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Abstract

We study shadow boundaries of submanifolds of Riemannian manifolds

admitting a closed conformal vector field. As applications we give a method

to find a principal direction in a compact hypersurface and a characteriza-

tion of totally umbilical hypersurfaces in space forms.

1 Introduction

Given a Riemannian manifold N , an immersed submanifold M and a vector field Y

in N , the notion of the shadow boundary of M is a natural one: It is the set of points

of M such that Y is tangent to M . This concept appears already in 1990, in an article

[2] by J. Choe, under the name of horizon (see Definition 2.1 there) where he applied

it to the study of minimal surfaces.

In [4], M. Ghomi investigated a very close concept, the shadow. Given a fied unit

vector in R3, or equivalently, a parallel vector field v, the shadow of an orientable surface

in R3 with respect to v is the set of points of the surface such that the sign of the angle

between v and a given nowhere zero global normal vector field to the surface does not

change. The relation between these concepts is that a shadow is an open set in the

complement of a shadow boundary.

In a more general setting, we have to impose some conditions on the ambient space N

and on the vector field Y in order to obtain some relevant geometrical information. For

example, the paper [6] of the second named author contains some properties of shadow
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boundaries of submanifolds with respect to a parallel vector field in a Riemannian

manifold.

In this work we investigate shadow boundaries of hypersurfaces with respect to a

closed conformal vector field in the ambient, a concept which includes as a particular

case that of a parallel vector field. In fact, we show that space forms are the first

examples of manifolds admitting plenty of closed conformal vector fields; see Proposition

3.4. Our work is mainly inspired in the paper [3] about compact shadow boundaries of

a hypersurface in Euclidean space. Here we extend some of the results in [3] to more

general spaces, in particular to any space form.

In general, a shadow boundary is a closed subset of a hypersurface M . In the case

here considered using closed conformal vector fields to construct shadow boundaries,

we give first in Proposition 3.1 a condition on the shape operator of the immersion

M ⊂ N for a shadow boundary to be a submanifold of M . As a particular case of this

proposition, we obtain for a hypersurface with nowhere zero Gauss-Kronecker curvature

that every shadow boundary is a submanifold of M .

In Proposition 4.1 we give a characterization of a principal direction of a hypersurface

M in a space form via shadow boundaries. Namely, given a closed conformal vector field

Y , the vector Yp ∈ TpM dfines a principal direction of M if and only if the (regular)

shadow boundary S∂(M,Y ) is orthogonal to the vector field Y . A useful corollary

of this result (see Corollary 3.8) says that a surface in a three dimensional manifold

with the property that every shadow boundary is a line of curvature must be totally

umbilical.

Our main result here is Theorem 4.5 and relates shadow boundaries to the geometry

of a submanifold: Given a compact hypersurface with nowhere zero Gauss-Kronecker in

a space form, if for each point of M and every direction Yp there exists a corresponding

shadow boundary making a constant angle with respect to Y , then M must be totally

umbilical.

2 Preliminaries

In this section we fix our notation. Our ambient space (Nn+1, ⟨ , ⟩) will be a Rie-

mannian manifold with connection D.

Definition 2.1. Let M be an immersed submanifold of N , and let Y : N → TN be a

vector field in N . The shadow boundary of M with respect to Y is the following subset

of M :

S∂(M,Y ) = {p ∈ M | Yp ∈ TpM}. (1)

In [2], J. Choe gave the above definition of shadow boundary of Riemannian subman-

ifolds, calling it horizon. Using the generalized Morse index theorem, he related this

concept with the index of stability of a complete minimal surface in R3.
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In this paper we will work with Riemannian manifolds which admit a closed conformal

vector field Y .

Definition 2.2. We say that Y is a closed conformal vector field if there exist φ : N →
R smooth such that for every vector field X in N we have

DXY = φX,

where D is the Levi-Civita connection of N .

For example, if Y is parallel we can take φ = 0. In the Euclidean space Rn+1, if Y is

a radial vector field, the corresponding φ is constant equal to one. This means that in

particular, our results hold for constant (i.e., parallel) and radial vector fields in Rn+1.

Hereafter Y will denote a closed conformal vector field in N . We will suppose that

Y does not vanish on the submanifold M .

3 Closed conformal vector fields and shadow bound-

aries

In general a shadow boundary is just a closed subset of M . The next result says

that the shadow boundary is a smooth submanifold of M in a region when the Gauss-

Kronecker curvature is different from zero.

Proposition 3.1. Let M be an oriented immersed hypersurface in N and Y a closed

conformal vector field in N . Let p be a point in S∂(M,Y ) where either of the following

conditions hold:

� The shape operator satisfies A(Yp) ̸= 0; or

� The Gauss-Kronecker curvature of M is not zero at p.

