

The r-mean curvature equation of a graph and scalar flat hypersurfaces revisited

Sebastião C. de Almeida

Dedicated to Professor Gervásio Colares on his 80th birthday

Abstract

Among the results we discuss in this work we will see how to transform non-singular analytic curves Σ in \mathbb{C}^2 into strictly convex scalar flat 3-dimensional hypersurfaces.

1 Introduction.

A number of authors have studied the existence of hypersurfaces with prescribed curvatures in \mathbb{R}^{n+1} . As we know, such a hypersurface is locally given as a graph Γ_f of a real-valued function f defined over a domain $\Omega \subset \mathbb{R}^n$. In the induced metric the first and the second fundamental form of Γ_f are given respectively by

$$\begin{cases} g_{ij} = \delta_{ij} + f_i f_j \\ h_{ij} = -f_{ij}/W \end{cases}$$

where $W = \sqrt{1 + |\nabla f|^2}$, $\nabla f = (f_1, \dots, f_n)$ and $(f_{ij}) \equiv f_{**}$ is the Hessian of f. The r-th mean curvature H_r of Γ_f vanishes if and only if

²⁰⁰⁰ AMS Subject Classification: 53C42, 53C56

Key Words and Phrases: scalar flat, focal locus in \mathbb{C}^2 , analytic curves.

$$\sum_{i_1 < \dots < i_r} D_{i_1 \cdots i_n}(f) = 0, \tag{1.1}$$

where $D_{i_1\cdots i_n}(f)$ is the determinant of the $n \times n$ matrix obtained from $G = (g_{ij})$ by replacing its i_1, \cdots, i_r columns by the corresponding columns of f_{**} . In particular, Γ_f is scalar flat if and only if

$$\sum_{i < j} D_{ij}(f) = 0.$$

According to [8], the partial differential equation $H_r(f) = 0$ is elliptic precisely at the points where rank $(f_{**}) \ge r$. Obviously, the ellipticity of $H_r(f) = 0$ holds if Γ_f is a strictly convex hypersurface. In this particular case

$$H_r(f) = 0, \quad \det f_{**} \neq 0.$$
 (1.2)

Even though the elipticity of equation $H_2(f) = 0$ fails for flat solutions, M. L. Leite [13] was able to proof the following interesting result.

Theorem 1.1. If the graph of $f : \mathbb{R}^3 \to \mathbb{R}$ is flat at infinity and $H_2 \equiv 0$, then Γ_f is globally flat.

Remark 1. In [13], M. L. Leite extended the above result to the case $H_2 \ge 0$, proving the veracity of Geroch conjecture [5] in this special case.

We also note that a solution of equation (1.2) on a bounded domain with smooth boundary is completely determined by the values of f and ∇f on the boundary. This uniqueness result is a consequence of the following more general Fact (proved in section 5).

Theorem 1.2. Let $M_1, M_2 \subset \mathbb{R}^{n+1}$ be strictly convex compact hypersurfaces with the same smooth boundary X. If

- a) for some r, the r-th mean curvatures of M_1 and M_2 vanishes.
- b) X have the same induced orientations and the same normal vectors.

Then $M_1 = M_2$.

The main part of this paper is dedicated to the construction of non trivial examples of strictly convex scalar flat hypersurfaces of \mathbb{R}^4 . This was discussed in a previous paper [1] and is accomplished by looking at the structure of the focal locus of a complex analytic curve in complex euclidian 2-space \mathbb{C}^2 . This construction lead us to the following unexpected result (see proof in section 4).

Theorem 1.3. The focal locus of a non-singular analytic curve Σ in \mathbb{C}^2 is the union

$$F(\Sigma) = F_{\Sigma} \cup \Sigma^*$$

of a singular set Σ^* and a strictly convex scalar flat hypersurface F_{Σ} of \mathbb{R}^4 .

