R ∈ Ltails(m) if

and only if a(−,m)≥n ⊆ R for some m ≤ n ∈ Z.

It is easy to see ([5, Proposition 3.9]) that Ltails satisfies the identity

and pullback axioms. We define the tails topology Ttails on a to be the

smallest topology on a containing Ltails. The category of quasi-coherent

modules over a is by definition

Qmod(a) = Sh(a,Ttails) = Sh(a,Ltails).

Remark 2.18. In general, Ltails fails to be a topology (see [5, Example

3.12]), but in many cases of interest, it actually is a topology. These cases

include the case where a is noetherian and the case where a is positively

graded, connected (i.e. a(n, n) = k for all n) and finitely generated in

the sense of [5, §3.2]. In particular, this last case includes the a(A) for

positively graded, connected finitely generated graded algebras A, and

moreover we then have Qmod(a(A)) ∼= Qgr(A).
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2.6 A characterization

Let C be a Grothendieck category and let (O(n))n∈Z be a collection of

objects in C. Furthermore, let ν : Z −→ Z be a function with ν(n) ≥ n

for all n ∈ Z.

We define a Z-algebra a with Ob(a) = Z and

a(n,m) =

{

C(O(−n),O(−m)) if n ≥ ν(m)

0 otherwise

so that we obtain a natural functor

u : a −→ C : n 7−→ O(−n).

The case where ν = 1Z is contained in [5]. The refinement of the

results involving an arbitrary ν is almost for free, and will be important

when we discuss deformations in §3.

Lemma 2.19. [5, Lemma 3.13] The functor u : a −→ C is Ttails-full and

Ttails-faithful.

Proof. The functor u is faithful by construction, whence certainly Ttails-

faithful. Consider the canonical maps

ϕn,m : a(n,m) −→ C(O(−n),O(−m)).

For n ≥ ν(m), ϕn,m is an isomorphism by construction and nothing

needs to be checked. So take n < ν(m) and consider a map c : O(−n) −→

O(−m) in C. Consider the Ttails-covering a(−, n)≥ν(m). For every 0 6= x ∈

a(k, n)≥ν(m), with consequently k ≥ ν(m), we look at the composition

cu(x) : O(−k) −→ O(−m).

Since k ≥ ν(m), we have cu(x) in the image of ϕk,m, as desired.

Theorem 2.20. [5, Theorem 3.15] Let C be a Grothendieck category,

(O(n))n∈Z a collection of objects in C, and u : a −→ C as defined above.

Suppose Ltails = Ttails on a. The following are equivalent:
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1. The functor u : a −→ C induces an equivalence C ∼= Qmod(a).

2. The following conditions are fulfilled:

(a) the objects O(n) generate C, i.e. for every C ∈ C there is an

epimorphism

⊕iO(ni) −→ C.

(b) u is Ltails-ample, i.e. for every m ≤ n, there is an epimor-

phism

⊕iO(−ni) −→ O(−m)

with ni ≥ n for every i.

(c) u is Ltails-projective, i.e for every element ξ ∈ Ext1
C
(O(−m),M)

with m ∈ Z and M ∈ C, there is an n0 ≥ m such that for every

morphism O(−n) −→ O(−m) with n ≥ n0, the natural image

of ξ in Ext1
C
(O(−n),M) is zero.

(d) u is Ltails-finitely presented, i.e. for every filtered colimit

colimiXi in C and morphism f : O(−m) −→ colimiXi, there

is an n0 ≥ m such that for every n ≥ n0 every composition

O(−n) −→ O(−m) −→ colimiXi factors through O(−n) −→

O(−m) −→ Xi for some i. Moreover if a morphism f :

O(−m) −→ Xi becomes zero when extended to colimiXi, then

there is an n0 ≥ m such that for every n ≥ n0 every composi-

tion O(−n) −→ O(−m) −→ Xi becomes zero when composed

with a suitable Xi −→ Xj.

Proof. This follows from Theorem 2.16 and Lemma 2.19.

When we restrict the situation a bit, we recover the classical geomet-

ric notion of ampleness (condition (ab)):

Corollary 2.21. [5, Corollary 3.16] Let C be a locally finitely presented

Grothendieck category, (O(n))n∈Z a collection of finitely presented objects

in C, and u : a −→ C as defined above. Suppose Ltails = Ttails on a. The

following are equivalent:
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1. The functor u : a −→ C induces an equivalence C ∼= Qmod(a).

