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A survey on Beurling-Selberg majorants

and some consequences of the Riemann

hypothesis

Emanuel Carneiro

Abstract

This article briefly describes the recent advances on the Beurling-Selberg

extremal problem in harmonic analysis and its connection with the theory

of the Riemann zeta-function. In particular, under the Riemann hypothe-

sis, this extremal tool provides improved bounds for the size of ζ(s) in the

critical strip, for the argument function S(t) and for its antiderivative, the

function S1(t).

1 Introduction

This expository article is based on a lecture given at the International Meeting

on Differential Geometry and Partial Differential Equations - in honor to the

80th birthday of Professor Gervasio Colares, held in Fortaleza - Brazil in August

2011.

1.1 Consequences of the Riemann hypothesis

Bernhard Riemann published his paper “Über die Anzahl der Primzahlen unter

einer gegebenen Grösse” in the Monatsberichte der Berliner Akademie in Novem-

ber, 1859. There we find the statement that the function

ζ(s) =

∞∑
n=1

1
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,
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initially defined for Re(s) > 1, and then suitably extended meromorphically to

the complex plane, “probably” has its complex zeros all aligned over the line

ℜ(s) = 1/2.

His hypothesis has not been proved until this day (despite the fact that mod-

ern computers can verify that the first 1012 zeros are on the critical line), but

considerable effort has been put in order to understand the different objects in

the theory of the Riemann zeta-function assuming its validity. This survey ar-

ticle briefly shows how we can approach some of these objects using tools from

harmonic analysis and approximation theory.

J. E. Littlewood in 1924 [22] showed that under the Riemann hypothesis (RH)

we have the following estimate:

log
∣∣ζ( 12 + it

)∣∣ ≤ (C + o(1)
) log t

log log t
,

for sufficiently large t. This estimate was never improved in its order of mag-

nitude, and the advances have rather focused on diminishing the value of the

admissible constant C. In [30] Ramachandra and Sankaranarayanan obtained

C = 0.466, while in [32] Soundararajan improved this bound, obtaining C =

0.373. Recently, Chandee and Soundararajan in [10, Theorem 1] obtained an-

other improvement, currently the best bound, as shown below.

Theorem 1.1 (Upper bound for ζ(s) in the critical line). Assume RH. For large

real numbers t, we have

log
∣∣ζ( 12 + it

)∣∣ ≤ log 2

2

log t

log log t
+O

(
log t log log log t

(log log t)2

)
.

A natural question here would be if such bounds can be obtained in an off-

critical-line context using similar methods. The answer is yes and the following

extension of Theorem 1.1 was obtained by Carneiro and Chandee in [3, Theorem

1].

Theorem 1.2 (Upper bound for ζ(s) in the critical strip). Assume RH and let
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1/2 ≤ α ≤ 1. For large real numbers t, we have

log |ζ(α+ it)| ≤



log
(
1 + (log t)1−2α

)
log t

2 log log t +O
(

(log t)2−2α

(log log t)2

)
,

if (α− 1/2) log log t = O(1);

log(log log t) +O(1), if (1− α) log log t = O(1);

(
1
2 + 2α−1

α(1−α)

)
(log t)2−2α

log log t + log(2 log log t)

+O
(

(log t)2−2α

(1−α)2(log log t)2

)
, otherwise.

In the critical strip context we also have a lower bound given by [3, Theorem

2].

Theorem 1.3 (Lower bound for ζ(s) in the critical strip). Assume RH and let

1/2 < α ≤ 1 For large real numbers t, we have

log |ζ(α+ it)| ≥



log
(
1− (log t)1−2α

)
log t

2 log log t −O
(

(log t)2−2α

(log log t)2(1−(log t)1−2α)

)
,

if (α− 1/2) log log t = O(1);

− log(log log t)−O(1), if (1− α) log log t = O(1);

−
(

1
2 + 2α−1

α(1−α)

)
(log t)2−2α

log log t − log(2 log log t)

−O
(

(log t)2−2α

(1−α)2(log log t)2

)
, otherwise.

Another object of interest is the argument function defined by (here t > 0)

S(t) = 1
π arg ζ

(
1
2 + it

)
,

where the argument is defined by a continuous variation along the line segments

joining the points 2, 2 + it and 1
2 + it, taking arg ζ(2) = 0, if t is not an ordinate

of a zero of ζ(s). If t is an ordinate of a zero we set

S(t) = 1
2 lim
ϵ→0

{
S(t+ ϵ) + S(t− ϵ)

}
.
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This function appears for instance when counting the number of zeros N(t) of

ζ(s) with imaginary ordinate in the interval [0, t]

N(t) =
t

2π
log

t

2π
− t

2π
+

7

8
+ S(t) +O

(
1

t

)
.

In the work [22] Littlewood also showed that under RH we have

|S(t)| ≤
(
C + o(1)

) log t

log log t
,

and, as in the case of the size of ζ
(
1
2 + it

)
, this estimate has not been improved

in its order of magnitude over the years. Efforts to bring down the value of the

admissible constant C were carried out by Ramachandra and Sankaranarayanan

[30] who proved that C = 1.119 is admissible, and later by Fujii [12] who obtained

the result for C = 0.67.