Then there exists a neighbourhood U of p in M such that S∂(M,Y )∩U is a hypersurface

of M .

Proof. Let ξ be a unit vector field which is everywhere normal to M . Recall that

the Gauss-Kronecker curvature is given by detA, where A(X) = −DXξ is the shape

operator of M relative to ξ. Note that if detAp ̸= 0, then Ap is a linear isomorphism

and then A(Yp) ̸= 0, so we just analyze this case.

Let U be a neighbourhood of p where the following conditions hold for each point q

in U :

� Yq is not orthogonal to M , i.e. Y T
q ̸= 0.

� A(Y T
q ) ̸= 0; here Y T denotes the projection of Y into TM .
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It is clear that the above neighbourhood U exists. Let us define the smooth function

F : U → R by F = ⟨Y, ξ⟩. Therefore, S∂(M,Y )∩U = F−1(0). We will prove that zero

is a regular value of F . If X denotes a vector field tangent to M and ∇F denotes the

gradient of F , then

⟨∇F,X⟩ = XF = ⟨DXY, ξ⟩+ ⟨Y,DXξ⟩

= ⟨φX, ξ⟩ − ⟨Y T , A(X)⟩ = −⟨A(Y T ), X⟩.

Note that the above implies that ∇F = −A(Y T ). By our assumptions, A(Y T ) ̸= 0 and

therefore ∇F does not vanish in U . In particular, 0 is a regular value of F and therefore

S∂(M,Y ) ∩ U is a hypersurface.

We now express the properties of the shadow boundary in terms of the second fun-

damental form of M .

Lemma 3.2. Let M be an immersed hypersurface in N with second fundamental form

α and Y be a closed conformal vector field in N . If p ∈ L = S∂(M,Y ) and A(Yp) ̸= 0,

then α(Yp, Xp) = 0 for every Xp ∈ TpL.

Proof. By Proposition 3.1, we now that under the given hypotheses L is a hypersurface

of N , at least in a neighbourhood of p. Let ξ be a local unit normal vector field

defined in such a neighbourhood of p and γ a smooth curve in L such that γ(0) = p

and γ′(0) = Xp. Since every point of γ belongs to L we have ⟨Y, ξ⟩ = 0; taking the

derivative with respect to X we obtain

0 = ⟨DXY, ξ⟩+ ⟨Y,DXξ⟩ = ⟨φX, ξ⟩ − ⟨Y,A(X)⟩ = −⟨Y,A(X)⟩

as in the proof of Proposition 3.1. Since Yp = Y T
p , we have

0 = −⟨Yp, A(Xp)⟩ = −⟨A(Yp), Xp⟩ = −⟨α(Yp, Xp), ξ⟩;

the above implies that α(Yp, Xp) = 0.

Definition 3.3. Let M be an immersed hypersurface in N . Given a tangent vector

vp ∈ TpM \ {0}, we say that a shadow boundary S∂(M,Y ) is generated by vp if Y is a

closed conformal vector field satisfying the initial condition Yp = vp.

As an important example, we analyze shadow boundaries of hypersurfaces in space

forms in the next Proposition.

Proposition 3.4. Let N be a space form Qn+1
c . Given an immersed hypersurface M

of Qn+1
c and any vector vp ∈ TpM \ {0}, there exists a shadow boundary S∂(M,Y )

generated by vp.
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Proof. Let M and vp ∈ TpM be as in the statement. Define a point p0 ∈ M by

p0 = expp(−vp) when c ≤ 0 and by p0 = expp(−λvp) for a suitable λ > 0 such that

λ|vp| < π/
√
c, the diameter of Qn+1

c , if c > 0.

Consider the gradient vector field ∇d of the distance function d(·, p0). As usual, ∇d

is defined only in Qn+1
c \ {p0} (or Qn+1

c \ {p0,−p0} for c > 0). In this domain, following

[1], p. 205, we define the position vector Y in Qn+1
c relative to p0 by

Yq = Sc(d(q, p0))∇dq,

where

Sc(s) =


s, c = 0;

sin(s
√
c)/

√
c, c > 0;

sinh(s
√
−c)/

√
−c, c < 0.

Y is a closed conformal vector field. In fact, it is well known that the gradient of a

distance function satisfies D∇d∇d = 0, from which we obtain

D∇dY = S′
c∇d, S′

c =
dSc

ds
;

on the other hand, in [1], p. 207, it is proved (see equation (2.2) there) that

DXY = S′
cX

for every vector field X transversal to ∇d. The last two equations imply that Y is

closed conformal.