2. The following conditions are fulfilled:

(ab) (O(n))n∈Z is ample, i.e. for every finitely presented object

C ∈ C, there is an n0 such that for every n ≥ n0, there is an

epimorphism

⊕iO(−ni) −→ C

with ni ≥ n for every i.

(c) u is Ltails-projective, i.e for every element ξ ∈ Ext1
C
(O(−m),M)

with m ∈ Z and M ∈ C, there is an n0 ≥ m such that for every

morphism O(−n) −→ O(−m) with n ≥ n0, the natural image

of ξ in Ext1
C
(O(−n),M) is zero.

To end this section, let us briefly return to the most classical geomet-

ric setup where X is a projective scheme over a noetherian base ring S,

and see how Serre’s original result fits in. The category C = Qch(X) of

quasi-coherent sheaves is locally finitely presented and has the category

coh(X) of coherent sheaves as finitely presented objects.

Recall that an invertible sheaf L on X is called ample if for every

coherent sheaf M , there is an n0 such that for every n ≥ n0 there is an

epimorphism

⊕iL
−n −→M.

Hence, putting O(n) = Ln, the collection (O(n))n∈Z satisfies condition

(ab) in Corollary 2.21. Furthermore, by the cohomological criterion for

ampleness, L is ample if and only if for every coherent sheaf M there is

an n0 such that for each i > 0 and for each n ≥ n0,

Exti(L−n,M) = 0.

Thus, the collection also satisfies condition (c) and we recover Serre’s

original result.

Remark 2.22. Note that in the results of this section, as well as in the

versions in [5], the main novelty is the sheaf theoretic approach to the
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proofs (by invoking Theorem 2.16). Indeed, Serre’s original result was

first generalized to the non-commutative setting using graded algebras

by Artin an Zhang in [2], and later to Z-algebras by Stafford and Van

den Bergh [20] and Polishchuk [16].

3 Deformations of Grothendieck categories

In this section, we present the basic deformation theory of Grothendieck

abelian categories as developed in [14] and [10] and discuss the appli-

cation to categories of quasi-coherent modules and thus to projective

schemes.

Our deformation setup is the following. Undeformed objects live over

a commutative ground ring k, and we deform in the direction of artin

local k-algebras R with maximal ideal m. Deformations in the direction

of the dual numbers k[ǫ] with ǫ2 = 0 are called first order deformations.

3.1 Algebras

Every non-commutative algebraic deformation theory is somehow based

upon the deformation theory of algebras due to Gerstenhaber [6, 7]. The

fundamental notions are the following.

Definition 3.1. Let A be a k-flat k-algebra. An R-deformation of A is

an R-flat R-algebra B with an isomorphism k ⊗R B ∼= A of k-algebras.

An equivalence of R-deformations B and B′ is an isomorphism B −→

B′ of R-algebras which reduces to the identity 1A : A −→ A via the

isomorphisms k ⊗R B ∼= A and k ⊗R B′ ∼= A.

Through deformation, commutative algebras can be turned into non-

commutative algebras. For example, the commutative k-algebra k[x, y]

has non-commutative first order deformations given by

k〈x, y〉/(xy − yx− f(x, y)ǫ)

with f(x, y) ∈ k[x, y].
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From the geometric point of view, a commutative k-algebra cor-

responds to the affine scheme Spec(A), and this leads us to consider

non-commutative R-deformations of A as “non-commutative affine R-

schemes”.

The deformation theory of a k-algebraA is controlled by its Hochschild

complex. In particular, first order deformations of A are parameterized

by the second Hochschild cohomology group HH2(A) = Ext2A−A(A,A).

3.2 Linear categories

After having argued in §2.1 that linear categories can be considered as

algebras with several objects, it is no surprise that a good deformation

theory for these objects follows this philosophy. First, a k-linear category

a is k-flat provided all the Hom modules a(A,A′) for A,A′ ∈ a are k-flat.

The reduction k ⊗R b of an R-linear category is the category with the

same object set and reduced Hom modules.

Definition 3.2. Let a be a k-flat k-linear category. An R-deformation

of a is an R-flat R-linear category b with an isomorphism k ⊗R b ∼= a of

k-algebras. An equivalence of R-deformations b and b′ is an isomorphism

b −→ b′ of R-linear categories which reduces to the identity 1a : a −→ a

via the isomorphisms k ⊗R b ∼= a and k ⊗R b′ ∼= a.