The application of certain extremal functions of exponential type, that ma-

jorize and/or minorize the characteristic functions of intervals, to problems re-

lated to the theory of the Riemann zeta-function dates back to the works of

Montgomery [27] and Gallagher [13], on the pair correlation of zeros of ζ(s).

In [26] Goldston and Gonek were the first to realize a distinct connection be-

tween the Riemann hypothesis and these extremal functions, via the so called

Guinand-Weil explicit formula (the method we shall be presenting here). Us-

ing this connection they obtained the following bound [26, Theorem 2] for the

argument function

|S(t)| ≤
(
1

2
+ o(1)

)
log t

log log t
.

We shall present here a sharper version of this bound, recently obtained by

Carneiro, Chandee and Milinovich in [4, Theorem 2].

Theorem 1.4 (Bound for S(t)). Assume RH. For t sufficiently large we have

|S(t)| ≤ 1

4

log t

log log t
+O

(
log t log log log t

(log log t)2

)
.

Finally, another important function in the theory of the Rieman zeta-function

is the antiderivative of S(t) defined by

S1(t) =

∫ t

0

S(u) du.

There has been earlier work on establishing explicit bounds for S1(t). Littlewood

[22] was the first to prove that S1(t) ≪ log t/(log log t)2 under the assumption
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of the Riemann hypothesis. More recently, Karatsuba and Korolëv [19] obtained

that ∣∣S1(t)
∣∣ ≤ (40+o(1))

log t

(log log t)2
,

and Fujii [12] obtained that

− (0.51+o(1))
log t

(log log t)2
≤ S1(t) ≤ (0.32+o(1))

log t

(log log t)2
.

We present here the following improvement obtained in [4, Theorem 1].

Theorem 1.5 (Bounds for S1(t)). Assume RH. For t sufficiently large we have

−
( π

24
+o(1)

) log t

(log log t)2
≤ S1(t) ≤

( π

48
+o(1)

) log t

(log log t)2
,

where the terms o(1) in the above inequalities are O(log log log t/ log log t).

The five theorems presented here have something in common: the strategy

for their proofs is essentially the same. It consists of three steps: (i) expressing

the considered object as a certain sum over the zeros of ζ(s); (ii) making use

of suitable extremal majorants/minorants of exponential type; (iii) applying an

appropriate explicit formula to evaluate the sums by taking advantage of the

compactly supported Fourier transforms. We shall present here the proofs of

Theorems 1.1, 1.4 and 1.5 to illustrate the method. For the other results and

more details we refer the reader to the original sources.

1.2 The Beurling-Selberg extremal problem

We say that an entire function K : C → C has exponential type at most 2πδ if,

for every ϵ > 0, there exists a positive constant Cϵ, such that the inequality

|K(z)| ≤ Cϵe
(2πδ+ϵ)|z|

holds for all z ∈ C. These functions have distributional Fourier transforms com-

pactly supported in the interval [−δ, δ], as a consequence of the Paley-Wiener

theorem, and sometimes are also referred as bandlimited functions.

The extremal problem we address here is the following: given a function f :

R → R and δ > 0, we seek an entire function K(z), of exponential type at most

2πδ, such that the integral ∫ ∞

−∞
|f(x)−K(x)|dx (1.1)
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is minimized. This is a classical problem in harmonic analysis and approximation

theory, considered by Bernstein, Akhiezer, Krein, Nagy and others, since at least

1938. In particular, Krein [20] in 1938 and Nagy [33] in 1939 published seminal

papers solving this problem for a wide class of functions f(x).

For applications to analytic number theory, it is convenient to consider an

additional restriction: we ask that K(z) is real on R and that K(x) ≥ f(x)

for all x ∈ R. In this case, a minimizer of the integral (1.1) is called an ex-

tremal majorant of f(x) (or extremal upper one-sided approximation). Extremal

minorants are defined analogously. Beurling started working on this one-sided

extremal problem, independently, in the late 1930’s, and obtained the solution for

f(x) = sgn(x) and an inequality for almost periodic functions in an unpublished

manuscript (see the survey [35] by J. D. Vaaler for a historical perspective). The

one-sided extremals for the signum function were later used by Selberg [28, 31]

to obtain the solution of the extremal problem for characteristic functions of in-

tervals (of integer size, the general case was settled later, by B. Logan) and a

sharp form of the large sieve inequality. In this article we are mostly interested!

in the one-sided version of this problem and, therefore, we shall be referring to

it as the Beurling-Selberg extremal problem.

The problem (1.1) is hard in the sense that there is no general known way

to produce a solution given any f : R → R. Besides the original examples

f(x) = sgn(x) of Beurling and f(x) = χ[a,b](x) of Selberg, the solution for the

exponential family f(x) = e−λ|x|, λ > 0, was discovered by Graham and Vaaler in

[16], with a first glimpse of the technique of integration on the free parameter λ to

produce solutions for a family of even and odd functions. Later, the problem for

f(x) = xn sgn(x) and f(x) = (x+)n, where n is a positive integer, was considered

by Littmann in [23, 24, 25]. Using the exponential subordination, Carneiro and

Vaaler in [8, 9] extended the construction of extremal approximations for a class

of even functions that includes f(x) = log |x|, f(x) = log
(
(x2+1)/x2

)
and f(x) =

|x|α, with −1 < α < 1. The analogous exponential subordination framework for

truncated and odd functions was treated in [6].

