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Abstract

In this paper we obtain generalized Calabi-type compactness cri-

teria for complete Riemannian manifolds that allow the presence

of negative amounts of Ricci curvature. These, in turn, can be

rephrased as new conditions for the positivity, for the existence of a

first zero and for the nonoscillatory-oscillatory behaviour of a solu-

tion g(t) of g′′+Kg = 0, subjected to the initial condition g(0) = 0,

g′(0) = 1. A unified approach for this ODE, based on the notion of

critical curve, is presented. With the aid of suitable examples, we

show that our new criteria are sharp and, even for K ≥ 0, in bor-

derline cases they improve on previous works of Calabi, Hille-Nehari

and Moore.

1 Basic comparison and Myers type compactness

result

Hereafter, we consider a connected, complete Riemannian manifold (M, ⟨ , ⟩), and a

chosen reference origin o ∈ M . Let Do = M\({o} ∪ cut(o)) be the maximal domain
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of normal coordinates centered at o, and denote with r(x) the distance function from

o. The classical Bonnet-Myers theorem, showing the compactness of M under the

condition

Ricc ≥ (m− 1)B2⟨ , ⟩ (1.1)

for some B > 0, can be proved as a consequence of the Laplacian comparison theorem.

Indeed, let us recall the following generalized form of this latter.

Theorem 1 (Theorem 2.4 of [15]). Let M be as above. Assume that the radial Ricci

curvature satisfies

Ricc(∇r,∇r)(x) ≥ −(m− 1)G(r(x)) on M, (1.2)

for some function G ∈ C0(R+
0 ), and let g ∈ C2(R+

0 ) be a solution of g′′ −Gg ≥ 0

g(0) = 0, g′(0) = 1.
(1.3)

Let (0, R0) (possibly R0 = +∞) be the maximal interval where g is positive. Then,

Do ⊂ BR0 (1.4)

and the inequality

∆r(x) ≤ (m− 1)
g′(r(x))

g(r(x))
(1.5)

holds pointwise on Do and weakly on M .

Suppose the validity of (1.1) so that G(t) = −B2. A simple checking shows that

g(t) = B−1 sin(Bt) solves (1.3). Its first positive zero is at 2π/B. Then (1.4) gives

that Do ≡ M is bounded. Since M is closed, the Hopf-Rinow theorem implies that

M is compact. In fact, we have also shown that diam(M) ≤ 2π/B, but since (1.1) is

indipendent of the origin o we can improve the above to the sharp estimate diam(M) ≤
π/B.

Cleary the key point of our proof lies in the validity of the inclusion Do ⊂ BRo . The

way to prove this latter is as follows. Suppose to have shown (1.5) on Do ∩BRo

A computation in normal coordinates gives

∆r =
∂

∂r
log
√

g̃(r, θ),

where g̃(r, θ) is the determinant of the metric in this coordinate system. Thus, (1.5) on

Do ∩BR0 reads
∂

∂r
log
√

g̃(r, θ) ≤ (m− 1)
g′(r)

g(r)
. (1.6)

Fix the unit vector θ and let γθ be the unit speed geodesic emanating from o with

γ̇θ(o) = θ. γθ will stop to be minimizing after the first cut point attained at t = c(θ) > 0.
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With ϵ > 0 sufficiently small, we integrate (1.6) on [ϵ,min{c(θ), Ro}], we let ϵ → 0+

and we use the asymptotic behaviours in 0 to get√
g̃(r, θ) ≤ g(r)m−1,

Since g̃(r, θ) > 0 on Do, we have R0 ≥ c(θ), that is, Do ⊂ BR0 .

However, by a result of M. Morse, a complete manifold M is compact if and only if

each unit speed geodesic γθ emanating from some fixed origin o ceases to be a segment

i.e. length minimizing, for a value c(to) of its parameter t which is finite. Thus, the

above reasoning appears to be slightly redundant, in the sense that it provides a bound

R0 which is independent of the considered unit speed geodesic from o. This motivates

the following result of Galloway [7].

Theorem 2. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 2.

Assume that, for some origin o and for every unit speed geodesic γ : R+
0 → M emanating

from o, the solution g of 
g′′ +

Ricc(γ′, γ′)(t)

m− 1
g = 0,

g(0) = 0, g′(0) = 1

(1.7)

has a first positive zero. Then, M is compact with finite fundamental group.

Proof. Let r0 > 0 be the first positive zero of g solution of (1.7). Multiply the equation

in (1.7) by g, integrate by parts and use the initial conditions to get∫ r0

0

(g′)2 −
∫ r0

0

Ricc(γ̇, γ̇)

m− 1
g2 = 0 (1.8)

By Rayleigh characterization, this means that the operator

L =
d2

dt2
+

Ricc(γ̇, γ̇)

m− 1

satisfies

λL
1 ([0, r0]) ≤ 0,

and by monotonicity of eigenvalue

λL
1 ([0, r]) < 0 ∀ r > r0.

But L is the stability operator for the geodesic γ, and on [0, T ] γ is minimizing only if

λL
1 ([0, T ]) ≥ 0.

Thus if the value c(γ) gives the cut-point di o along γ it must be c(γ) ≤ r0. By Morse

result M is compact. The same procedure can also be applied to the Riemannian

universal covering M̃ → M , showing that M̃ is compact and thus that Π1(M) is finite.
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If we ignore that L is the stability operator for the unit speed geodesic γ we can

proceed with the following analytic alternative proof.

