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Isomorphisms of moduli spaces

C. Casorrán Amilburu S. Barmeier∗ B. Callander†

E. Gasparim

Abstract

We give infinitely many new isomorphisms between moduli spaces
of bundles on local surfaces and on local Calabi–Yau threefolds. We
also prove a local version of the Atiyah–Jones conjecture.

1 Introduction

To study moduli spaces of rank 2 bundles on local surfaces and local

threefolds we present concrete descriptions of these moduli as quotients

of the vector spaces of extensions of line bundles by holomorphic isomor-

phism. Our favourite varieties are the following:

Zk := Tot(OP1(−k)) and Wi := Tot(OP1(i− 2)⊕ OP1(−i)),

together with moduli of bundles on them. Foundational results on bun-

dles over these varieties can be found in [BGK1],[BGK2] and [Ga]. Let

� denote the zero section of Zk and denote by Xk the surface obtained

from Zk by contracting � to a point; thus Xk is singular for k > 1. For a

bundle E on a surface Zk, let � denote the zero section of OP1(−k) con-

sidered as a subvariety of Zk, and π : Zk → Xk the map that contracts

� to a point x. Hence π is the inverse of blowing up x. In what follows,

we shall also let Y denote either Wi or Zk.
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Definition 1.1. The charge of a bundle E → Y around ℓ is the local

holomorphic Euler characteristic of π∗E at x, defined as

χ
(
x, π∗E

)
:= χ

(
ℓ, E

)
:= h0

(
X; (π∗E)∨∨

/
π∗E

)
+

n−1∑

i=1

(−1)i−1h0
(
X; Riπ∗E

)
.

(1)

Note that we have only χ
(
ℓ, E

)
= h0

(
X; (π∗E)∨∨

/
π∗E

)
+h0

(
X; R1π∗E

)

since our spaces only have two coordinate charts (see 3).

Definition 1.2. Let ∼ denote bundle isomorphism and introduce the

following notation and definitions.

1. Mj1,j2(Y ) := Ext1(OY (j2),OY (j1))
/
∼

2. Mj(Y, 0) := Mj,−j(Y )

3. Mj(Y, 1) := Mj+1,−j(Y )

Note that the second entry, that is either 1 or 0, denotes the first Chern

class of the bundles considered in each case. From such quotients we

extract the following moduli spaces. Let ǫ = 0 or 1.

1. M
1
j (Y, ǫ) ⊂ Mj(Y, ǫ) consisting of elements given by an extension

class vanishing to order exactly 1 over ℓ,

2. M
s
j(Y, ǫ) ⊂M

1
j (Y, ǫ) consisting of elements with lowest charge χlow,

where χlow := inf{χ(E)|E ∈M
1
j (Y, ǫ)}.

Remark 1.3. For W1, it follows by lemma 2.2 that all rank 2 bundles are

extensions of line bundles. In fact, we also have such type of filtrability

for W2 but not for Wi with i ≥ 3.

Our main results are the following:

Theorem 4.3(Coincidence of moduli of bundles on surfaces and three-

folds)

For all positive integers i, j, k, there are isomorphisms of varieties

M
1
2j+⌊ k−3

2
⌋+δ

(Zk, ǫ) ≃M
1
j (Wi, δ)
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and birational equivalences

M
s
2j+⌊ k−3

2
⌋+δ

(Zk, ǫ) 99K M
s
j(W1, δ)

when ǫ ≡ k + 1mod 2 and δ ∈ {0, 1}.

Theorem 4.5(Atiyah–Jones type statement for local moduli)

For q ≤ 2(2j − k − 2 + δ) there are isomorphisms

(ι) Hq(M
1
j (Zk), δ) = Hq(M

1
j+1(Zk), δ)

(ιι) πq(M
1
j (Zk), δ) = πq(M

1
j+1(Zk), δ),

and for q ≤ 2(4j − 3− 2δ) there are isomorphisms

(ιιι) Hq(M
1
j (Wi), δ) = Hq(M

1
j+1(Wi), δ)

(ιν) πq(M
1
j (Wi), δ) = πq(M

1
j+1(Wi), δ).