Other classical applications of the solutions of these problems to analytic num-

ber theory include Hilbert-type inequalities [8, 16, 24, 29, 35], Erdös-Turán dis-

crepancy inequalities [8, 21, 35], optimal approximations of periodic functions

by trigonometric polynomials [2, 8, 9, 35] and Tauberian theorems [16]. The ex-

tremal problem in higher dimensions, with applications, is considered in [1, 17].

Approximations in Lp-norms with p ̸= 1 are treated, for instance, in [14].
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The recent advances in this theory include families of functions generated via

a certain Gaussian subordination. Carneiro, Littmann and Vaaler in [7] found

the solution of the extremal problem (1.1) for the Gaussian

Gλ(x) = e−πλx2

,

while Carneiro and Littmann in [5] obtained the solution for the odd Gausssian

Go
λ(x) = sgn(x) e−πλx2

,

where λ > 0 is a free parameter. These results, coupled with a refined technique

for integration on the free parameter λ (both in the two-sided and one-sided

settings), provide the solution of the extremal problem for a large class of even

and odd functions, that includes most of the previously known examples in the

literature plus a variety of new examples. Among the new examples we highlight

here the ones that are connected to the theorems presented in the introduction.

Firstly, the family of even functions

fα(x) = log

(
x2 + 1

x2 +
(
α− 1

2

)2
)
, (1.2)

is relevant to the proofs of Theorems 1.1, 1.2 and 1.3 (as a matter of fact, the

case α = 1/2, relevant to Theorem 1.1, also follows from [8]). Secondly, the odd

function

g(x) = arctan

(
1

x

)
− x

1 + x2
, (1.3)

shall be used in the proof of Theorem 1.4 and finally, the even function

h(x) = 1− x arctan

(
1

x

)
, (1.4)

will be the one relevant to the proof of Theorem 1.5. In the next section we will

clarify the connection between the functions (1.2), (1.3), (1.4) and each of the

theorems in the introduction.

2 Representation lemmas and the explicit for-

mula

In this section we let

ξ(s) =
1

2
s(1− s)π−s/2Γ

(s
2

)
ζ(s)



156 E. l Carneiro

be Riemann’s ξ-function. This function is an entire function of order 1 and

satisfies the functional equation

ξ(s) = ξ(1− s).

Hadamard’s factorization formula (cf. [11, Chapter 12]) gives us

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ,

where ρ = 1
2+iγ runs over the non-trivial zeros of ζ(s). We haveB = −

∑
ρ Re(1/ρ),

with this sum being absolutely convergent. Under RH, γ is real.

Lemma 2.1 (Representation for log |ζ(α + it)|). Assume RH and let fα(x) be

defined by (1.2), where 1
2 ≤ α ≤ 3

2 . For large t we have

log |ζ(α+ it)| =
(
3

4
− α

2

)
log t− 1

2

∑
γ

fα(t− γ) +O(1), (2.1)

uniformly on α, where the sum runs over the non-trivial zeros ρ = 1
2 + iγ of ζ(s).

Proof. We apply Hadamard’s factorization formula at the points s = α+ it and

s = 3
2 + it and divide. The absolute convergence of the product allows us to

divide term by term to find∣∣∣∣∣ ξ(α+ it)

ξ
(
3
2 + it

) ∣∣∣∣∣ = ∏
ρ=1/2+iγ

(
(α− 1

2 )
2 + (t− γ)2

1 + (t− γ)2

)1/2

,

and therefore

log |ξ(α+ it)| = log
∣∣ξ( 32 + it

)∣∣+ 1

2

∑
γ

log

(
(α− 1

2 )
2 + (t− γ)2

1 + (t− γ)2

)
. (2.2)

Recall Stirling’s formula for the Gamma function [11, Chapter 10]

log Γ(z) = 1
2 log 2π − z +

(
z − 1

2

)
log z +O

(
|z|−1

)
,

for large |z|. Using Stirling’s formula and the fact that
∣∣ζ( 32 + it

)∣∣ ≍ 1 in (2.2),

we obtain (2.1).

Similar representations hold for the argument function S(t) and for the function

S1(t), as reported in [4].
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Lemma 2.2 (Representation for S(t)). Assume RH and let g(x) be defined by

(1.3). Then, for large t not coinciding with an ordinate of a zero of ζ(s), we have

S(t) =
1

π

∑
γ

g(t− γ) +O(1), (2.3)

where the sum runs over the non-trivial zeros ρ = 1
2 + iγ of ζ(s).

Proof. For t not coinciding with an ordinate of a zero of ζ(s), we have

S(t) = − 1

π

∫ ∞

1
2

Im
ζ ′

ζ
(σ + it) dσ =

1

π

∫ 1
2

3
2

Im
ζ ′

ζ
(σ + it) dσ +O(1).