Let p ∈ Do, and let γ : [0, r(p)] → M be the minimizing geodesic from o to p so

that r(γ(t)) = t and ∇r ◦ γ = γ̇ for t ∈ [0, r(p)]. We fix a local orthonormal coframe

{θi} to perform computations. Here 1 ≤ i, j, . . . ≤ m and we use Einstein summation

convention. Then for the distance function r on Do we have

dr = riθ
i,

and Gauss lemma writes

riri ≡ 1. (1.9)

Taking covariant derivative of (1.9) we obtain

rijri = 0 (1.10)

that is,

Hess r(∇r, ·) = 0. (1.11)

Covariant differentiation of (1.10) yields

rijkri + rijrik = 0. (1.12)

From the simmetry rij = rji we deduce that rijk = rjik, and by the Ricci commutation

rules

rijk = rikj + rtRtijk

Rtijk the components of the Riemann tensor. Using this in (1.12) we get

0 = rijkri + rijrik = rjikri + rijrik = rjkiri + rtR
t
jikri + rijrik.

Thus, tracing with respect to j and k

rirkki + rtriRti + rikrik = 0,

with Rti the components of the Ricci tensor. In other words

⟨∇∆r,∇r⟩+Ricc (∇r,∇r) + |Hess(r)|2 = 0

Computing along γ

d

dt
(∆r ◦ γ) + |Hess(r)|2 +Ricc (∇r,∇r) = 0

on [0, r(p)]. Using (1.11) and Newton’s inequality, we have

|Hess(r)|2 ≥ (∆r)2

m− 1
,

and setting φ(t) = ∆r ◦ γ(t) from the above we obtain

d

dt
φ(t) +

φ(t)2

m− 1
+ Ricc (∇r,∇r) ≤ 0 (1.13)
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on [0, r(p)]. Furthermore, it is well known that

∆r =
m− 1

r
+ o(1) as r → 0+

Hence, since γ is minimizing

1

m− 1
φ(t) =

1

(r ◦ γ)(t) + o(1) =
1

t
+ o(1) as t → 0+ (1.14)

Defining

u(t) = t exp

{∫ t

0

(
φ(s)

m− 1
− 1

s

)
ds

}
on [0, r(p)], u is well defined because of (1.14) and a computation using (1.13) gives

d2

dt2
u+

Ricc(γ̇, γ̇)

m− 1
u ≤ 0 (1.15)

Let now h be any C1([0, r(p)]) function such that h(0) = 0 = h(r(p)). Since u > 0

on (0, r(p)] the function h2u′/u is well defined on (0, r(p)]. Differentiating, using (1.15)

and Young inequality we get

d

dt

(
h2 u

′

u

)
≤ −Ricc(γ̇, γ̇)

m− 1
h2 − h2

(
u′

u

)2

+ 2hh′ u
′

u
≤ −Ricc(γ̇, γ̇)

m− 1
h2 + (h′)2

Fix ϵ > 0 sufficiently small. Integration of the above on [ϵ, r(p)] gives

−h2(ϵ)
u′(ϵ)

u(ϵ)
≤
∫ r(p)

ϵ

(h′)2 −
∫ r(p)

ϵ

Ricc(γ̇, γ̇)

m− 1
h2

Since h(ϵ) = Aϵ+ o(1), for ϵ → 0+ where A ∈ R, letting ϵ → 0+ we obtain∫ r(p)

0

(h′)2 −
∫ r(p)

0

Ricc(γ̇, γ̇)

m− 1
h2 ≥ 0 (1.16)

This contradicts (1.8) unless r(p) ≤ r0.

Thus we have reduced the compactness problem for the complete manifold M to the

problem of the existence of a first zero for solutions of the Cauchy problem g′′ +K(t)g = 0 on R+

g(0) = 0, g′(0) = 1.
(CP)

where in our geometric application

K(t) = Kγ(t) =
Ricc(γ̇, γ̇)

m− 1
(t) (1.17)

We observe that the existence of a first zero is also ”a posteriori” guaranteed via an

oscillation result for the same equation, and that uniform upper estimate for the po-

sitioning of the first zero yields a diameter estimate. In this perspective the original

result of Calabi can be stated as follows (see also Theorem 3.11 of [2]).
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Theorem 3 (Theorems 1 and 2 of [4]). Let M be as above, and assume that

Ricc ≥ 0 on M . Suppose that for each unit speed geodesic γ emanating from o there

exist 0 < a < b, possibly depending on γ, such that

∫ b

a

√
Ricc(γ′, γ′)(s)

m− 1
ds >

{(
1 +

1

2
log

b

a

)2

− 1

}1/2

. (1.18)

Then, M is compact and has finite fundamental group. In particular, this holds

provided that

lim sup
t→+∞

(∫ t

1

√
Ricc(γ′, γ′)(s)

m− 1
ds− 1

2
log t

)
= +∞. (1.19)

Remark 1. As a matter of fact, under the assumption Ricc ≥ 0 on M , (1.19) gives an

oscillation result for (CP).

In Calabi result the requirement Ricc ≥ 0 is essential. We stress that (1.18) is, to the

best of our knowledge, the first instance of a condition in finite form for the existence

of a first zero, that is, a condition involving the potential K only in a compact interval

[a, b]. One of the main purpose of the present paper is to extend the result even when

Ricci is negative somewhere.