From the very definition of p0 we have that Yp is a scalar multiple of vp, so that by

multiplying by a suitable constant we obtain a closed conformal vector field assuming

the vaue vp at p.

Proposition 3.5. Let M be an immersed hypersurface in N with second fundamental

form α. Let p ∈ M be a point where the Gauss-Kronecker curvature of M is different

from zero. Then for every n-dimensional subspace V of TpM there exists a vector vp ∈
TpM such that the tangent space at p of every shadow boundary S∂(M,Y ) generated by

vp is equal to V .

Proof. Let ξ be a local normal unit vector field of M around p and A its associated

shape operator. Since detAp ̸= 0, A : TpM → TpM is invertible. Thus we may take

vp ∈ TpM such that A(vp) spans V
⊥, the orthogonal complement of V in TpM .

Let Y be any closed conformal vector field which takes the value vp at p. By Propo-

sition 3.1 we know that the shadow boundary L := S∂(M,Y ) is an embedded hyper-

surface of M around p.

By Lemma 3.2, α(Yp, Xp) = 0 for every Xp ∈ TpL. Therefore,

0 = ⟨α(Yp, Xp), ξ⟩ = ⟨A(Yp), Xp⟩ = ⟨A(vp), Xp⟩.

Since A(vp) spans V
⊥, the above proves that TpL = V .
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Let us recall that a point p in a hypersurface M ⊂ N is an umbilic point of M if and

only if every tangent vector to M at p is a principal direction of the shape operator A

of M at p. As noted in the abstract, we may use shadow boundaries in order to detect

umbilic points in a hypersurface. The following results show how this can be done.

Definition 3.6. A submanifold L of a hypersurface M ⊂ N is invariant under the

shape operator A of M if for every point p ∈ L, we have that A(TpL) ⊂ TpL.

Proposition 3.7. Let M be an immersed hypersurface in N . Let p ∈ M be a point

where the Gauss-Kronecker curvature is different from zero, and such that for every

vp ∈ TpM \ {0} there exists a shadow boundary S∂(M,Y ) generated by vp which is

invariant under the shape operator of M . Then p is an umbilic point of M .

Proof. Since the Gauss-Kronecker curvature of M does not vanish at p, the shape

operator A of M relative to a unit normal vector field ξ is invertible.

Fix a vector vp and let Y be as in the hypotheses. We will show that L = S∂(M,Y )

is orthogonal to Y at p. By Lemma 3.2, α(Yp, Xp) = 0 for every Xp ∈ TpL. Since A

is invertible and L is invariant under A, then A(TpL) = TpL. So, for every Zp ∈ TpL

there exists Xp ∈ TpL such that Zp = A(Xp). Therefore,

⟨Zp, Yp⟩ = ⟨A(Xp), Yp⟩ = ⟨α(Yp, Xp), ξ⟩ = 0.

Since vp was arbitrarily chosen, by Corollary 4.2 we conclude that p is an umbilic point

of M .

We have the following straightforward application of Proposition 3.7

Corollary 3.8. Given a surface M with nowhere zero Gauss-Kronecker curvature in a

three dimensional Riemannian manifold N , if for every p ∈ M and every vp ∈ TpM \{0}
there exists a shadow boundary S∂(M,Y ) generated by vp which is a line of curvature

of M , then M is totally umbilical in N .

4 Totally umbilical hypersurfaces in space forms

In this section we will apply our previous results in order to characterize the totally

umbilical hypersurfaces of the space forms Qn+1
c in terms of shadow boundaries.

Proposition 4.1. Let M be an immersed hypersurface in Qn+1
c . Let p ∈ M be any

point where the Gauss-Kronecker curvature of M is different from zero. A vector vp ∈
TpM \ {0} determines a principal direction of M if and only if there exists a shadow

boundary S∂(M,Y ), generated by vp, which is orthogonal to Y at p.
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Proof. Let us assume first that the shadow boundary S∂(M,Y ) generated by vp is

orthogonal to the closed conformal vector field Y at p. By Lemma 3.2, ⟨A(Yp), Xp⟩ =

⟨α(Yp, Xp), ξ⟩ = 0 for every Xp ∈ TpL. This says that A(Yp) is orthogonal to TpL. But

Yp is also orthogonal to TpL; therefore, A(Yp) is a multiple of Yp; since Yp = vp, this

means that vp determines a principal direction.

Conversely, let us assume that a vector vp determines a principal direction, so that

A(vp) = λvp. Note that since detAp ̸= 0, we have λ ̸= 0.