We now replace the integrand on the right-hand side of the above expression by

a sum over the non-trivial zeros of ζ(s). Let s = σ+ it. If s is not a zero of ζ(s),

then the partial fraction decomposition for ζ ′(s)/ζ(s) (cf. [11, Chapter 12]) and

Stirling’s formula
Γ′(z)

Γ(z)
= log z +O

(
|z|−1

)
, (2.4)

valid for large |z| with ℜ(z) > 0, imply that

ζ ′

ζ
(s) =

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

2

Γ′

Γ

(s
2
+ 1
)
+O(1)

=
∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

2
log t+O(1)

(2.5)

uniformly for 1
2 ≤ σ ≤ 3

2 and t ≥ 2, where the sum runs over the non-trivial zeros

ρ of ζ(s). From (2.5) and the Riemann hypothesis, it follows that

S(t) =
1

π

∫ 1
2

3
2

Im
ζ′

ζ
(σ + it) dσ +O(1)

=
1

π

∫ 1
2

3
2

Im

(
ζ′

ζ
(σ + it)− ζ′

ζ
( 3
2
+ it)

)
dσ +O(1)

=
1

π

∫ 3
2

1
2

∑
γ

{
(t− γ)

(σ − 1
2
)2 + (t− γ)2

− (t− γ)

1 + (t− γ)2

}
dσ +O(1)

=
1

π

∑
γ

∫ 3
2

1
2

{
(t− γ)

(σ − 1
2
)2 + (t− γ)2

− (t− γ)

1 + (t− γ)2

}
dσ +O(1)

=
1

π

∑
γ

{
arctan

(
1

(t− γ)

)
− (t− γ)

1 + (t− γ)2

}
+O(1),

=
1

π

∑
γ

g(t− γ) +O(1),
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where the interchange of the integral and the sum is justified by dominated

convergence since g(x) = O(x−3). This proves the lemma.

Lemma 2.3 (Representation for S1(t)). Assume RH and let h(x) be defined by

(1.4). For large t we have

S1(t) =
1

4π
log t− 1

π

∑
γ

h(t−γ) +O(1),

where the sum runs over the non-trivial zeros ρ = 1
2 + iγ of ζ(s).

Proof. From [34, Theorem 9.9] we have

S1(t) =
1

π

∫ 3/2

1/2

log
∣∣ζ(α+ it)

∣∣ dα+O(1).

We replace the integrand by the absolutely convergent sum over the zeros of ζ(s)

given by Lemma 2.1 and integrate term-by-term to obtain

S1(t) =
1

4π
log t− 1

π

∑
ρ

h(t− γ) +O(1),

where the interchange between integration and sum is justified since all terms

are non-negative. Notice that we have used the fact that

h(x) = 1− x arctan

(
1

x

)
=

1

2

∫ 3/2

1/2

log

(
x2 + 1

x2 +
(
α− 1

2

)2
)
dα. (2.6)

This completes the proof of the lemma.

We note the similarity of the representations obtained on Lemmas 2.1, 2.2 and

2.3. We were able to write each of our objects (initially a function of t) as a simple

function of t plus a sum over the zeros of ζ(s) plus a small error term. Naturally

the hard part to be analyzed is the sum over the zeros of ζ(s), but fortunately

for this matter we can invoke the following version of the Guinand-Weil explicit

formula [18, Theorem 5.12] which connects sums over the zeros of ζ(s) to sums

of the Fourier transforms evaluated at the prime powers.

Lemma 2.4 (Guinand-Weil explicit formula). Let Φ(s) be analytic in the strip

|Im s| ≤ 1/2 + ε for some ε > 0, and assume that |Φ(s)| ≪ (1 + |s|)−(1+δ) for

some δ > 0 when |Re s| → ∞. Let Φ(x) be a real-valued for real x, and set

Φ̂(ξ) =
∫∞
−∞ Φ(x) e−2πixξ dx. Then∑

ρ

Φ(γ) = Φ

(
1

2i

)
+Φ

(
− 1

2i

)
− 1

2π
Φ̂(0) log π
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+
1

2π

∫ ∞

−∞
Φ(u) Re

Γ′

Γ

(
1

4
+

iu

2

)
du

− 1

2π

∞∑
n=2

Λ(n)√
n

(
Φ̂

(
log n

2π

)
+ Φ̂

(
− log n

2π

))
.

where Γ′/Γ is the logarithmic derivative of the Gamma function, and Λ(n) is the

von Mangoldt function defined as

Λ(n) =

{
log p if n = pm, p prime, m ≥ 1,

0 otherwise.

Observe however that we cannot apply the explicit formula to evaluate the

sum of our particular functions fα, g and h over the zeros of ζ, since fα has

singularities on the strip |Im s| ≤ 1/2 (if 1
2 ≤ α ≤ 1), g is not continuous and

h is not differentiable at the origin. To overcome this difficulty we adopt the

following strategy:

(i) We want to replace each of our functions fα, g and h by an appropriate

majorant or minorant (to create an inequality), that satisfies the hypothesis

of the explicit formula (a real entire function, integrable on R).

Now that we believe we will be able to use the explicit formula, we might want

to choose which of its expressions we would like to “keep” or “simplify”. For this

we will focus on two of its terms.

(ii) We will ask that the term Φ̂(0) for these majorants be as close as possible

to the original f̂(0), which is the same as saying that
∫
R{Φ− f} dx should

be minimal.