Remark 1.4. We obtain isomorphisms between bundles E and F over Zk

with c1(F ) = c1(E) + 2 by tensoring with O(−1), as

(
z−j1 p
0 z−j2

)
⊗ z =

(
z−j1+1 zp

0 z−j2+1

)

so that we could consider ǫ ∈ Z, as long as ǫ ≡ k + 1mod 2 still holds.

1.1 Local version of the Atiyah–Jones conjecture

We explain in what sense Theorem 4.5 is a local version of the Atiyah–

Jones conjecture, which original version stated in [AJ] predicts a weak

homotopy equivalence between moduli spaces of instantons and the mod-

uli of gauge equivalence classes of connections on a principal bundle in

the following sense.

If P → X is a principal SU(2) bundle over a Riemannian four-

manifold X, with c2(P ) = k > 0, and A is a connection on P , the

Yang-Mills functional

YM(A) =

∫

X
||FA||

2



4 Amilburu Barmeier Callander Gasparim

is minimal precisely when the curvature FA is anti-self dual, i.e. FA =

− ∗ FA, in which case A is called an instanton of charge k on X.

Let MIk(X) denote the moduli space of framed instantons on X with

charge k and let Ck(X) denote the space of all framed gauge equivalence

classes of connections on X with charge k. In 1978, Atiyah and Jones

[AJ] conjectured that the inclusion MIk(X) → Ck(X) induces an iso-

morphism in homology and homotopy through a range that grows with

k. Using Taubes’ stability result [TA] to prove the conjecture it suffices

to show that maps tk : MIk(X) → MIk+1(X) induce isomorphism in

homology and homotopy through a range. Using the Kobayashi–Hitchin

correspondence [LT] we have equivalence of moduli of instantons and

moduli of holomorphic bundles MIk(X) ≃ Mk(X) where the latter de-

notes the moduli space of SL(2) holomorphic bundles on X with second

Chern class k. Thus the conjecture gets translated into equalities of ho-

mology and homotopy groups of moduli spaces of holomorphic bundles:

Hq(Mk(X)) = Hq(Mk+1(X))

πq(Mk(X)) = πq(Mk+1(X))

for q ≤ ⌊k/2⌋. In the case of the sphere S4 the corresponding complex

manifold is X = P2.

This conjecture has been proved for SU(2) instantons in the follow-

ing cases. In 1993 by Boyer, Hurtubise, Milgram and Mann [BHMM]

for X = S4, in 1995 by Hurtubise and Mann [HM] for ruled surfaces,

and in 2008 by Gasparim [G] for rational surfaces. A local version of the

Kobayashi–Hitchin correspondence is given in [GKM], thus our theorem

4.5 provides a version of the Atiyah–Jones conjecture for the local sur-

faces and threefolds considered in this work. The remaining cases of the

conjecture for SU(2) instantons are still open.

2 Filtrability and algebraicity

We deal with bundles on local surfaces and threefolds, that is, a neigh-

borhood of a curve C embedded in a smooth surface or threefold W ,

typically the total space of a vector bundle N over C. We focus on

the case when C ≃ P1. In the 2-dimensional case we focus on the case
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when N∗ is ample, and in the 3-dimensional case we focus on Calabi–Yau

threefolds.

Let W be a connected complex manifold (or smooth algebraic vari-

ety) and C a curve contained in W that is reduced, connected and a

local complete intersection. Let Ĉ denote the formal completion of C

in W . Ampleness of the conormal bundle has a strong influence on the

behaviour of bundles on Ĉ.

Definition 2.1. We recall that a rank r bundle E is called filtrable when

there exists a sequence of bundles Ei, i = 1, . . . , r, satisfying

0→ Ei−1 → Ei → Li → 0

where Li is a line bundle, Ei has rank i, and Er = E.

A bundle is called ample if there exists n ∈ N such that for all j ≥ n

the bundle N∗ ⊗ Sj(N) is generated by its global sections (Sj(N) is the

j-th symmetric product).

We will use the following basic fact from formal geometry.

Lemma 2.2. [BGK2, thm. 3.2] If the conormal bundle N∗
C is ample,

then every vector bundle on Ĉ is filtrable. If in addition C is smooth,

then every holomorphic bundle on Ĉ is algebraic.