2 The role of the critical curve

As we will see shortly, in order to extend Calabi result, we shall deal with a slightly

different ODE. In particular, we are concerned with the following problems:

i) study the existence of a first zero of solutions z(r) of (v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+

z(0+) = z0 > 0,
(2.1)

with A(t) ≥ 0, v(t) > 0 on R+;

ii) give an upper bound for the positioning of the first zero of z;

iii) study the oscillatory behavior of (2.1);

iv) extend the obtained result when A(r) changes sign.

Towards these aims we introduce the ”critical curve” χ(r) relative to (2.1) or to the

next Cauchy problem (v(r)z′(r))′ +A(r)v(r)z(r) = 0 on [r0,+∞), r0 > 0

z(r+0 ) = z0 ∈ R,
(2.2)
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To do this we require the assumptions

0 ≤ v(r) ∈ L∞
loc(R+

0 ),
1

v(r)
∈ L∞

loc(R+), lim
r→0+

v(r) = 0 (V1)

(the last equation request is intended on a rapresentative of v) and the integrability

condition
1

v(r)
∈ L1(+∞). (VL1)

We set

χ(r) =

{
2v(r)

∫ +∞

r

ds

v(s)

}−2

=

{(
−1

2
log

∫ +∞

r

ds

v(s)

)′
}2

(2.3)

Fix 0 < R < r, from the definition di χ we deduce

∫ r

R

√
χ(s)ds =

1

2
log

{(∫ +∞

R

ds

v(s)

)/(∫ +∞

r

ds

v(s)

)}
∀ 0 < R < r, (2.4)

Thus letting r → +∞, we obtain √
χ(r) ̸∈ L1(+∞) (2.5)

It is worth to stress that the function χ only depends on the weight v, not on A. Note

that, although (CP) can be thought as a version of (2.1) with v ≡ 1, assumptions

(V1), (VL1) are not satisfied. Thus, the next main Theorem 4 below cannot be directly

applied to (CP).

The study of the Cauchy problem (2.1) turns out to be extremely useful in a number

of different geometric problems, not only those described in this paper. For instance, a

mainstream application of it is to derive spectral estimates for stationary Schrödinger

tipe operators via radialization techniques. In this case, the role of v is played by the

volume growth of geodesic spheres centered at o, for which (V1) is the highest regularity

that we can in general guarantee. However, since there are natural upper and lower

bounds coming from the Laplacian comparison theorems, it is worth to relate the critical

curve with that of, say, an upper bound for v. More precisely, for f satisfying

f ∈ L∞
loc(R+

0 ),
1

f
∈ L∞

loc(R+), 0 ≤ v ≤ f on R+
0 (F1)

1

f
∈ L1(+∞) (FL1)

we shall compare χ(r) with the critical curve χf (r) defined again via (2.3). We observe

that, for any positive constant c, χcf = χf . This suggests that, in general, v ≤ f does

not imply χ ≤ χf . To recover this property we need a more stringent relation between

v and f .

Proposition 1 (Proposition 4.13 of [2]). Let v, f satisfy (V1), (VL1) on some

interval I = (r0,+∞) ⊂ R+. Then,
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(i) If v/f is non-increasing on I, χ(r) ≤ χf (r) on I;

(ii) If v/f is non-decreasing on I, χ(r) ≥ χf (r) on I;

In the case v(r) = vol(∂Br), the above proposition fits well with the Bishop-Gromov

comparison theorem for volumes ([15], Theorem 2.14). The interested reader may con-

sult Chapter 4 of [2], where the authors give a detailed discussion on the critical curve,

together with estimates on χ when v(r) = vol(∂Br), explicit examples, and many ap-

plications. For instance, the deep relationship between χ(r) and optimal weights for

Hardy inequalities is discussed. Since, as we will see, in dealing with Calabi-type com-

pactness results the role of v will be played by some suitable weight which has no direct

relation with volumes, we shall not pursue this line of argument any further.

We now list the assumptions under which we will treat either of the Cauchy problems

(2.1) or (2.2).

v(r)

∫ a

r

ds

v(s)
;

1

v(r)

∫ r

o

v(s)ds ∈ L∞([0, a]) (V2)

for some a ∈ R+.
1

v(r)

∫ r

0

v(s)ds = o(1) as r → 0+ (V3)

A(r) ∈ L∞
loc(R+

0 ) (A1)

Conditions

1. (A1), (V1), (V2) and (V3) guarantee the existence of a solution z ∈ Liploc(R
+
0 )

of (2.1)

2. (A1), (V1) and (V2) its uniqueness

3. (A1), (V1) the fact that each solution z ̸≡ 0 has isolated zeros, if any.

Note that (V2) and (V3) are automatically satisfied if v(r) is non-decreasing in a neigh-

bourhood of 0.

The following theorem summarizes some of the results obtained in [3].

Theorem 4. Let (A1), (V1), (F1), (VL1) be met, and let z ∈ Liploc(R
+
0 ) be a solution

of  (v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+,

z(0+) = z0 > 0.
(2.6)

Then,

(1) [Theorem 5.2 of [3]] If A(r) ≤ χ(r) on R+, then z > 0 on R+. Furthermore,

there exists r1 > 0 and a constant C = C(r1) > 0 such that

z(r) ≥ −C

√∫ +∞

r

ds

f(s)
log

∫ +∞

r

ds

f(s)
on [r1,+∞). (2.7)
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(2) [Corollary 5.4 of [3]] If A(r) ≤ χ(r) on [r0,+∞), for some r0 > 0, then z is

nonoscillatory, that is, it has only finitely many zeroes (if any).