Remark 2. We may as well think of Theorem 1.3 as a transform, i.e., from a complex analytic curve we construct its focal locus that in turn produce a solution of the equation

$$\sum_{i < j} D_{ij}(f) = 0.$$

2 The mean curvature equations of a graph

This section is concerned with real-valued functions $f : \Omega \to \mathbb{R}$ defined over a domain $\Omega \subset \mathbb{R}^n$. In the induced metric the first and the second fundamental form of Γ_f are given respectively by

$$\begin{cases} g_{ij} = \delta_{ij} + f_i f_j \\ h_{ij} = -f_{ij}/W \end{cases}$$

where $W = \sqrt{1 + |\nabla f|^2}$, $\nabla f = (f_1, \dots, f_n)$ and $(f_{ij}) \equiv f_{**}$ is the Hessian of f. A straightforward computation shows that det $G = W^2$.

Let $D_{i_1\cdots i_n}(f)$ be the determinant of the $n \times n$ matrix obtained from $G = (g_{ij})$ by replacing its i_1, \cdots, i_r columns by the corresponding columns of f_{**} . In this section we always assume that f is a solution of the partial differential equation

$$\epsilon_r(f) =: \sum_{i_1 < \dots < i_r} D_{i_1 \dots i_n}(f) = 0, \quad \det f_{**} \neq 0.$$
(2.1)

Proposition 2.1. The function f is a solution of the equation (6.1) if and only if Γ_f is a strictly convex hypersurface with $H_r \equiv 0$.

Proof. The proof is a consequence of the following lemma.

Lemma 1. Let $f : \Omega \to \mathbb{R}$ be a real function defined over a domain $\Omega \subset \mathbb{R}^n$. Then

$$(-W)^{2+r}\binom{n}{r}H_r = \epsilon_r(f).$$
 (2.2)

Proof. Let k_1, k_2, \dots, k_n be the principal curvatures of Γ_f . They are the roots of the polynomial equation $p(\lambda) = 0$, where

$$\det G p(\lambda) = \det \left(\lambda G + f_{**}/W \right)$$
$$= \sum_{\sigma} sgn(\sigma) \prod_{i=1}^{n} \left(\lambda g_{i\sigma(i)} - h_{i\sigma(i)} \right)$$
$$= \sum_{\sigma} sgn(\sigma) g_{1\sigma(1)} \cdots g_{n\sigma(n)} \prod_{i=1}^{n} \left(\lambda - \frac{h_{i\sigma(i)}}{g_{i\sigma(i)}} \right)$$
$$= \sum_{r=0}^{n} (-1/W)^{r} {n \choose r} \epsilon_{r}(f) \lambda^{n-r}.$$

In the above identities σ is a permutation of $\{1, \dots, n\}$ while $sgn(\sigma)$ denotes the sign of the permutation σ . Since

$$p(\lambda) = \sum_{r=0}^{n} (-1)^r \binom{n}{r} H_r \lambda^{n-r},$$

the result follows by comparing the coefficients of $p(\lambda)$ in the two expressions.

Corollary 2.2. Let $A_{ij}(f)$ be the *i*, *j* cofactor of f_{**} . Then Γ_f is a 3-dimensional scalar flat hypersurface of \mathbb{R}^4 *if and only if*

$$\epsilon_2(f) = \sum_{i < j} g_{ij} A_{ij}(f) = 0$$

As we know a 3-dimensional hypersurface $M \subset \mathbb{R}^4$ is scalar flat if and only $H_2 = 0$. In this particular case, if M is a graph of a function f, then f is a solution of the partial differential equation

$$\epsilon_2(f) = A(f) + 2B(f) = 0,$$

where

$$\begin{cases} A(f) = g_{11} \left(f_{22} f_{33} - f_{23}^2 \right) + g_{22} \left(f_{11} f_{33} - f_{13}^2 \right) + g_{33} \left(f_{11} f_{22} - f_{12}^2 \right) \\ B(f) = g_{12} \left(f_{13} f_{23} - f_{12} f_{33} \right) + g_{13} \left(f_{12} f_{32} - f_{13} f_{22} \right) + g_{23} \left(f_{21} f_{31} - f_{23} f_{11} \right). \end{cases}$$

This lengthy but highly symmetric equation was studied by M. L. Leite [13] who among other things proved the so called Geroch's Conjecture for a smooth graph in \mathbb{R}^4 . Explicitly, she proved the following result.

Theorem 2.3. If the graph of $f : \mathbb{R}^3 \to \mathbb{R}$ is flat at infinity and $\epsilon_2(f) \ge 0$, then Γ_f is globally flat.