Remark 2.3. Ampleness of N∗
C is essential. For example, consider the

Calabi–Yau threefold

Wi = Tot(OP1(i− 2)⊕ OP1(−i)).

Then W1 satisfies the hypothesis of 2.2, hence holomorphic bundles on

W1 are filtrable and algebraic, whereas on W2 filtrability still holds, but

there exist proper holomorphic bundles W2 that are not algebraic, and

on Wi for i ≥ 3 neither filtrability nor algebraicity hold, see [K] chapter

3.3.

Remark 2.4. In general, algebraicity fails for non-compact varieties. The

typical example is given by C2 \0, where all algebraic bundles are trivial,

whereas there exist infinite families of holomorphic bundles. It is enough

to calculate Čech cohomologies with coefficients O∗, see [GH].
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3 Surfaces

We use the very concrete description of moduli spaces of rank 2 bundles

over the surfaces Zk := Tot(OP1(−k)) given in [BGK1]. Let ℓ denote

the zero section inside Zk. Given a bundle E over Zk, its restriction to

ℓ splits by Grothendieck’s principle, and if E|ℓ ≃ O(a1) ⊕ · · · ⊕ O(ar)

then (a1, . . . , ar) is called the splitting type of E on the line ℓ. By [Ga,

thm. 3.3], a holomorphic bundle E over Zk having splitting type (j1, j2)

with j1 ≤ j2 can be written as an algebraic extension

0 −→ O(j1) −→ E −→ O(j2) −→ 0 (2)

and therefore corresponds to an extension class

p ∈ Ext1Zk
(O(j2), O(j1)).

We fix once and for all coordinate charts on our surfaces Zk = U ∪V ,

where

U = C2
z,u = {(z, u) ∈ C2} and V = C2

ξ,v = {(ξ, v) ∈ C2} (3)

and

(ξ, v) = (z−1, zku) on U ∩ V.

In these coordinates, by [Ga, Thm 3.3] the bundle E may be represented

by a transition matrix in canonical form as

T =

(
z−j1 p
0 z−j2

)

where

p =

⌊(j2−j1−2)/k⌋∑

i=1

j2−1∑

l=ki+j1+1

pil z
lui . (4)

Since we are interested in isomorphism classes of vector bundles rather

than extension classes, we use the following moduli:

Mj1,j2(Zk) = Ext1(OZk
(j2),OZk

(j1))
/
∼
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where ∼ denotes bundle isomorphism. We observe that this quotient

gives rise to a moduli stack, whose structure is studied in [BG]. We

will only describe here subsets of its coarse moduli space considered as a

variety. Considered just as a topological space, the full quotient will not

be Hausdorff except in the trivial case, when it contains only a point.

The latter happens when the only bundle with splitting type (j1, j2) is

OZk
(j1)⊕ OZk

(j2), that is, whenever j2 − j1 < k + 2.

To specify the topology in this quotient space, we use the canonical

form of the extension class (4). Then the coefficients of p written in lexi-

cographical order form a vector in Cm, wherem is the number of complex

coefficients appearing in the expression of p. We define an equivalence

relation in Cm by setting p ∼ p′ if (j1, j2, p) and (j1, j2, p
′) define iso-

morphic bundles over Zk, and give Cm
/
∼ the quotient topology. Now

setting n := ⌊(j2 − j1 − 2)/k⌋, we obtain a bijection

φ : Mj1,j2(Zk) → Cm
/
∼ ,

(
z−j1 p
0 z−j2

)
7→

(
p1,k+j1+1, . . . , pn,j2−1

)

and give Mj1,j2(Zk) the topology induced by this bijection.

Now observe that it is always the case that p ∼ λp for any λ ∈

C− {0}. The moduli space is then evidently non-Hausdorff, as the only

open neighborhood of the split bundle is the entire moduli space. In the

spirit of GIT one would like to extract nice moduli spaces out of these

quotient spaces. Clearly the split bundle needs to be removed, but there

is quite a bit more topological complexity.

3.1 Vanishing c1 case: moduli spaces

For rank 2 bundles E over Zk with c1(E) = 0 there is a non-negative

integer j such that E|ℓ ≃ O(j) ⊕ O(−j) and we will say E has splitting

type j. We denote by Mj the moduli of all bundles with this fixed

splitting type (see Definition 1.2, item (2)):

Mj(Zk, 0) := Ext1(OZk
(−j),OZk

(j))
/
∼ .