(3) [Corollary 6.3 of [3]] If A ≥ 0 on R+, A ̸≡ 0 and there exist r > R > 0 such

that A ̸≡ 0 on [0, R] and∫ r

R

(√
A(s)−

√
χf (s)

)
ds > −1

2

(
log

∫ R

0

A(s)v(s)ds+ log

∫ +∞

R

ds

f(s)

)
(2.8)

then z has a first zero. Moreover, this is attained on (0, R], where R > 0 is the

unique real number satisfying∫ r

R

√
A(s)ds = −1

2
log

∫ R

0

A(s)v(s)ds− 1

2
log

∫ R

r

ds

f(s)
(2.9)

(4) [Theorem 6.6 of [3]] If A ≥ 0 on R+ and, for some (hence any) R > 0 such

that A ̸≡ 0 on [0, R],

lim sup
r→+∞

∫ r

R

(√
A(s)−

√
χf (s)

)
ds = +∞ (2.10)

then z is oscillatory, that is, it has infinitely many zeroes.

Remark 2. In fact, for (2) and (4) to hold, it is enough that z solves the Cauchy

problem only on [r0,+∞), for some r0 > 0 and for some initial condition z(r0), (vz
′)(r0).

It is worth to make some observations on the conditions in the above theorem.

- In (1), A ≤ χ cannot be replaced with A ≤ χf . The reason is that, as already

observed, no relations between χ and χf can be deduced from the sole require-

ment v ≤ f in (F1). However, note that χf appears both in (2.8) and in (2.10).

This is due to the technique developed for (3) and (4), which is different from

that used for (1) and (2).

- The lower bound (2.7) is sharp. Indeed, it can be showed that if z is positive on

R+ and A ≥ χ on some [r0,+∞), then necessarily z is bounded from above by

the quantity on the RHS of (2.7), for some C > 0.

- The right hand side of (2.8) is independent both of r and of the behavior of

A after R. Therefore, the left hand side of (2.8) represents how much must A

exceed a critical curve modelled on f in the compact region [R, r] in order to

have a first zero for z, and it only depends on the behavior of A and f before

R (the first addendum of the RHS), and on the growth of f after R. This is

conceptually simpler than Calabi compactness condition, where the role of a, b

is balanced between the two sides of (1.18).
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Remark 3. The assumptions in (3) and (4) can be weakened. Indeed, it is enough that

z solves the inequality (vz′)′ +Avz ≤ 0 on R+, and that its initial condition satisfies

vz′

z
(0+) = 0.

Note that sufficiently mild singularities of z as r → 0+ are allowed, depending on the

order of zero of v(r) at 0.

Remark 4. Using (2.4) we see that (2.10) can be equivalently expressed as

lim sup
r→+∞

{∫ r

R

√
A(s) +

1

2
log

∫ +∞

r

ds

f(s)

}
= +∞. (2.11)

The similarity between (2.11) and (1.19) is evident. Indeed, as a first application of

Theorem 4 let us show that Calabi condition (1.19) implies that the solution of (CP),

with

K(t) =
Ricc(γ̇, γ̇)

m− 1
(t) ≥ 0, (2.12)

is oscillatory.

Indeed, choose any v satisfying (V1), (V2), (V3) and v−1 ∈ L1(+∞) \L1(0+), for

instance v(r) = rm−1 for some m ≥ 3. Let r = r(t) be the inverse function of

t(r) =

(∫ +∞

r

ds

v(s)

)−1

(2.13)

and define

z(r) =
g(t(r))

t(r)
(2.14)

Then z solves 
(vz′)′ +

K(t(r))t4(r)

v2(r)
v(r)z = 0 on R+

z(0) = 1 (vz′)(0) = 0

(2.15)

where now differentiation is with respect to the variable r. If (2.11) holds with f = v

and

A(r) =
K(t(r))t4(r)

v2(r)
≥ 0,

then z oscillates and so does g. A change of variables shows that (2.11) is exactly (1.19).

The literature on the qualitative properties of solutions of (CP) is enormous, and

considerable steps towards the comprehension of the matter have been made throughout

all of the 20th century. In particular, a number of sharp oscillatory and nonoscillatory

conditions for g have been found. Here, we only quote two of the finest. The first is the

so-called Hille-Nehari criterion, see [17], p.45 and [9], Theorem 5 and Corollary 1.



Some generalizations of Calabi compactness theorem 113

Theorem 5. Let K ∈ C0(R) ∩ L1(+∞) be non-negative, and consider a solution g of

g′′ +Kg = 0. Denote with k(t), k∗ and k∗ respectively the quantities

k(t) = t

∫ +∞

t

K(s)ds, k∗ = lim inf
t→+∞

k(t), k∗ = lim sup
t→+∞

k(t).

We have:

- if g is nonoscillatory, then necessarily k∗ ≤ 1/4 and k∗ ≤ 1;

- if k(t) ≤ 1/4 for t large enough, in particular if k∗ < 1/4, then g is nonoscilla-

tory.

As a consequence, k∗ > 1/4 is a sufficient condition for g to be oscillatory.