3 The focal locus construction

In this section we will describe a method for constructing a special class of scalar flat hypersurfaces in the Euclidean space \mathbb{R}^4 .

3.1 Basic definitions

Let $\Sigma \subset \mathbb{C}^2$ be a non-singular holomorphic curve. We will denote by \langle,\rangle the standard inner product on \mathbb{C}^2 and by $J: \mathbb{C}^2 \to \mathbb{C}^2$ the multiplication by $\sqrt{-1}$. If $z \in \mathbb{C}^2$, we set

$$|z| = \langle z, z \rangle^{1/2}.$$

Let ∇ be the Riemannian connection on \mathbb{C}^2 . The second fundamental form of Σ is defined by

$$B_{V,W} \equiv (\nabla_V W)^{N,} \tag{3.1}$$

for $V, W \in T_X \Sigma \equiv$ tangent space of Σ at X. Here $()^N$ denotes projection onto $N_X \Sigma \equiv$ normal space of Σ at X. Given a normal vector $\xi_X \in N_X \Sigma$ we define $A^{\xi} : T_X \Sigma \to T_X \Sigma$ by

$$A^{\xi}(V) = -(\nabla_V \xi)^T, \qquad (3.2)$$

where ξ is an arbitrary vector field in \mathbb{C}^2 with the property that ξ is normal to Σ in a neighborhood of X and $()^T$ denotes projection onto $T_X \Sigma$.

Remark 3. It is a well known fact (cf. [11]) that the $N(\Sigma)$ -valued bilinear form B is symmetric and also complex bilinear, i.e., $B_{JV,W} = JB_{V,JW} = B_{V,JW}$. Note that A and B are related by

$$< B_{V,W}, \xi > = < A_{\xi}(V), W > .$$
 (3.3)

In particular A^{ξ} is self-adjoint. The eigenvalues $\pm \lambda(X, \xi)$ of A^{ξ} are independent of the choice of ξ at X, and if $B \neq 0$, they vanish only at isolated points. In this paper we will avoid those points. Given a normal vector field ξ of unit length at X on Σ we associate to ξ the eigendirection of A^{ξ} with positive eigenvalue λ . There are two eigenvectors of unit length on this "eingen-line", v_{ξ} and $-v_{\xi}$. We denote by ξ_t the unit normal vector $\xi cost + (J\xi)sint$. It follows from the above remark that the eigenvalues of A^{ξ_t} do not depend on t. They are given by λ and $-\lambda$ and the eigenline corresponding to $-\lambda$ is determined by Jv_{ξ_t} . An easy computation shows that

$$\pm v_{\xi_t} = v_{\xi} \cos(t/2) + J v_{\xi} \sin(t/2).$$

From now on we will choose the sign of v_{ξ} so that

$$v_{\xi_t} = e^{it/2} v_{\xi}, \quad i = \sqrt{-1}.$$
 (3.4)

Definition 1. The focal locus of Σ is the set

$$F_{\Sigma} = \{ X + \rho(X)\xi : X \in \Sigma, \xi \in N_1\Sigma \},\$$

where $N_1\Sigma$ is the unit normal sphere bundle of Σ and $\rho(X) \equiv 1/\lambda(X,\xi)$.

In order to determine the structure of the focal locus we will consider the mapping $l: \Sigma \times \mathbb{S}^1 \to F_{\Sigma} \subset \mathbb{C}^2$ given by

$$l(X,t) = X + \rho(X)e^{it}\nu_X, \qquad (3.5)$$

where ν is a unit normal vector field on Σ . One can prove easily that at a point $(X, t) \in \Sigma \times \mathbb{S}^1$ we have

$$l_* v_{\nu} \wedge l_* J v_{\nu} \wedge l_* \partial / \partial t = 2\rho(v_{\nu_t} \cdot \rho) \nu_t \wedge J v_{\nu_t} \wedge J \nu_t.$$
(3.6)

Lemma 2. The mapping $l : \Sigma \times \mathbb{S}^1 \to \mathbb{C}^2$ given by (3.5) is an immersion at $(X, t) \in \Sigma \times S^1$ if and only if

$$\langle \nabla \rho, \upsilon_{\nu_t} \rangle \neq 0. \tag{3.7}$$

Proof. Lemma 2 follows from equation (3.6).