(iii) Finally, in order to simplify the sum of the Fourier transforms of over prime

powers, we will consider the instances in which this sum is finite, i.e. Φ̂ has

compact support.

With this framework we are essentially asking for the solution of the Beurling-

Selberg problem for each of the functions fα, g and h.

3 Extremal one-sided approximations

Over the recent years considerable progress was accomplished in terms of un-

derstanding the Beurling-Selberg extremal problem (1.1), both via “hard analy-

sis” techniques, that solve the problem for families of functions by using suitable
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integral representations, and via “soft analysis” techniques, in the sense that

once one has the problem solved for a family of functions with a free parame-

ter, one can integrate this parameter and produce the solution for new classes

of functions. This general layout was traced by Graham and Vaaler in [16] and

developed with more generality in [5, 6, 7, 8, 9].

In [8] this was achieved via a certain exponential subordination. To extract

the result from that work that is relevant to our purposes here, we let ν be a

non-negative Borel measure on [0,∞) such that∫ ∞

0

λ

λ2 + 1
dν(λ) < ∞.

Then [8, Theorem 1.1] states that we can solve the extremal minorizing problem

for the family of even functions given by

fν(x) =

∫ ∞

0

{
e−λ|x| − e−λ

}
dν(λ).

In particular, it was observed in [10] that one can choose

dν(λ) =
2(1− cosλ)

λ
dλ

to produce

fν(x) =

∫ ∞

0

{
e−λ|x| − e−λ

}
dν(λ) = log

(
x2 + 1

x2

)
− log 2.

This leads to the following result concerning the extremal minorants for the

function

f(x) := f1/2(x) = log

(
x2 + 1

x2

)
, (3.1)

as defined in (1.2). This shall be important in the proof of Theorem 1.1. Observe

that there can be no discussion about real entire majorants for this function

because of its singularity at the origin.

Lemma 3.1 (Extremal minorants for f). Let 1 ≤ ∆ and f be defined by (3.1).

Then there is a unique real entire function m−
∆ : C → C satisfying the following

properties:

(i) For all real x we have

−C

1 + x2
≤ m−

∆(x) ≤ f(x)
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for some positive constant C. For any complex number x+ iy we have∣∣m−
∆(x+ iy)

∣∣≪ ∆2

1 + ∆|x+ iy|
e2π∆|y|.

(ii) The Fourier transform of m−
∆, namely

m̂−
∆(ξ) =

∫ ∞

−∞
m−

∆(x) e
−2πixξ dx,

is a continuous real-valued function supported on the interval [−∆,∆] and

satisfies ∣∣m̂−
∆(ξ)

∣∣≪ 1

for each ξ ∈ [−∆,∆].

(iii) The L1-distance to f is given by∫ ∞

−∞

{
f(x)−m−

∆(x)
}
dx =

2

∆

{
log 2− log

(
1 + e−2π∆

)}
.

Proceeding with the developments of the extremal function theory, the recent

works [5] and [7] contain a recipe to generate the solution of the Beurling-Selberg

extremal problem (1.1) for a wide class of even and odd functions, now making

use of a suitable Gaussian subordination. In the even case we start with the

solution for the Gaussian

Gλ(x) = e−πλx2

,

where λ > 0 is a free parameter, and for suitable non-negative Borel measures µ

on [0,∞) we generate the solution of the extremal problem for the class of even

functions

fµ(x) =

∫ ∞

0

e−πλx2

dµ(λ). (3.2)

In particular any finite non-negative measure µ is admissible (these generate the

class of positive definite fµ, see [7, Section 11]) and we can take for instance,

given 0 < a ≤ b, the measure

dµ(λ) =

{
e−πλa2 − e−πλb2

}
λ

dλ

to produce

fµ(x) =

∫ ∞

0

e−πλx2

{
e−πλa2 − e−πλb2

}
λ

dλ = log

(
x2 + b2

x2 + a2

)
. (3.3)
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Therefore the choice of a = (α − 1
2 ) and b = 1 for 1

2 < α ≤ 3
2 will produce the

function fα defined in (1.2). As a matter of fact the method is more general

and (3.2) only needs to hold in a certain distribution sense in the Fourier space

(see [7, Theorems 14, 15 and 16]). This allows us to include the case α = 1/2

treated in Lemma 3.1 as well. We state here the relevant facts for such optimal

approximations from [7] in a convenient format. This is reported in [3, Lemmas

5 and 8].

Lemma 3.2 (Extremal functions for fα). Let 1 ≤ ∆, 1
2 < α ≤ 3

2 , and fα de-

fined by (1.2). Then there are unique real entire functions m+
α,∆ : C → C and

m−
α,∆ : C → C satisfying the following properties:

(i) For real x we have

−C

1 + x2
≤ m−

α,∆(x) ≤ fα(x) ≤ m+
α,∆(x) ≤

C
(
1 +

∣∣ log (α− 1
2

)∣∣)
1 + x2

, (3.4)

for some positive constant C. Moreover, for any complex number x+ iy we

have ∣∣m−
α,∆(x+ iy)

∣∣≪ ∆2

1 + ∆|x+ iy|
e2π∆|y|

and ∣∣m+
α,∆(x+ iy)

