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Quantum Sheaf Cohomology, a précis

Josh Guffin*

Abstract

We present a brief introduction to quantum sheaf cohomology,
a generalization of quantum cohomology based on the physics of
the (0,2) nonlinear sigma model.

Throughout, we will consider X to be a Kahler manifold of complex di-
mension n. In addition, we will consider & — X to be a holomorphic Her-
mitian vector bundle of rank k satisfying ¢;(€) = ¢;(X), i = 1,2, where
these conditions are to be understood in the Chow ring. The matching
of the first Chern class implies that det &Y ~ wy, but not canonically.
In order to consistently normalize correlation functions across different
instanton sectors, a specific isomorphism 1 is fixed as part of the initial
datal.

As matching of second Chern characters of € and X is the usual Green-
Schwarz anomaly cancellation condition (implied by our conditions), we

will a bundle satisfying the Chern class conditions omalous®. One may
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"When € = T, the quantum sheaf cohomology is the ordinary quantum cohomol-
ogy — such a choice is not required since the class of a point fixes the isomorphism
canonically.
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consider the first Chern class condition to be an analogue of the usual
condition for existence of the B-model, though in this context it guar-
antees that both the classical and quantum algebras are Frobenius. A
bundle satisfying these conditions may be obtained by, for example, se-

lecting a deformation of the tangent bundle of X.

1 Quantum Cohomology

1.1 Ordinary cohomology

We now give some elementary facts about the cohomology of X, stated in
a way that will facilitate our point of view on quantum sheaf cohomology.
Since X is Kéhler, there is a Hodge decomposition on H®(X,C),

H*(X,C) ~ @ H(X, NTY).

By a slight abuse of language, we will refer to elements of the sheaf coho-
mology groups HP(X, AN'TyY) as (p, q)-forms — clearly H®(X, C) possesses
a basis consisting of such forms. The antisymmetric cup product

HP(X, N'TY) A HY (X, N TY) — HPP' (X, NTOTY)

furnishes this vector space with the structure of a bigraded C-algebra.
Finally, integration of forms induces a trace on the algebra; in terms of

a basis element w,

/ w weH"(X,N'TY)
X

0 otherwise.

tr(w) =

The pairing (a, 5) — tr(a — ) induced by this trace is a non-degenerate
bilinear form satisfying («, 5 « 7v) = (a — S,7), so that H*(X,C) is a
bigraded Frobenius algebra.

2That is, not anomalous — this delightful terminology is due to Ron Donagi. One
should also consider the choice of isomorphism as part of the omality condition.
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1.2 Physics

The relationship between ordinary cohomology and quantum cohomol-
ogy may be elucidated by appealing to physics — in particular to a
topologically-twisted (2,2) nonlinear sigma model of maps P! — X. Of
the many intriguing aspects of this quantum field theory, we will be most

interested in its algebra of massless supersymmetric operators®

. Using
elementary physics arguments, one identifies a basis for the set of such
operators that may be set into one-to-one correspondence with (p, q)-

forms on X.

The (2,2) supersymmetry of the model forces the product of two mass-
less supersymmetric operators to be massless and supersymmetric. The
particular form of the product is obtained by considering three-point cor-
relation functions in the quantum field theory: the quantum product of
two massless operators O and O is defined to be the unique operator
(O1 % O2) such that for all massless operators Og,

<]1(Ol x 02)03> = <01(92(93> . (1.1)

Here, 1 denotes the operator corresponding to 1 € HO(X, A’T%). Such

a correlation function is computed using the instanton expansion

<(91(92(93> = Z <(91(92(93>B qﬁ. (1.2)

BeEH2(X,Z)
Although they have intrinsic meaning in physics, we will consider the
expressions ¢® to comprise a set of formal variables endowed with the
structure of a monoid via the product ¢®¢® = ¢*T”. We denote by
Clq] the ring of formal power series with complex coefficients in these
variables — one sometimes insists on convergence or other properties, but

such subtleties are beyond the scope of this review.