From now on we will assume that Σ contains no critical points of ρ . In particular $|\nabla \rho| \neq 0$ and we can define the vector fields v_1, v_2 on Σ by

$$Jv_1 = v_2 = \nabla \rho / |\nabla \rho|. \tag{3.8}$$

Remark 4. The vector field ν in (3.5) may be chosen in such a way that $v_{\nu} = v_1$. This vector field is obviously unique. With this notation we have the following result.

Lemma 3. The focal locus of Σ is the union $F_{\Sigma} \cup \Sigma^*$ of a 3-dimensional manifold F_{Σ} and a singular set Σ^* . Moreover

$$F_{\Sigma} = \{X + \rho(X)e^{it}\nu_X : X \in \Sigma, \ 0 < t < 2\pi\}$$
$$\Sigma^* = \{X + \rho(X)\nu_X : X \in \Sigma\},\$$

where ν is the unique unit normal vector field on Σ such that $v_{\nu} = v_1$.

Proof. A point $X^* \in F_{\Sigma}$ may be written as $X^* = l(X,t)$ for some $X \in \Sigma$ and $t \in [0, 2\pi)$. We observe now that $\langle \nabla \rho, v_{\nu_t} \rangle = |\nabla \rho| \sin(t/2) > 0$. The result follows by applying Lemma 2.

3.2 The second fundamental form of F_{Σ}

In this section we analyse the geometric structure on the focal locus of a nonsingular analytic curve Σ in \mathbb{C}^2 . Over F_{Σ} we define a field of orthonormal frames X^*e_1, e_2, e_3, e_4 such that for $X^* = X + \rho(X)\xi \in F_{\Sigma}$ we have

$$e_1 = Jv_{\xi}, \quad e_2 = \xi, \quad e_3 = J\xi, \quad e_4 = v_{\xi}.$$
 (3.9)

The vector field e_4 is obviously normal to F_{Σ} . We let ω_A , $1 \le A \le 4$, be the dual coframe of e_A . To e_A we also associate the connection 1-forms ω_{AB} given by

$$de_A = \sum_B \omega_{AB} e_B. \tag{3.10}$$

The Cartan structure equations are

$$\begin{cases} d\omega_A = \sum_B \omega_{AB} \wedge \omega_B \\ d\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB}, \quad \omega_{AB} + \omega_{BA} = 0. \end{cases}$$
(3.11)

Let $T(F_{\Sigma})$ and $T^*(F_{\Sigma})$ be respectively the tangent and cotangent bundle of F_{Σ} . The second fundamental form II of F_{Σ} is a section on $T^*(F_{\Sigma}) \otimes T(F_{\Sigma})$ whose components with respect to the given orthonormal frame e_A are

$$II = (h_{ij}), \quad \omega_{i4} = \sum_{j=1}^{3} h_{ij} \omega_j.$$
 (3.12)

Lemma 4. At the point $X^* = X + \rho(X)\xi_X \in F_{\Sigma}$ we have

$$(v_{\xi}.\rho^{2})II = \begin{bmatrix} -|\nabla\rho|^{2}/2 & (Jv_{\xi}).\rho & -v_{\xi}.\rho \\ (Jv_{\xi}).\rho & -2 & 0 \\ -v_{\xi}.\rho & 0 & 0 \end{bmatrix}.$$
 (3.13)

Proof. We are going to use the moving frame method. For this we consider the distinguished orthonormal frame field v_A on Σ obtained by making

$$v_2 = Jv_1 = \nabla \rho / |\nabla \rho|, \ v_3 = \nu, \ v_4 = J\nu$$
 (3.14)

where ν is the unique normal vector field such that $v_{\nu} = v_1$. We then associate to v_A its dual coframe $\theta_A, 1 \le A \le 4$ and denote by θ_{AB} the 1-forms on Σ given by

$$dv_A = \sum_{B=1}^4 \theta_{AB} v_B. \tag{3.15}$$

We recall that the focal locus is given by the mapping $l:\Sigma\times\mathbb{S}^1\to\mathbb{C}^2$ where

$$l(X,t) = X + \rho e^{it} v_3. (3.16)$$

Taking the differential of (3.16) gives

$$dl = dX + d\rho e^{it} v_3 + \rho dt e^{it} v_4 + \rho e^{it} dv_3.$$

By construction

$$\begin{cases} \rho \theta_{31} = \rho \theta_{42} = -\theta_1 \\ \rho \theta_{32} = \rho \theta_{14} = \theta_2. \end{cases}$$

$$(3.17)$$

Therefore

$$dl = (1 - e^{it})\theta_1 v_1 + (1 + e^{it})\theta_2 v_2 + d\rho e^{it} v_3 + \rho e^{it} [dt + \theta_{34}] v_4.$$