∣∣≪ (
1 +

∣∣ log (α− 1
2

)∣∣) ∆2

1 + ∆|x+ iy|
e2π∆|y|. (3.5)

(ii) The Fourier transforms of m±
α,∆, namely

m̂±
α,∆(ξ) =

∫ ∞

−∞
m±

α,∆(x) e
−2πixξ dx,

are continuous real-valued functions supported on the interval [−∆,∆] and

satisfy ∣∣m̂−
α,∆(ξ)

∣∣≪ 1

and ∣∣m̂+
α,∆(ξ)

∣∣≪ 1 +
∣∣ log (α− 1

2

)∣∣,
for each ξ ∈ [−∆,∆]. Moreover, for 0 ≤ |ξ| ≤ ∆, we have the explicit

expressions

m̂−
α,∆(ξ) =

∞∑
k=0

(−1)k
{

k + 1

|ξ|+ k∆

(
e−2π(|ξ|+k∆)(α−1/2) − e−2π(|ξ|+k∆)

)
− k + 1

∆(k + 2)− |ξ|

(
e2π(|ξ|−(k+2)∆)(α−1/2) − e2π(|ξ|−(k+2)∆)

)}
,
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and

m̂+
α,∆(ξ) =

∞∑
k=0

{
k + 1

|ξ|+ k∆

(
e−2π(|ξ|+k∆)(α−1/2) − e−2π(|ξ|+k∆)

)
− k + 1

∆(k + 2)− |ξ|

(
e2π(|ξ|−(k+2)∆)(α−1/2) − e2π(|ξ|−(k+2)∆)

)}
.

In particular, if ξ = 0, we have

m̂−
α,∆(0) = 2π

(
3

2
− α

)
− 2

∆
log

(
1 + e−(2α−1)π∆

1 + e−2π∆

)
,

and

m̂+
α,∆(0) = 2π

(
3

2
− α

)
− 2

∆
log

(
1− e−(2α−1)π∆

1− e−2π∆

)
.

(iii) The L1-distances between m±
α,∆ and fα are equal to∫ ∞

−∞

{
fα(x)−m−

α,∆(x)
}

dx =
2

∆

{
log
(
1 + e−(2α−1)π∆

)
− log

(
1 + e−2π∆

)}
,

and∫ ∞

−∞

{
m+

α,∆(x)− fα(x)
}

dx =
2

∆

{
log
(
1− e−2π∆

)
− log

(
1− e−(2α−1)π∆

)}
.

In [5] we have the counterpart for odd and truncated functions of the Gaussian

subordination method. We start solving the Beurling-Selberg extremal problem

for the odd Gaussian

Go
λ(x) = sgn(x) e−πλx2

,

where λ > 0 is a free parameter, and for finite non-negative Borel measures µ

on [0,∞) we generate the solution of the extremal problem for the class of odd

functions

fo
µ(x) = sgn(x)

∫ ∞

0

e−πλx2

dµ(λ).

These are the odd counterparts of the positive definite functions. In particular,

it was observed in [4] that the measure

dµg(λ) =

{∫ ∞

0

t

2
√
πλ3

e−
t2

4λ

(
1

t
sin
(√

πt
)
−

√
π cos

(√
πt
))

dt

}
dλ.

is non-negative, finite and verifies

g(x) = arctan

(
1

x

)
− x

1 + x2
= sgn(x)

∫ ∞

0

e−πλx2

dµg(λ).

We collect the facts from [5] on the extremal functions for g(x) in the lemma

below. This lemma shall be used in the proof of Theorem 1.4.
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Lemma 3.3 (Extremal functions for g). Let 1 ≤ ∆ and g be defined by (1.3).

Then there are unique real entire functions m+
∆ : C → C and m−

∆ : C → C
satisfying the following properties:

(i) For all real x we have

−C

1 + x2
≤ m−

∆(x) ≤ g(x) ≤ m+
∆(x) ≤

C

1 + x2
,

for some positive constant C. For any complex number x+ iy we have∣∣m±
∆(x+ iy)

∣∣≪ ∆2

1 + ∆|x+ iy|
e2π∆|y|.

(ii) The Fourier transforms of m±
∆ are continuous functions supported on the

interval [−∆,∆] and satisfy ∣∣m̂±
∆(ξ)

∣∣≪ 1

for each ξ ∈ [−∆,∆].

(iii) The L1-distances to g are given by∫ ∞

−∞

{
m+

∆(x)− g(x)
}
dx =

∫ ∞

−∞

{
g(x)−m−

∆(x)
}
dx =

π

2∆
.

For the final lemma in this section we return to the case of even functions and

the Gaussian subordination (3.2). It was observed in [4] that one can consider

the non-negative and finite measure given by

dµh(λ) =

∫ 3/2

1/2

{
e−πλ(σ−1/2)2 − e−πλ

2λ

}
dσ dλ.

Using (2.6), (3.2) and (3.3) we arrive at

h(x) = 1− x arctan

(
1

x

)
=

∫ ∞

0

e−πλx2

dµh(λ).

We can therefore collect the relevant facts about the extremal functions for g

from the general theorems in [7]. This was reported in [4] an shall be used in the

proof of Theorem 1.5.

Lemma 3.4 (Extremal functions for h). Let 1 ≤ ∆ and h be defined by (1.4).