Mathematically, one defines the expression (010203), as the Gromov-

Witten invariant? (Ij 3 5) (w1, ws, ws), where w; are the forms correspond-

®More precisely, it is the algebra of local, scalar, supersymmetric operators [Wit].
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ing to the operator O;. Physically, one says that (010503) 3 ¢® denotes
the contribution of instantons of degree ( to the correlation function
(010203). This expression is morally the integral of induced forms on
some compactification W of the moduli space of holomorphic maps
f Pl — X of class 8 = f.[P!]. We will write the induced forms schemat-
ically using maps

G HP (X, N'TX) = H? (M (X, B), NTs ) -

If w; are the forms corresponding to operators O;, modulo the subtleties

(1.3)

of obstruction bundles we have that

(010203)5 = / Cplwi) ~ Cglwa) ~ Cplws).

M(X,5)

Depending on the compactification, there may be more than one such
map — in the case of the stable maps compactification, pullbacks via
evaluation maps play the role of (3. For toric varieties, one often uses
the Morrison-Plesser compactification [MRP]| wherein — as indicated in

equation (1.3) — one map suffices for each .

The three-point correlation functions in equation (1.2) induce a non-
degenerate bilinear pairing (wi,ws) = (10102) on the unital algebra
@D, H? (X, N'Tx)[q], leading to the following definition.

Definition 1.1. The quantum cohomology of X is the Frobenius algebra
QH*(X) := D H"(X, N'TX)[a],

pq
with the product and bilinear pairing induced by (2,2) three-point func-

tions.

Here, the (2,2) correlation functions are defined either via Gromov-
Witten invariants or as correlation functions in the quantum field theory,
depending on whether your tastes tend to the mathematical or to the

physical.

“See equation 7.4 of [CK] for a precise definition of Gromov-Witten invariants.
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Example 1.2. The “classical sector” is the set of maps homotopic to a
point, 5 = 0, and the moduli space of such maps is simply X itself. Thus,
in this sector, the quantum product reduces to the cup product on forms;
ordinary cohomology is the “classical limit” of quantum cohomology. This
sector may be isolated by setting ¢ = 0. For example, the ordinary and

quantum cohomology of P™ are respectively

C[H]

(Hn 1)’
C[H][q]

(H™t —q)

H*(P",C) ~

QH®(P") ~

Here H denotes the hyperplane class. For P™ x P, the equivalent ex-

PTresSsIons are

(C[Hl,Hg]
(HP T gty
C[H1, Hal[q1, 92]
(H — g, HI' — ¢o)

H*(P" x P C) ~

QH®*(P" x P™) ~

2  Quantum Sheaf Cohomology

As in our study of the passage from ordinary cohomology to quantum
cohomology, we first consider the “ordinary sheaf cohomology” — in par-
ticular that of an omalous bundle & — X. Here, by ordinary sheaf

cohomology we mean polysection cohomology,
@ HP (X, NEY). (2.1)

Again by a slight abuse of language, we will refer to elements of H? (X, AT€Y)
as (p, q)-forms — clearly the vector space (2.1) possesses a basis consisting

of such forms, and the cup product furnishes it with the structure of a
bigraded C-algebra.
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The trace on this algebra is slightly more subtle and follows from the

omality of €. In particular, one uses the induced isomorphism % :
H™(X, \°€¢) - H™(X,wx) to define, for a basis element w,

/ b(w) we H(X, NbeY)
X

otherwise.

(2.2)

The pairing (, 8) + tr(a — ) induced by this trace endows @, , H?(X, A'€Y)

with the structure of a bigraded Frobenius algebra.

2.1 Physics

To understand the relationship between sheaf cohomology and quan-
tum sheaf cohomology we again appeal to physics — in particular a
topologically-twisted (0,2) nonlinear sigma model of maps P! — X. A
recent physics review of this and related models may be found in [McO].
We will again be most interested in its algebra of massless supersym-
metric operators®. The same elementary physics arguments used for the
(2,2) theory identify a basis for this set of operators that may be placed
into one-to-one correspondence with (p, g)-forms (that is, elements of
(2.1)), and the quantum product of two massless operators is defined us-
ing three-point correlation functions of the (0,2) in analogy to equation
(1.1). Unlike the (2,2) case, however, there is no mathematical defini-
tion of (010203)4 in a (0,2) theory so the following definition is purely
physical.