Remark 5. If K ̸∈ L1(+∞), the result applies with k∗ = k∗ = +∞, and g is thus

oscillatory. This case is due to W.B. Fite [6].

Remark 6. Improving on an old criterion of Kneser, it can be showed (see [2], Propo-

sition 2.23) that if k(t) ≤ 1/4 on the whole R+, then the solution g of (CP) is positive

and increasing on R+.

Remark 7. Hille-Nehari criterion detects the oscillation of g when K(t) ≥ B2/(1+ t2)

on R+, for some B > 1/2. In a geometrical context, this particular case has been

investigated in [5], where the authors have also obtained upper bounds for the first zero

of g solving (CP).

Remark 8. For every B ∈ [0, 1/2], the Cauchy problem associated to the Euler equa-

tion 
g′′ +

B2

(1 + t)2
g = 0,

g(0) = 0, g′(0) = 1,

has the explicit, positive solution

g(s) =


√
1 + t log(1 + t) if B = 1/2;

1√
1− 4B2

(
(1 + t)B

′′
− (1 + t)1−B′′)

if B ∈ [0, 1/2),

where

B′′ =
1 +

√
1− 4B2

2
∈ (1/2, 1]

(see [17], p.45). For B = 1/2, this example shows that Hille-Nehari criterion is sharp.

When k∗ = k∗ = 1/4, Hille-Nehari criterion cannot grasp the behaviour of g. As

we shall see, combining (2) and (4) of Theorem 4 in an iterative way, we can construct

sharper and sharper oscillation and nonoscillation criteria that can detect the behaviour

of g even in some cases when the Hille-Nehari theorem fails to give information.

The second result we quote allows sign-changing potentials K and is due to R. Moore

(see [13], Theorem 2)



114 B. Bianchini, L. Mari and M. Rigoli

Theorem 6. Let K ∈ C0(R). Each solution g of g′′ +Kg = 0 is oscillatory provided

that, for some λ ∈ [0, 1), there exists

lim
t→+∞

∫ t

0

sλK(s)ds = +∞, (2.16)

Remark 9. Setting λ = 0 in Moore statement we recover a result of W. Ambrose [1]

and A. Wintner [18] (one can also consult [8], Corollaries 3.5 and 3.6 for a different

proof and a generalization). Remark 8 shows that in Moore result the interval of the

parameter λ cannot be extended to [0, 1]. Thus, Euler equation suggests that, when

restricted to the case K ≥ 0, Moore criterion is somehow weaker than that of Hille-

Nehari.

Another observation on Moore result is that, although sharp from many points of

view, it requires that the negative part of K be, loosely speaking, globally smaller than

the positive part. This is the essence of the existence of the limit in (2.16). One of

our goal in the next section will be to obtain an oscillation criterion that allows K to

have a relevant negative part. Furthermore, with the aid of (2.8), we will also find a

condition in finite form for the existence of a first zero that allows K to be negative

somewhere. As far as we know, there is still no result in this direction besides some

very recent work of P. Mastrolia, G. Veronelli and M. Rimoldi, which we recall here for

the sake of completeness.

Theorem 7 (Theorem 5 of [12]). Suppose that K ∈ L∞(R+
0 ) satisfies K ≥ −B2,

for some B ≥ 0, and let g be a solution of (CP). Suppose that there exist 0 < a < b

and λ ̸= 1 for which either∫ b

a

sKγ(s)ds > B

{
b+ a

e2Ba + 1

e2Ba − 1

}
+

1

4
log

(
b

a

)
(2.17)

or ∫ b

a

sλKγ(s)ds > B

{
bλ + aλ e

2Ba + 1

e2Ba − 1

}
+

λ2

4(1− λ)

{
aλ−1 − bλ−1

}
(2.18)

holds (if B = 0, this has to be intended in a limit sense). Then, g has a first zero.

Remark 10. The case B = 0 of the above result is due to Z. Nehari, see [14], p.432

(8), with an entirely different proof. We point out that, in [12], the authors also give

an upper bound for the position of the first zero.

3 Extensions of Calabi compactness criterion

We shall now deal with (2.1) under the further assumption that A is possibly negative.

Hereafter, we require the validity of (A1), (V1), (V2), (V3), (F1) . Let z ∈ Liploc(R
+
0 )
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be a solution of  (vz′)′ +Avz = 0 on R+,

z(0+) = z0 > 0,
(3.1)

or of the analogous problem on [r0,+∞).

Choose a function W ∈ L∞
loc(R+

0 ) such that

W ≥ 0 a.e. on R+, W +A ≥ 0 a.e. on R+. (3.2)

For instance, W can be taken to be the negative part of A. To apply the results of the

previous section, we need to produce, starting from (3.1) and W , a solution z̃ of a linear

ODE of the type (v̄z̃′)′ + Āv̄z̃ = 0, for some new volume function v̄ and some Ā ≥ 0.

Towards this purpose, consider a solution w(r) ∈ Liploc(R
+
0 ) of (vw′)′ −Wvw ≥ 0 on R+

w(0+) = w0 > 0.
(3.3)

Note that from

(vw′)′ ≥ Wvw

we deduce w′ ≥ 0 a.e., hence w has a positive essential infimum on R+
0 . Therefore, the

function z̃ = z/w is well defined on R+
0 and solves

(
[vw2]z̃′

)′
+
(
A+W

)
[vw2]z̃ ≤ 0 on R+

z̃(0) = z0/w0 > 0,
(3.4)

As observed in Remark 3, the inequality sign in (3.4) is irrelevant for the proofs of (3),

(4) of Theorem 4. In this way, (3) and (4) can be extended to cover sign-changing

potentials by simply replacing A with A+W , v with vw2 and f with fw2. The main

problem therefore shifts to the search of explicit solutions w of (3.3), once v and W are

given.