Note that deformations of linear categories preserve the object set of

the category.

Completely analogous to the algebra case, one can define a Hochschild

complex for linear categories which controls their deformation theory (see

[13] for the details).

3.3 Abelian categories

Although abelian categories are special cases of linear categories, the

notion of linear deformation of §3.2 is not appropriate for abelian cate-

gories. To come up with a good notion for abelian categories, we first

look at module categories over algebras. The main requirement for a
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deformation theory of abelian categories is the existence of a natural

map

Defalg(A) −→ Defab(Mod(A)) : B 7−→ Mod(B)

from algebra deformations of A to abelian deformations of Mod(B).

Clearly, if we compare Mod(A) to Mod(B), we observe that the object

set is changed, and actually the relation can be described in the following

way:

Mod(A) ∼= {M ∈ Mod(B) | mM = 0}.

This brings us to the following natural definition. For an abelian R-

category B, we define the k-reduction to be the full (abelian!) subcate-

gory

Bk = {B ∈ B | mB = Im(m⊗R B −→ B) = 0}.

Furhermore, in [14, Definition 3.2], we introduce a notion of flatness for

abelian categories which is such that a k-algebra A is k-flat if and only

if its module category Mod(A) is abelian flat.

Definition 3.3. Let A be a flat abelian k-category. An abelian R-

deformation of A is a flat abelian R-category B with an equivalence

A ∼= Bk. An equivalence of abelian R-deformations B and B′ is an

equivalence B −→ B′ of R-linear categories whose reduction is naturally

isomorphic to the identity 1A : A −→ A via the equivalences A ∼= Bk

and A ∼= B′
k.

We have the following basic result:

Proposition 3.4. [14] For a linear category a, there is a deformation

equivalence

Def lin(a) −→ Defab(Mod(a)) : b −→ Mod(b)

from linear deformations of a to abelian deformations of Mod(a).

The main point in the proof is to associate a linear deformation of

a to a given abelian deformation D of C = Mod(a). Considering the

objects A ∈ a as objects of C, we make essential use of the following two

facts:
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1. Ext1
C
(A,X ⊗k A) = Ext2

C
(A,X ⊗k A) = 0 for all A ∈ a and X ∈

mod(k) (in order to obtain unique flat lifts of the individual objects

of a along the left adjoint k ⊗R − of the embedding C −→ D);

2. Ext1
C
(A,X ⊗k A

′) = 0 for all A,A′ ∈ a and X ∈ mod(k) (in order

to organize the lifted object as a linear deformation b ⊆ D of a).

Proposition 3.4 tells us that the non-commutative deformation theory

of affine schemes is entirely controlled by Gerstenhaber’s deformation

theory for algebras.

For general abelian categories, an appropriate notion of Hochschild

cohomology controling abelian deformations was introduced and studied

in [13].

3.4 Grothendieck categories

In [14, Theorem 6.29], it was proven that abelian deformations of Grothendieck

categories remain Grothendieck. In the proof, the axioms of a Grothendieck

category are lifted one by one to a deformation, given that the original

category is Grothendieck. The proof does not make use of representa-

tions of the original Grothendieck category as a localization of a module

category. If we compare this result with Proposition 3.4 for module cat-

egories, clearly the latter contains a lot more information. For a given

Grothendieck category, a first step in the good direction is to look for

a set of generators and a localizing functor u : a −→ C such that there

results a deformation equivalence between linear deformations of a and

abelian deformations of C. In this respect we have the following key

result from [14]:

Theorem 3.5. [14, Theorem 8.14] Let u : a −→ C be a localizing functor

from a small k-linear category a to a Grothendieck k-category C such

that the objects u(A) are k-flat in C. Suppose Ob(a) is endowed with a

transitive relation R such that

1. For all A ∈ a and X ∈ mod(k), we have

Ext1C(u(A), X ⊗k u(A)) = Ext2C(u(A), X ⊗k u(A)) = 0;
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2. (A,A′) /∈ R implies a(A,A′) = 0;

3. (A,A′) ∈ R implies that u(A,A′) : a(A,A
′) −→ C(u(A), u(A′)) is an

isomorphism and that Ext1
C
(u(A), X ⊗k u(A

′)) = 0.