By Proposition 3.4, we may construct a closed conformal vector field Y such that

Yp = vp. By Lemma 3.2, we have that

λ⟨Yp, Xp⟩ = ⟨λYp, Xp⟩ = ⟨A(Yp), Xp⟩ = ⟨α(Yp, Xp), ξ⟩ = 0,

where Xp ∈ TpL. This proves that Yp = vp is orthogonal to the shadow boundary L

generated by vp.

The following result is an immediate consequence of Proposition 4.1.

Corollary 4.2. Let M be an immersed hypersurface in Qn+1
c . Let p ∈ M be any point

where the Gauss-Kronecker curvature of M is non zero. The point p is an umbilic point

of M if and only if for every vp ∈ TpM \{0}, there exists a shadow boundary S∂(M,Y ),

generated by vp, which is orthogonal to Y at p.

In order to prove our main results, we apply Proposition 2 and Remark 2 in [5],

which describe the structure of a complete manifold possessing a globally defined closed

conformal vector field. For completeness we rephrase here the facts relevant in our

setting.

Proposition 4.3 (Montiel). Let Y be a non-trivial closed conformal vector field defined

globally in the space form Qn+1
c . Then Y has at most two zeroes and

1. If Y has exactly one zero q, then Qn+1
c \ {q} is isometric to a warped product

R+ ×f Sn. If (r, p) ∈ R+ × Sn represent the polar coordinates of a point, then

Y(r,p) = f(r)p. The spheres {r} × Sn give a foliation of Qn+1
c \ {q}.

2. If Y has two zeroes q,−q, then Qn+1
c \ {q,−q} is isometric to a warped product

(0, π)×f Sn. The spheres {r} × Sn give a foliation of Qn+1
c \ {q − q}.

3. If Y has no zeroes, then Qn+1
c is isometric to a warped product R×fQn

d , where Qn
d

is a space form of curvature d. In this case, Y = f(r)∂r and the slices {r} ×Qn
d

foliate Qn+1
c .

We say that a regular curve L in a surface M ⊂ Q3
c contains a principal direction

of M at p ∈ L if the tangent line of L at p is generated by a principal direction of the

shape operator of M in Q3
c .
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Proposition 4.4. Let M be an immersed surface in Q3
c. Then every compact regular

shadow boundary L := S∂(M,Y ) of M relative to a globally defined closed conformal

vector field Y contains at least two principal directions of M at two different points

of L. In particular, if M is a compact surface with nowhere zero Gaussian curvature

then every shadow boundary of M contains at least two principal directions of M at two

different points.

Proof. By Proposition 4.1, we have to prove the existence of two points in L where L

is orthogonal to Y .

Suppose the first case in Proposition 4.3 holds; that is, suppose that Y has exactly

one zero q and that Qn+1
c \{q} = R+×f Sn. Since M is compact and L is a closed subset

of M , there are real numbers r1, r2 such that L is contained in a slab [r1, r2] × Sn. If

[r1, r2] is the smallest interval with this property, then each sphere {ri}× Sn is tangent

to the shadow boundary at their contact points; since the spheres are orthogonal to Y ,

the same happens to the shadow boundary; that is, the shadow boundary is orthogonal

to Y at its contact points with the mentioned spheres.

A completely similar argument holds for the cases where Y has two or no zeroes.

Finally, we will prove our main result.

Theorem 4.5. Let M be a compact hypersurface with nowhere zero Gauss-Kronecker

curvature in Qn+1
c . If for every p ∈ M and every direction Yp ∈ TpM \{0} there exists a

shadow boundary S∂(M,Y ) generated by Yp which makes a constant angle with respect

to the globally defined closed conformal vector field Y , then M is totally umbilical.

Proof. By Proposition 3.1, every shadow boundary is a hypersurface of M . Moreover,

since M is compact and each shadow boundary L = S∂(M,Y ) is closed in M , we have

that each L is compact. The idea of the proof is to use compactness to prove that

the constant angle between S∂(M,Y ) and Y should be π/2, i.e., that every shadow

boundary S∂(M,Y ) is orthogonal to Y .

The argument here is analogous to that of Proposition 4.4. Let p be any point of M ,

Yp ∈ TpM be any non zero tangent vector and Y the corresponding closed conformal

vector field.

By Proposition 4.3, the region where Y has no zeroes has a decomposition by slices

{r}×Qn
d , each one orthogonal to Y . By compactness, the shadow boundary L is tangent

to one of these slices at, say, a point p. Therefore, the angle between Yp and TpS∂(M,Y )

is π/2. Now we apply Corollary 4.2 to conclude that the point p is an umbilic point.
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e-mail: gruiz@matem.unam.mx


	Introduction
	Preliminaries
	Closed conformal vector fields and shadow boundaries
	Totally umbilical hypersurfaces in space forms