We now recall some results about the topological structure of these

spaces and their relation to instantons. These moduli spaces are stratified
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into Hausdorff components by local analytic invariants. Given a reflexive

sheaf E over Zk we set:

wk(E) := h0((π∗E)∨∨/π∗E), hk(E) := h0(R1π∗E).

called the width and height or E, respectively.

Definition 3.1. χ(ℓ, E) := wk(E)+hk(E) is called the local holomorphic

Euler characteristic or charge of E.

We quote the following results to show the connection with mathe-

matical physics

Theorem 3.2. [BGK2, cor. 5.5] Correspondence with instantons. An

sl(2,C)-bundle over Zk represents an instanton if and only if its splitting

type is a multiple of k.

Theorem 3.3. [BGK1, thm. 4.15] Stratifications. If j = nk for some

n ∈ N, then the pair (hk,wk) stratifies instanton moduli stacks Mj(k)

into Hausdorff components.

Remark 3.4. Let us note the following:

• χ alone is not fine enough to stratify the moduli spaces.

• The structure of these stratifications is still rather mysterious. It

is partly clarified in [BG] but much remains to be investigated. In

particular, constructing such a stratification for the non-instanton

case is an open problem.

• There are various ways to obtain moduli spaces inside the Mj .

One possible choice is to take the largest Hausdorff component as

our moduli space. This will produce smooth moduli, see [BGK1,

Thm 4.11], and we study this case in section 3.2. A second, more

natural choice is to fix some numerical invariant, to which end the

local holomorphic Euler characteristic presents itself as the most

natural candidate.
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3.2 Vanishing c1 case: first order deformations

Notation 3.5. LetM1
j (Zk, 0) ⊂Mj(Zk) denote the subset which parametrizes

isomorphism classes of bundles on Zk consisting of nontrivial first order

deformations of O(j) ⊕ O(−j). Since the trivial bundle corresponds to

setting p = 0 in 4 and the exceptional curve is given by the equation

u = 0, a first order deformation of a split bundle consists of bundles such

that u | p but u2 ∤ p; hence, bundles E fitting into an exact sequence

0→ O(−j)→ E → O(j)→ 0 (5)

whose corresponding extension class vanishes to order exactly one on ℓ

(note that this excludes the split bundle itself).

Remark 3.6. If 2j−2 < k thenMj(Zk) consists of just a point represented

by the split bundle, which has been excluded, consequently if 2j − 2 < k

then M
1
j (Zk, 0) = ∅.

A simple observation, which we now describe, then implies thatM1
j (Zk)

is compact and smooth.

Theorem 3.7. [BGK1, thm. 4.9] On the first infinitesimal neighbour-

hood, two bundles E(1) and F (1) with respective transition matrices
(
zj p1
0 z−j

)
and

(
zj q1
0 z−j

)

are isomorphic if and only if q1 = λp1 for some λ ∈ C− {0}.

Remark 3.8. Note that no similar result holds true if we include higher

order deformations, because then there are further identifications and

the quotient space is no longer Hausdorff.

Corollary 3.9. M
1
j (Zk, 0) ≃ P2j−k−2 as a variety.

Proof. As a consequence of 4, we obtain M
1
j (Zk, 0) as the quotient space

of C2j−k−1, and by theorem 3.7, we see that the only equivalence relation

to obtain this variety is projectivisation.

Remark 3.10. The analog of this isomorphism in the context of stacks is

far from true; in fact, the stack structure of these moduli is more complex

than that of a projective space, see [BG]. This remark also applies to

lemmas 3.12, 4.1, and 4.2.
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3.3 Vanishing c1 case: minimal charge

Another possible choice of moduli space, more compatible with the physics

motivation, is to consider the subset of bundles onM
1
j (Zk, 0) having fixed

charge; this is preferable, because the charge is an analytic invariant on

the bundles, and minimal charge corresponds to a generic choice for the

corresponding instanton interpretation. In this case we take the open

subset of the moduli of first order deformations defined by:

M
s
j(Zk, 0) := {E ∈M

1
j (Zk, 0) : χ(E) = χmin(Zk)}.