Then there are unique real entire functions m+
∆ : C → C and m−

∆ : C → C
satisfying the following properties:
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(i) For all real x we have

−C

1 + x2
≤ m−

∆(x) ≤ h(x) ≤ m+
∆(x) ≤

C

1 + x2
,

for some positive constant C. For any complex number x+ iy we have

∣∣m±
∆(x+ iy)

∣∣≪ ∆2

1 + ∆|x+ iy|
e2π∆|y|.

(ii) The Fourier transforms of m±
∆ are continuous real-valued functions sup-

ported on the interval [−∆,∆] and satisfy∣∣m̂±
∆(ξ)

∣∣≪ 1

for each ξ ∈ [−∆,∆].

(iii) The L1-distances to h are given by∫ ∞

−∞

{
h(x)−m−

∆(x)
}
dx =

∫ 3/2

1/2

1

∆

{
log

(
1 + e−(2σ−1)π∆)

− log
(
1 + e−2π∆)}

dσ,

and∫ ∞

−∞

{
m+

∆(x)− h(x)
}
dx =

∫ 3/2

1/2

1

∆

{
log

(
1− e−2π∆)

− log
(
1− e−(2σ−1)π∆)}

dσ.

4 Proofs of the main theorems

We now make use of the extremal functions described on the last section,

together with the representation formulas to provide the proofs of the main the-

orems.

4.1 Proof of Theorem 1.1

With f defined by (3.1) and m−
∆ defined as in Lemma 3.1, we can use Lemma

2.1 to obtain

log
∣∣ζ( 12 + it

)∣∣ = 1

2
log t− 1

2

∑
γ

f(t− γ) +O(1)

≤ 1

2
log t− 1

2

∑
γ

m−
∆(t− γ) +O(1).

(4.1)
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We now apply the explicit formula (Lemma 2.4) with Φ(z) = m−
∆(t− z). In this

context we have Φ̂(ξ) = m̂−
∆(−ξ)e−2πiξt and therefore∑

ρ

m−
∆(t− γ) =

{
m−

∆

(
t− 1

2i

)
+m−

∆

(
t+ 1

2i

)}
− 1

2π
m̂−

∆(0) log π

+
1

2π

∫ ∞

−∞
m−

∆(t− u)Re
Γ′

Γ

(
1

4
+

iu

2

)
du

− 1

2π

∞∑
n=2

Λ(n)√
n

{
n−it m̂−

∆

(
− logn

2π

)
+ nit m̂−

∆

(
logn

2π

)}
.

(4.2)

Let us split this sum into four terms and quote each of these separately.

4.1.1 First term

From Lemma 3.1 (i) we see that

∣∣m−
∆

(
t− 1

2i

)
+m−

∆

(
t+ 1

2i

)∣∣≪ ∆2

1 + ∆t
eπ∆. (4.3)

4.1.2 Second term

From Lemma 3.1 (ii) we have ∣∣m̂−
∆(0)

∣∣≪ 1. (4.4)

4.1.3 Third term

Using Stirling’s formula (2.4), Lemma 3.1 (i) and (iii), and the fact that∫∞
−∞ f(x) dx = 2π we have

1

2π

∫ ∞

−∞
m−

∆(t− u)Re
Γ′

Γ

(
1

4
+

iu

2

)
du =

=
1

2π

∫ ∞

−∞
m−

∆(u)
(
log t+O(log(2 + |u|)

)
du

= log t− log t

π∆
log

(
2

1 + e−2π∆

)
+O(1).

(4.5)

4.1.4 Fourth term

Finally, we use the fact that the Fourier transform of m∆ is compactly sup-

ported on the interval [−∆,∆], as given in Lemma 3.1 (ii), to bound the sum
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over the prime powers∣∣∣∣∣ 12π
∞∑

n=2

Λ(n)√
n

{
n−itm̂−

∆

(
− log n

2π

)
+ nitm̂−

∆

(
log n

2π

)}∣∣∣∣∣
≤ 1

2π

e2π∆∑
n=2

Λ(n)√
n

{∣∣∣∣m̂−
∆

(
− log n

2π

)∣∣∣∣+ ∣∣∣∣m̂−
∆

(
log n

2π

)∣∣∣∣}

≪
e2π∆∑
n=2

Λ(n)√
n

≪ eπ∆,

(4.6)

where the last expression was evaluated via summation by parts.

4.1.5 Conclusion

Combining expressions (4.1)-(4.6) we arrive at

log
∣∣ζ( 12 + it

)∣∣ ≤ log t

2π∆
log

(
2

1 + e−2π∆

)
+O

(
∆2eπ∆

(1 + ∆t)
+ eπ∆ + 1

)
. (4.7)

Until now we did all of our estimates without prescribing any particular value

for ∆. It turns out that the choice

π∆ = log log t− 3 log log log t

in (4.7) concludes the proof of Theorem 1.1.

4.2 Proof of Theorem 1.4

This follows by a very similar argument. With g defined as in (1.3), and m±
∆

defined as in Lemma 3.3, we can use Lemma 2.2 to obtain

1

π

∑
γ

m−
∆(t− γ) +O(1)

≤ S(t) =
1

π

∑
γ

g(t− γ) +O(1) ≤ 1

π

∑
γ

m+
∆(t− γ) +O(1).