Then there is an equivalence of deformation functors Def lin(a) ∼= Defab(C).

In fact, [14, Theorem 8.14] is more precise and describes both arrows

constituting the deformation equivalence. This makes use of the fact that

deformations can be “induced” upon localizations [14, §7].

3.5 Quasi-coherent modules

In this section, we apply Theorem 3.5 to the categories of quasi-coherent

modules introduced in §2.5. We adopt the setup of §2.6.

Let C be a Grothendieck category and let (O(n))n∈Z be a collection

of objects in C. Let ν : Z −→ Z be a function with ν(n) ≥ n for all

n ∈ Z. Define the Z-algebra a with Ob(a) = Z and

a(n,m) =

{

C(O(−n),O(−m)) if n ≥ ν(m)

0 otherwise

and consider the natural functor

u : a −→ C : n 7−→ O(−n).

Theorem 3.6. Suppose the functor u induces an equivalence C ∼= Qmod(a),

suppose the objects O(n) are flat and suppose for all n and X ∈ mod(k)

we have

Ext1C(O(n), X ⊗k O(n)) = Ext2C(O(n), X ⊗k O(n)) = 0

and for all n ≥ ν(m) and X ∈ mod(k) we have

Ext1C(O(−n), X ⊗k O(−m)) = 0.

Then

Def lin(a) −→ Defab(C) : b 7−→ Qmod(b)
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is an equivalence of deformation functors. More precisely, for every de-

formation D of C there is a linear deformation b of a and a functor

b −→ D satisfying the same conditions as a −→ C.

Proof. This is an application of Theorem 3.5. Clearly, the relation

(n,m) ∈ R ⇐⇒ n ≥ ν(m)

on Ob(a) is transitive and satisfies the requirements (1) to (3) of the the-

orem by construction of u and by the assumptions. The given description

of the deformation equivalence was proven in [5].

To end this section and overview, let us look at the geometric scope

of the theorem. Let X be a projective scheme over a noetherian base

ring with an ample invertible sheaf L. Put O(n) = Ln. As discussed at

the end of §2.6, the cohomological criterion of ampleness yields for every

m ∈ Z a ν(m) ≥ m such that for every n ≥ ν(m), we have

Exti(O(−n),O(−m)) = 0.

Thus, conditions (2) and (3) in the theorem hold for this choice of ν.

Unfortunately, condition (1) - which is independent of ν - will not hold

in general. It does hold under the additional condition that

H1(X,OX) = H2(X,OX) = 0.

Thus, for the class of projective schemes satisfying this restraint on their

cohomology, all deformations can be described as “non-commutative pro-

jective schemes” over some deformed Z-algebra.

Remarks 3.7. 1. There exist other natural choices apart from taking

O(n) = Ln. For instance for quadrics, a natural sequence of objects

is given by

. . . ,O(n, n),O(n+ 1, n),O(n+ 1, n+ 1),O(n+ 2, n+ 1), . . .

See [23] for a detailed geometric treatment of this case.
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2. The condition of the existence of a function ν making the necessary

Ext’s vanish naturally follows from a sort of “strong tails projec-

tivity” condition. In [22], the combination of this condition and

ampleness is called “stong ampleness”.

3. An approach to non-commutative deformations of schemes (and

more general ringed spaces) based upon twisted deformations of

the structure sheaf was developed in [11]. The relation between

this approach and the one discussed in this paper, and a unified

treatment of the two approaches based upon map-graded categories

in the sense of [12], is work in progress.
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[1] Théorie des topos et cohomologie étale des schémas. Tome 1:
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Topologie Géom. Différentielle Catég. 37 (1996), no. 2, 145–162.

MR MR1394507 (97g:18008)



Grothendieck Categories & Deformations of Schemes 47

[5] O. De Deken andW. Lowen, Abelian and derived deformations in the

presence of Z-generating geometric helices, J. Noncommut. Geom.

5 (2011), no. 4, 477–505. MR 2838522

[6] M. Gerstenhaber, On the deformation of rings and algebras, Ann.

of Math. (2) 79 (1964), 59–103. MR MR0171807 (30 #2034)

[7] , On the deformation of rings and algebras. II, Ann. of Math.

84 (1966), 1–19. MR MR0207793 (34 #7608)

[8] A. Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku
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