Definition 2.1. The quantum sheaf cohomology of an omalous bundle
& — X 1s the Frobenius algebra

QH*(X,¢&) @Hp (X, N'eY) ® Clq]

®As explained in [ADE], we are actually interested in local, scalar, supersymmetric
operators with vanishing holomorphic conformal weight, but for continuity we will
refer to them as massless supersymmetric or simply massless.
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with the product and bilinear pairing induced by (0,2) three-point func-

tions.

As in the case of ordinary quantum cohomology, the classical limit of
quantum sheaf cohomology is precisely the ordinary sheaf cohomology
with the Frobenius structure induced by equation (2.2). Unlike the case
n (2,2) theories, (0,2) supersymmetry is not enough to guarantee that
the product of massless operators is massless: one needs to work harder

to show that the algebra closes in the set of all operators.

2.2 Existence

The (modern) history of quantum sheaf cohomology begins with the ob-
servation in [ABS] of an analogue of QH*®(X) for (0, 2) theories. Therein,
the quantum sheaf cohomology of a one-parameter family of deformations
of the tangent bundle of P! x P! was computed using a conjectured form
of mirror symmetry for (0,2) models. Their calculations were confirmed
in a sheaf-cohomology-based computation by Katz and Sharpe [KS]. In-
spired by these results, Adams, Distler, and Ernebjerg [ADE] gave a
physics definition of quantum sheaf cohomology and found a physics
proof of two sufficient conditions for its existence. We restate these con-

ditions here as conjectures.

Conjecture 2.2. Let U be a family of bundles, v:[0,1] — U continuous,
and ~(t) omalous for all t € [0,1]. Then for v(0) = & and (1) = &,
QH®(X, &) exists iff QH®*(X,E") exists.

Conjecture 2.3. If € — X is omalous and vk € < 8, then QH®*(X, &)

exists.

Since QH®*(X,Tx) = QH®*(X), the former condition implies the exis-
tence of quantum sheaf cohomology for all omalous one-parameter fam-

ilies of tangent-bundle deformations. The latter is likely an artefact of
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the technique used in the physics proof — there are no known examples
of omalous bundles of rank eight or higher for which the massless opera-
tors fail to close under the quantum product, and there are no physical

reasons to expect such a bundle to exist.

2.3 Computation example

Although there is no definition for the invariants (010203) 5, & number
of physics-inspired techniques exist to compute them when the omalous
bundle is a deformation of the tangent bundle of a toric variety [KS, GK,
MM1] or a complete intersection therein[MM2]. One of the advantages
of using a toric variety X is that deformations of T'x are easily obtained

by deforming the Euler exact sequence:

0 — 0% =% P Ox(D,) — Tx — 0.
pPEA
Here, r is the rank of the Picard group, A denotes the set of torus-
invariant divisors corresponding to one-cones in the fan of X, and Ej is
a collection of sections of Ox(D,), which are toric analogues of Opn(1).

Taking X = P! x P!, for example, the sequence becomes

0— 0% % 0¢(1,002@ 0x(0,1)2 — Tx — 0,

where the map is

i) 0

L I 0

EO 0 T2
0 I3

A deformation of T'x may be obtained by choosing a different collection

of sections for the map. For example, selecting the map to be

Zg €1T0 + €271
E, _ I €3X( (2 3)
Y1Z2 + Y23 )

Y3T2 x3
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as in [GK] gives a convenient basis for the space of deformations of the
tangent bundle (€;,7; € C). Therein, several of the invariants (010203) 4
were computed for the bundle &€ — P! x P! defined as the cokernel of
the morphism in equation (2.3). These were then used to deduce the

quantum sheaf cohomology of &;

~

CWJ; @D] [[(h, QZ]]

jﬁ + 61%0@ — eze39? — qi, |
V2 4+ 1 — yoy31? — go

QH®*(P' x P!, &) ~ (2.4)

These computations were confirmed in [MM1] using physics techinques.
Note that as €;,y; — 0, the quantum sheaf cohomology in equation (2.4)

limits to the ordinary quantum cohomology of P! x P! in equation (1.4).
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