Up to taking some care when dealing with the initial condition, the same procedure

can be carried on even when v ≡ 1. In this case, we are able to provide an explicit form

for w when the potential W is a polynomial. This leads to the following theorem (see

Theorem 6.41 of [2]). In the statement below, we denote with Iν is the positive Bessel

function of order ν.

Theorem 8 (Compactness with sign-changing curvature). Let (M, ⟨ , ⟩) be a

complete m-dimensional Riemannian manifold. For each unit speed geodesic γ emanat-

ing from a fixed origin o, define

Kγ(t) =
Ricc(γ′, γ′)(t)

m− 1
.

Assume that one of the following set of assumptions is met.
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(i) The function Kγ(t) satisfies

Kγ(t) ≥ −B2(1 + t2
)α/2

on R+,

for some B > 0 and α ≥ −2 possibly depending on γ. Having set

0 ≤ Aγ(t) = Kγ(t) +B2(1 + t2
)α/2

,

suppose also that, for some 0 < S < t such that Aγ ̸≡ 0 on [0, S],∫ t

S

(√
Aγ(σ)−

√
χw2(σ)

)
dσ

> −1

2

(
log

∫ S

0

Aγ(σ)w
2(σ)dσ + log

∫ +∞

S

dσ

w2(σ)

)
,

(3.5)

where

w(t) =



sinh

(
2B

2 + α

[
(1 + t)1+

α
2 − 1

])
if α ≥ 0;

t1/2I 1
2+α

(
2B

2 + α
t1+

α
2

)
if α ∈ (−2, 0);

tB
′

if α = −2,

(3.6)

and B′ = (1 +
√
1 + 4B2)/2.

(ii) The function Kγ(t) satisfies

Kγ(t) ≥
B2

(1 + t)2
on R+,

for some B ∈ [0, 1/2] possibly depending on γ. Having set

0 ≤ Aγ(t) = Kγ(t)−
B2

(1 + t)2
,

suppose also that, for some 0 < S < t such that Aγ ̸≡ 0 on [0, S], inequality (3.5)

holds with

w(t) =

 (1 + t)B
′′
− (1 + t)1−B′′

if B ∈ [0, 1/2);

√
1 + t log(1 + t) if B = 1/2,

(3.7)

and B′′ = (1 +
√
1− 4B2)/2.

Then, M is compact and has finite fundamental group.

Remark 11. Note that, both for (3.6) and for (3.7), the critical curve related to w2

exists since 1/w2 ∈ L1(+∞).
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Proof. By Theorem 2, it is enough to prove that, for every γ issuing from o, the solution

g of  g′′ +Kγ(t)g = 0

g(0) = 0, g′(0) = 1
(3.8)

has a first zero.

(i) A straightforward computation shows that the function w in (3.6) is a positive

solution of

w′′ −B2(1 + t2)α/2w ≥ 0 on R+

whose initial condition, in the cases α ∈ (−2, 0) and α ≥ 0, is

w(0) = 0, w′(0) = C > 0. (3.9)

Consider z̃ = g/w. Then, z̃ solves

(w2z̃′)′ +Aγw
2z̃ ≤ 0 on R+. (3.10)

In order to apply (3) of Theorem 4 to the differential inequality (3.10), we shall make

use of Remark 3. From (3.9), in each of the cases of (3.6) we obtain

w2z̃′

z̃
(0+) =

(
w2 g

′

g
− ww′

)
(0+) = 0. (3.11)

We can thus apply (3) of Theorem 4, and (3.5) implies that z̃ (hence g) has a first zero.

Case (ii) is analogous. Indeed, by Remark 8, w in (3.7) is a solution of the Cauchy

problem 
w′′ +

B2

(1 + t)2
w = 0

g(0) = 0, g′(0) = C > 0.

Remark 12. We recall that, by (2.4), inequality (3.5) is equivalent to the somehow

simpler∫ t

S

√
Aγ(σ)dσ > −1

2

(
log

∫ S

0

Aγ(σ)w
2(σ)dσ + log

∫ +∞

t

dσ

w2(σ)

)
. (3.12)

However, (3.5) put in evidence that the RHS does not depend on t, as opposed to

conditions like (1.18) and (2.18) where both a and b appear in the LHS as well as in

the RHS. Furthermore, although somehow complicated, (3.5) is entirely explicit once

we are able to compute the critical curve related to w2. In general, this can only be

done numerically, but in some cases a closed expression can be given. For instance, this
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is so for m = 3, B = 1/2 in (3.7), for B = 0 in (3.7) and for α = 0,−2 in (3.6):

∫ +∞

t

dσ

w2(σ)
=



t−
√

1+4B2

√
1 + 4B2

for (3.6), α = −2 and for B = 0;

B−1[coth(Bt)− 1
]

for (3.6), α = 0;

1

log(1 + t)
for (3.7), B = 1/2, m = 3.