Charge is upper semi-continuous on the splitting type, and we have that

the locus of bundles with charge higher than χmin is Zariski closed; in

fact, such locus is determined by k + 1 polynomial equations [BGK1,

thm. 4.11].

Corollary 3.11. M
s
j(Zk, 0) is a quasi-projective variety, whose comple-

ment in P2j−k−2 is cut out by k + 1 equations.

Proof. On the first infinitesimal neighbourhood p1 has 2j − k − 1 coef-

ficients modulo projectivisation (see equation 4) and then, by means of

Theorem 3.7, we arrive at the desired result.

3.4 Case c1 = 1

From expression (4) we can read off the case c1 = 1 by setting j1 = −j

and j2 = j+1, considering extensions Ext1Zk
(O(j+1),O(−j)). The form

of the extension class restricted to the first infinitesimal neighborhood

expressed in canonical coordinates is

j∑

l=k−j+1

p1l z
lu.

The coefficients vary in C2j−k, so that modulo the relation p ∼ λp′ we

have:

Lemma 3.12. M
1
j (Zk, 1) ≃ P2j−k−1 as a variety.
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Proof. This just requires modifications of the proofs of Theorem 3.7 and

Corollary 3.9, which go through successfully by replacing the appropriate

js with j+1. On the first infinitesimal neighbourhood, two bundles E(1)

and F (1) with respective transition matrices

(
zj p1
0 z−j−1

)
and

(
zj q1
0 z−j−1

)

are isomorphic if and only if q1 = λp1 for some λ ∈ C − {0}. Thus,

projectivising the space of bundles on the first formal neighbourhood

gives the isomorphism classes in the case c1 = 1 just like we had in the

vanishing c1 case.

The moduli space Ms
j(Zk, 1) of bundles with minimal charge can also

be considered as well. Since charge is upper semi-continuous, the set

M
s
j(Zk, 1) of bundles in M

1
j (Zk, 1) achieving minimal charge is Zariski

open.

4 Threefolds

Consider the threefolds

Wi = Tot(OP1(i− 2)⊕ OP1(−i))

to which we alluded earlier in section 2, and denote by ℓ the zero section

inside Wi. We focus on the cases of rank 2 and either c1 = 0 or else

c1 = 1 as we did in section 3 and for a bundle E over Wi such that

E|ℓ ≃ O(j)⊕O(−j) we call the non-negative integer j the splitting type

of E. Note that here again PicWi ≃ Pic ℓ so we can avoid a subscript

in the notation O(j).

We now consider only algebraic extensions over theWi and then define

moduli spaces analogous to the ones we defined in section 3. First the

set of isomorphism classes of bundles with fixed splitting type:

Mj(Wi) =
{
E →Wi : E|ℓ ≃ O(j)⊕ O(−j)

} /
∼ ,

and

M
1
j (Zk) ⊂Mj(Zk)
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the subset which parametrizes bundles on Wi which are nontrivial first

order deformations of O(j) ⊕ O(−j), that is, bundles E fitting into an

exact sequence

0→ O(−j)→ E → O(j)→ 0

whose corresponding extension class vanishes to order exactly one on

ℓ (note that this excludes the split bundle itself). In local canonical

coordinate charts, we have

Wi = U∪V, with U = C3 = {(z, u1, u2)}, V = C3 = {(ξ, v1, v2)}

(6)

and (ξ, v1, v2) = (z−1, z2−iu1, z
iu2) in U ∩ V .

Then on the U -chart Iℓ = 〈u1, u2〉 and elements of M1
j are determined

by extension classes p ∈ Ext(O(j),O(−j)) with either p = u1p
′ or else

p = u2p
′′ and u1 ∤ p

′p′′, u2 ∤ p
′p′′.

Lemma 4.1. [GK, cor. 5.6] We have an isomorphism of varieties

M
1
j (Wi, 0) ≃ P4j−5.

Once again, fixing a numerical invariant seems to be a preferable

choice (as suggested by the last item on Remark 3.4), so we define:

M
s
j(Wi, 0) := {E ∈M

1
j (Wi, 0) : χ(E) = χmin(Wi)},

and this is a Zariski open subvariety of M1
j .