We then use the explicit formula with m±
∆ and bound the first, second and fourth

terms as done in the proof of Theorem 1.1, now using Lemma 3.3. For the third

term we use Stirling’s formula (2.4), Lemma 3.3 (i) and (iii), and the fact that
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∫∞
−∞ g(x) dx = 0 to get

1

2π

∫ ∞

−∞
m±

∆(t− u)Re
Γ′

Γ

(
1

4
+

iu

2

)
du =

=
1

2π

∫ ∞

−∞
m±

∆(u)
(
log t+O(log(2 + |u|)

)
du

= ± log t

4∆
+O(1).

We thus arrive at

|S(t)| ≤ log t

4π∆
+O

(
∆2eπ∆

(1 + ∆t)
+ eπ∆ + 1

)
.

and again it is just a matter of choosing π∆ = log log t−3 log log log t to conclude

the proof of Theorem 1.4.

4.3 Proof of Theorem 1.5

Let h be defined as in (1.4), and m±
∆ defined as in Lemma 3.4. From Lemma

2.3 we have

1

4π
log t− 1

π

∑
γ

m+
∆(t−γ) +O(1)

≤ S1(t) =
1

4π
log t− 1

π

∑
γ

h(t−γ) +O(1)

≤ 1

4π
log t− 1

π

∑
γ

m−
∆(t−γ) +O(1).

Once more we apply the explicit formula with m±
∆ and bound the first, second

and fourth terms as done in the proof of Theorem 1.1, now using Lemma 3.4.

For the third term we use Stirling’s formula (2.4), Lemma 3.4 (i) and (iii), and

the fact that ∫ ∞

−∞
h(x) dx =

π

2
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to get

1

2π

∫ ∞

−∞
m−

∆(t− u)Re
Γ′

Γ

(
1

4
+

iu

2

)
du

=
1

2π

∫ ∞

−∞
m−

∆(u)
(
log t+O

(
log(2+|u|)

))
du

=
1

4
log t− log t

2π∆

∫ 3/2

1/2

(
log

(
1 + e−(2σ−1)π∆)

− log
(
1 + e−2π∆))

dσ +O(1)

≥ 1

4
log t− log t

2π∆

∫ ∞

1/2

log
(
1 + e−(2σ−1)π∆)

dσ +O(1)

=
1

4
log t− log t

2π2∆2

∫ ∞

0

log
(
1 + e−2α) dα+O(1).

Now observe that (cf. [15, §4.291])∫ ∞

0

log
(
1+e−2α

)
dα =

1

2

∫ 1

0

log(1+u)

u
du =

π2

24
.

Therefore, by combining these estimates, we arrive at

S1(t) ≤
log t

48π∆2
+O

(
∆2eπ∆

(1 + ∆t)
+ eπ∆ + 1

)
.

Choosing π∆ = log log t− 3 log log log t in the inequality above gives us

S1(t) ≤
π

48

log t

(log log t)2
+O

(
log t log log log t

(log log t)3

)
,

which is the upper bound for S1(t) stated in Theorem 1.5. To prove the lower

bound we proceed similarly by observing that

1

2π

∫ ∞

−∞
m+

∆(t− u)Re
Γ′

Γ

(
1

4
+

iu

2

)
du

=
1

2π

∫ ∞

−∞
m+

∆(u)
(
log t+O

(
log(2+|u|)

))
du

=
1

4
log t− log t

2π∆

∫ 3/2

1/2

(
log
(
1− e−(2σ−1)π∆

)
− log

(
1− e−2π∆

))
dσ

+O(1)

≤ 1

4
log t− log t

2π∆

∫ ∞

1/2

log
(
1− e−(2σ−1)π∆

)
dσ +O(1)

=
1

4
log t− log t

2π2∆2

∫ ∞

0

log
(
1− e−2α

)
dα+O(1).
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We now invoke the identity (cf. [15, §4.291])∫ ∞

0

log
(
1−e−2α

)
dα =

1

2

∫ 1

0

log(1−u)

u
du = −π2

12

to arrive at

S1(t) ≥ − log t

24π∆2
+O

(
∆2eπ∆

(1 + ∆t)
+ eπ∆ + 1

)
.

Finally, choosing π∆ = log log t− 3 log log log t in the inequality above gives us

S1(t) ≥ − π

24

log t

(log log t)2
+O

(
log t log log log t

(log log t)3

)
,

and this completes the proof of Theorem 1.5.

4.4 Final remarks

The proofs of Theorems 1.2 and 1.3 are more involved and make use of the

expressions for the Fourier transforms m̂±
α,∆ given by Lemma 3.2 (ii) to evaluate

the sum over the prime powers in the explicit formula, which will have a significant

contribution in the case 1
2 < α ≤ 1. We refer the reader to [3, Theorems 1 and

2] for the details of these proofs. Let us register here an oversight in [3, Lemma

8 (i)], where the dependence of the constants on the parameter α is not explicit.

The right statement is presented here in Lemma 3.2 (i) in equations (3.4) and

(3.5). This, however, should not affect the proof of [3, Theorem 2].
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