Therefore, in the case B = 0, (3.12) reads∫ t

S

√
Kγ(σ)dσ > −1

2

(
log

∫ S

0

σ2Kγ(σ)dσ − log t

)
,

that should be compared to (1.18), while, for α = 0, (3.12) becomes∫ t

S

√
Kγ(σ) +B2dσ > −1

2

(
log

∫ S

0

Kγ(σ) sinh
2(Bσ)dσ + log

coth(Bt)− 1

B

)
,

that should be compared to (2.17) and (2.18).

Easier expressions can be obtained when considering oscillatory conditions. We state

the result in analytic form.

Theorem 9 (Generalized Calabi criterion). Let K ∈ L∞
loc(R+

0 ), and let g ̸≡ 0 be a

solution of g′′ +Kg = 0. Then, g oscillates in each of the following cases:

(1) K satisfies

K(t) ≥ −B2tα when t > t0, (3.13)

for some B > 0, α ≥ −2 and t0 > 0, and the following conditions hold:

for α = −2, lim sup
t→+∞

(∫ t

t0

√
K(σ) +

B2

σ2
dσ −

√
1 + 4B2

2
log t

)
= +∞;

for α > −2, lim sup
t→+∞

(∫ t

t0

√
K(σ) +B2σαdσ − 2B

α+ 2
t
α
2 +1

)
= +∞.

(3.14)

(2) K satisfies

K(t) ≥ B2

t2
when t > t0, (3.15)

for some B ∈ [0, 1/2], t0 > 0, and the following conditions hold:

for B < 1
2 , lim sup

t→+∞

(∫ t

t0

√
K(σ)− B2

σ2
dσ −

√
1− 4B2

2
log t

)
= +∞;

for B = 1
2 , lim sup

t→+∞

(∫ t

t0

√
K(σ)− 1

4σ2
dσ − 1

2
log log t

)
= +∞;

(3.16)
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Proof. (1). The equation w′′ −B2tαw = 0 on, say, [1,+∞) has the particular positive

solution

w(t) =
√
tI 1

2+α

(
2B

2 + α
t1+

α
2

)
if α > −2;

w(t) = tB
′
, B′ =

1 +
√
1 + 4B2

2
if α = −2,

(3.17)

where Iν(t) is the Bessel function of order ν. From

Iν(t) =
et√
2πt

(1 + o(1)) as t → +∞

(see [11], p. 102), in both cases α = −2 and α > −2 we deduce that 1/w2 ∈ L1(+∞).

Moreover,

∫ +∞

t

dσ

w2(σ)
∼


C exp

(
− 4B

2+α
t1+

α
2

)
if α > −2;

Ct1−2B′
= Ct−

√
1+4B2

if α = −2.

(3.18)

Since the function z̃ = g/w solves

(w2z̃′)′ + (K +B2tα)w2z̃ ≤ 0 on [1,+∞),

by (4) of Theorem 4, z (and hence g) oscillates provided

lim sup
t→+∞

∫ t

t0

(√
K(σ) +B2σα −

√
χw2(σ)

)
dσ = +∞

which, by Remark 4, is equivalent to

lim sup
t→+∞

∫ t

t0

√
K(σ) +B2σαdσ +

1

2
log

∫ +∞

t

dσ

w2(σ)
= +∞ (3.19)

By (3.18), conditions (3.14) and (3.19) are equivalent, thus the conclusion.

(2). The proof is the same. Indeed, it is enough to consider the following positive

solution w of w′′ +B2t−2w = 0:

w(t) = tB
′′
, B′′ =

1 +
√
1− 4B2

2
if B ∈ [0, 1/2);

w(t) =
√
t log t if B = 1/2.

(3.20)

Again, in both cases 1/w2 ∈ L1(+∞).

Remark 13. Note that, for B = 0, we recover another proof of the original Calabi

oscillation criterion, which is different from that described in the previous section.

Polynomial lower bounds for K are clearly chosen for their simplicity. Indeed, the

statement in its full generality only requires a positive solution w of w′′ + Ww ≥ 0,
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where the weight W has only to satisfy K+W ≥ 0. In this way, arbitrary lower bounds

for K are allowed, and up to finding a suitable positive w the oscillatory conditions are

explicit. This improves on Moore oscillation criterion, where the existence of the limit

in (2.16) is essential for the proof of Theorem 6 to work. The same discussion holds for

Theorem 8, up to the further requirement that w is sufficiently well-behaved as t → 0+.

From this perspective, Theorem 8 improves on Theorem 7, whose proof seems to us to

be hardly generalizable when the lower bound for K is nonconstant.

The procedure described above, which loosely speaking allows to translate the po-

tential up to inserting a weight, can be iterated. In this way, we can obtain finer and

finer criteria in a very simple way. We now describe how to proceed in this direction.

The first example is the following

Theorem 10 (Positivity and nonoscillation criteria). Let K ∈ L∞
loc(R+

0 ).

(1) Suppose that

K(t) ≤ 1

4(1 + t)2

[
1 +

1

log2(1 + t)

]
on R+. (3.21)

Then, every solution g of  g′′ +K(t)g ≥ 0

g(0) = 0, g′(0) = 1
(3.22)

is positive on R+ and satisfies g(t) ≥ C
√
t log t log log t, for some C > 0 and for

t > 3.

(2) Suppose that

K(t) ≤ 1

4t2

[
1 +

1

log2 t

]
on [t0,+∞), (3.23)

for some t0 > 0. Then, every solution g of g′′ +Kg = 0 is nonoscillatory.