Lemma 4.2. M
1
j (Wi, 1) = P4j−3 as a variety.

Proof. In canonical coordinates, an extension of O(j + 1) by O(−j) may

be represented over Wi by the transition matrix:

T =

(
zj p
0 z−j−1

)
.

On the intersection U ∩V = C−{0}×C2 the holomorphic functions are

of the

p =
∞∑

t=−∞

∞∑

s=0

∞∑

r=0

prstz
rus1u

t
2.
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By changing coordinates one can show that it is equivalent to consider p

as

(p−j,0,0z
−j + · · ·+ pj−1,0,0z

j−1)

+(p−j−i+2,1,0z
−j−i+2 + · · ·+ pj−1,1,0z

j−1)u1

+(p−j+i,0,1z
−j+i + · · ·+ pj−1,0,1z

j−1)u2

+ higher-order terms.

Therefore, counting coefficients on the first infinitesimal neighbour-

hood gives 4j−2 coefficients giving dimension 4j−3 after projectivising.

Theorem 4.3. For all positive integers i, j, k, there are isomorphisms of

varieties

M
1
2j+⌊ k−3

2
⌋+δ

(Zk, ǫ) ≃M
1
j (W1, δ)

and birational equivalences

M
s
2j+⌊ k−3

2
⌋+δ

(Zk, ǫ) 99K M
s
j(W1, δ)

when ǫ ≡ k + 1mod 2 and δ ∈ {0, 1}.

Proof. By setting j 7→ 2j+
⌊
k−3
2

⌋
+ δ in Corollary 3.9, we obtain isomor-

phisms

M
1
2j+⌊ k−3

2
⌋+δ

(Zk, 0) ≃ P4j−3−2δ

for k odd. Similarly, we can use lemma 3.12 to obtain isomorphisms

M
1
2j+⌊ k−3

2
⌋+δ

(Zk, 1) ≃ P4j−3−2δ

for k even. The required isomorphisms to M
1
j (W1, δ) then follow from

lemmas 4.1 and 4.2 for δ = 0, 1, respectively.

To find the birational equivalences, first note that we have

M
s
2j+⌊ k−3

2
⌋+δ

(Zk, ǫ) ⊂M
1
2j+⌊ k−3

2
⌋+δ

(Zk, ǫ) and M
s
j(Wi, δ) ⊂M

1
j (Wi, δ)

by definition. Lemma 3.11 shows that M
s
2j+⌊ k−3

2
⌋+δ

(Zk, ǫ) is a quasi-

projective variety and we now show thatMs
j(W1, δ) is also quasi-projective.



14 Amilburu Barmeier Callander Gasparim

For any bundle on W1, [BGK2, lem. 5.2] shows that the width is

alwaysw(E) = h0
(
(π∗E)∨∨

/
π∗E

)
= 0. Thus, fixed charge is equivalent

to fixed height. Since height is minimal on a Zariski open set of W1 of

codimension at least 3 given by the vanishing of certain coefficients of p,

M
s
j(W1) is Zariski open in M

1
j (W1).

Restricting the isomorphisms above to a suitably small neighbour-

hood of these quasi-projective varieties then gives the required birational

equivalences.

Question 4.4. Since ℓ ⊂ Wi cannot be contracted to a point for i > 1,

our definition of charge does not apply. Can similar numerical invariants

be defined for bundles on Wi, i > 1? Some such invariants were defined

in [K] chapter 3.5, though much remains to be understood about their

geometrical meaning.

Theorem 4.5. For q ≤ 2(2j − k − 2 + δ) there are isomorphisms

(ι) Hq(M
1
j (Zk), δ) = Hq(M

1
j+1(Zk), δ)

(ιι) πq(M
1
j (Zk), δ) = πq(M

1
j+1(Zk), δ),

and for q ≤ 2(4j − 3− 2δ) there are isomorphisms

(ιιι) Hq(M
1
j (Wi), δ) = Hq(M

1
j+1(Wi), δ)

(ιν) πq(M
1
j (Wi), δ) = πq(M

1
j+1(Wi), δ).

Proof. The statements follow immediately from corollary 3.9 and lemmas

3.12, 4.1 and 4.2.
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