Then

$$dl = 2\left[-\sin\left(\frac{t}{2}\right)\theta_1 + \cos\left(\frac{t}{2}\right)\theta_2\right]e_1 + d\rho e_2 + \rho[dt + \theta_{34}]e_3.$$
(3.18)

It follows that

$$\begin{cases} l^*\omega_1 = 2\left[-\sin\left(\frac{t}{2}\right)\theta_1 + \cos\left(\frac{t}{2}\right)\theta_2\right] \\ l^*\omega_2 = d\rho = |\nabla\rho|\theta_2 \\ l^*\omega_3 = \rho\left[dt + \theta_{34}\right]. \end{cases}$$
(3.19)

In the following we are going to compute $l^*\omega_{j4}$, j = 1, 2, 3. Note that

$$l^*\omega_{14} = \langle dJv_{\nu_t}, v_{\nu_t} \rangle = \langle de^{it/2}Jv_{\nu}, e^{it/2}v_{\nu} \rangle$$
$$= \langle e^{it/2} [dJv_{\nu} - v_{\nu} dt/2], e^{it/2}v_{\nu} \rangle$$
$$= \theta_{21} - dt/2.$$
(3.20)

$$l^*\omega_{24} = \langle d\nu_t, v_{\nu_t} \rangle = \langle de^{it}\nu, e^{it/2}v_{\nu} \rangle$$

$$= \langle e^{it} [d\nu + J\nu dt], e^{it/2}v_{\nu} \rangle$$

$$= \langle e^{it/2}d\nu, v_{\nu} \rangle$$

$$= \cos(t/2) \theta_{31} + \sin(t/2) \theta_{41}$$

$$= -\rho^{-1} [\cos(t/2) \theta_1 + \sin(t/2) \theta_2].$$

(3.21)

Similarly we obtain

$$l^*\omega_{34} = -\rho^{-1} [-\sin(t/2) \ \theta_1 + \cos(t/2) \ \theta_2].$$
(3.22)

It follows from (3.19), (3.21) and (3.22) that

$$\begin{cases} 2\rho\omega_{34} = -\omega_1 \\ 2\rho\omega_{24} = \cot(t/2) \ \omega_1 - 2 \left[|\nabla\rho| \sin(t/2) \right]^{-1} \omega_2. \end{cases}$$
(3.23)

To express ω_{14} in terms of the coframe field $\omega_1, \omega_2, \omega_3$ we first observe that

$$0 = l^* d\omega_4 = \sum_j l^* \omega_j \wedge l^* \omega_{j4} = \Theta \wedge [\sin(t/2)\theta_1 - \cos(t/2)\theta_2],$$

where $\Theta = \theta_{34} - 2\theta_{12} - |\nabla(\ln \rho)| \theta_1$. Since this is true for all $0 < t < 2\pi$, it follows that

$$2\theta_{12} - \theta_{34} + \rho^{-1} |\nabla \rho| \theta_1 = 0.$$
(3.24)

This allow us to rewrite equation (3.20) as

$$2\rho l^* \omega_{14} = |\nabla \rho| \theta_1 - \rho(\theta_{34} + dt).$$
(3.25)

Using equations (3.19) and (3.25) we obtain

$$2\rho\sin(t/2)\ \omega_{14} = -2^{-1}|\nabla\rho|\omega_1 + \cos(t/2)\ \omega_2 - \sin(t/2)\ \omega_3. \tag{3.26}$$