Proof. (1). By Sturm argument, it is sufficient to prove the desired conclusion under

the additional assumptions that g satisfies (3.22) with the equality sign, and that

K(t) ≥ 1

4(1 + t)2
.

Let w(t) =
√
1 + t log(1 + t) be the solution of (3.22) with the equality sign and with

K(t) = [4(1 + t)2]−1. Then, z̃ = g/w solves
(w2z̃′)′ +

[
K(s)− 1

4(1 + t)2

]
w2z̃ = 0 on R+

z̃(0) = 1, z̃′(0) = 0.

(3.24)
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Applying (1) of Theorem 4, z̃ is positive provided

K(t)− 1

4(1 + t)2
≤ χw2(t) =

1

4(1 + t)2 log2(1 + t)
,

which is (3.21), and z̃ satisfies

z̃(t) ≥ −C

√∫ +∞

t

dσ

w2(σ)
log

∫ +∞

t

dσ

w2(σ)
= C

log log t√
log t

,

for some C > 0. The lower bound for g follows at once by the definition of z̃.

To prove (2), again by Sturm argument we can assume that the inequalityK(t) ≥ 1/[4t2]

holds. Proceeding along the same lines as for (1) with the choice w =
√
t log t, and using

(2) of Theorem 4, we reach the desired conclusion.

The next prototype case illustrates the sharpness of our criteria. Let

K(t) =
1

4t2
+

c2

4t2 log2 t
, on [2,+∞),

where c > 0 is a constant. Then, applying (2) of Theorem 9, case B = 1/2 we deduce

that g oscillates whenever c > 1. On the other hand, if c ≤ 1, by Theorem 10 g is

nonoscillatory. However, on [2,+∞)

1

4
< k(t) = t

∫ +∞

t

K(σ)dσ ≤ 1

4
+ t

c2

4t

∫ +∞

t

dσ

σ log2 σ
=

1

4
+

c2

4 log t
,

hence the Hille-Nehari criterion cannot detect neither the oscillatory nor the nonoscilla-

tory behaviour of g depending on c. Similarly, also Moore criterion is not sharp enough.

The proof of Theorem 10 suggests an iterative improving procedure. In the general case,

suppose that we are given an ordinary differential equation of the type (vz′)′+Avz = 0,

with v such that χ can be defined. By Sturm argument, there is no loss of generality if

we assume that A ≥ χ. An explicit solution w of

(vw′)′ + χvw = 0

is given by

w(t) = −

√∫ +∞

t

ds

v(s)
log

∫ +∞

t

ds

v(s)
,

and it is positive on some intervall [r0,+∞). Then, z̃ = z/w solves

(v̄z̃′)′ + (A− χ)v̄z̃ = 0 on [r0,+∞),

where v̄ = vw2, which implies that z̃, and therefore z, are nonoscillatory if (vw2)−1 ∈
L1(+∞) and

A(r)− χ(r) ≤ χvw2(r),
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and oscillatory if (vw2)−1 ∈ L1(+∞) and

lim sup
t→+∞

∫ t

t0

(√
A(s)− χ(s)−

√
χvw2(s)

)
ds = +∞.

Now, the procedure can be pushed a step further by considering z̃. This enables us to

construct finer and finer critical curves. As an example, we refine Theorem 10. Suppose

that

K(t) ≥ 1

4t2
+

1

4t2 log2 t

on, say, [2,+∞). Then, as in the proof of Theorem 10, define w =
√
t log t and v =

w2 = t log2 t. Since w is a positive solution of w′′ + (4t2)−1w = 0 on some [r1,+∞),

z = g/w is well defined and solves (vz′)′ +Avz = 0 on [r1,+∞), where

A(t) = K(t)− 1

4t2
≥ 1

4t2 log2 t
= χw2(t) = χ(t).

Now, the function

w2(t) = −

√∫ +∞

t

ds

v(s)
log

∫ +∞

t

ds

v(s)
=

log log t√
log t

is a solution of (vw′
2)

′ + χvw2 = 0, positive after some r2 ≥ r1. Setting

v2(t) = v(t)w2(t)
2 = t log t log2 log t,

then
1

v2(t)
∈ L1(+∞),

and the function z2 = z/w2 is a solution of (v2z
′
2)

′ +A2v2z2 = 0 on [r2,+∞), where

A2(t) = A(t)− χ(t) = K(t)− 1

4t2
− 1

4t2 log2 t
≥ 0.

Thus z2, and hence z and g, is nonoscillatory provided

A2(t) ≤ χv2(t), that is, K(t) ≤ 1

4t2
+

1

4t2 log2 t
+

1

4t2 log2 t log2 log t
,

and, by (2.11), it is oscillatory if

lim sup
t→+∞

(∫ t

t2

√
K(σ)− 1

4σ2
− 1

4σ2 log2 σ
dσ − 1

2
log log log t

)
= +∞.

Remark 14. We mention that, with the aid of the change of variables (2.13) and

(2.14), Theorems 8, 9 and 10 can be applied to get sharp extensions of index estimates

for stationary Schrödinger operators on Rm, m ≥ 3, that highly improve on classical

results of M. Reed and B. Simon [16], and W. Kirsch and B. Simon [10]. The interested

reader can consult [2], Theorem 6.50.
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