At the given point $X^* = X + \rho(X)\xi_X \in F$ we may write the unit normal vector ξ_X as $\xi_X = e^{it}\nu$ for some $t \in (0, 2\pi)$. Since $v_{\xi} = e^{it/2}v_{\nu}$, it follows that

$$\begin{cases} \langle \nabla \rho, \upsilon_{\xi} \rangle = \upsilon_{\xi}.\rho = |\nabla \rho| \sin(t/2) \\ \langle \nabla \rho, J\upsilon_{\xi} \rangle = J\upsilon_{\xi}.\rho = |\nabla \rho| \cos(t/2). \end{cases}$$

The second fundamental form II can be obtained from the following expressions.

$$\begin{cases} 2\rho(\upsilon_{\xi}.\rho)\ \omega_{14} = -2^{-1}|\nabla\rho|^{2}\omega_{1} + (J\upsilon_{\xi}.\rho)\omega_{2} - (\upsilon_{\xi}.\rho)\omega_{3}\\ 2\rho(\upsilon_{\xi}.\rho)\ \omega_{24} = (J\upsilon_{\xi}.\rho)\omega_{1} - 2\omega_{2}\\ 2\rho\ \omega_{34} = -\omega_{1}. \end{cases}$$

4 Proof of Theorem 1.3

Proof. In the proof, we will use the notation introduced in the previous sections. For this, choose we $0 < t < 2\pi$ and let

$$X^* = X + \rho(X)e^{it}\nu$$

be a point in $F_{\Sigma} = F(\Sigma) - \Sigma^*$. We know from Lemma 4 that at X^* , the second fundamental form II with respect to the orthonormal frame e_A is given by

$$(v_{\xi}.\rho^2)II = \begin{bmatrix} -|\nabla\rho|^2/2 & (Jv_{\xi}).\rho & -v_{\xi}.\rho \\ & -2 & 0 \\ & & 0 \end{bmatrix},$$

where $\xi = e^{it}\nu$. The Gauss-Kronecker K of F_{Σ} is given by the determinant of the symmetric matrix II. Then

$$K = \left(4\rho^3 \upsilon_{\xi}.\rho\right)^{-1}$$

Since $v_{\xi} \cdot \rho = |\nabla \rho| \sin(t/2) > 0$, it follows that F_{Σ} is a strictly convex hypersurface. To compute the scalar curvature of F_{Σ} we first notice that

$$\begin{cases} (\upsilon_{\xi}.\rho^{2}) \operatorname{trace} II = -(4 + |\nabla\rho|^{2})/2\\ (\upsilon_{\xi}.\rho^{2})^{2} \operatorname{trace} II^{2} = (4 + |\nabla\rho|^{2})^{2}/4 \end{cases}$$

To complete the proof of Theorem 1.3 we observe that the scalar curvature κ of F is given by

$$\kappa/6 = (\text{trace}II)^2 - \text{trace}II^2 = 0.$$

5 The Alexandroff-Fenchel-Jessen Theorem. -Proof of Theorem 1.2

Let $k_1, k_2, ..., k_n$ be the principal curvatures of a strictly convex n-dimensional hypersurface M of \mathbb{R}^{n+1} . As usual let $P_r(M)$ denote the r^h elementary symmetric function of the radii of principal curvatures $1/k_1, ..., 1/k_n$. Note that

$$\binom{n}{r} P_r(M) = \sum_{i_1 < \dots < i_r} \frac{1}{k_{i_1}} \frac{1}{k_{i_2}} \cdots \frac{1}{k_{i_r}}.$$

For each $1 \leq r \leq n$, we let H_r be r-th mean curvatures of M. We set $H_0 = 1$ and note that for each $0 \leq r < n$,

$$P_{n-r}(M) = \frac{H_r(M)}{H_n(M)}$$
(5.1)

Now we recall the following uniqueness theorem of Alexandroff-Fenchel-Jessen.

Theorem 5.1. Two closed strictly convex hypersurfaces of \mathbb{R}^{n+1} differ by a translation $T : \mathbb{R}^n \to \mathbb{R}^n$ if P_s , $1 \le s \le n$ takes the same value at points with the same normal vector.

Proof. See Chern, [3].

In [3], S. S. Chern emphasized that Theorem 5.1 can be extended to hypersurfaces with boundaries. For this, it is necessary that the boundaries differ by a translation and that corresponding points have the same normal vectors. We will refer to the next result as the extended Alexandroff-Fenchel-Jessen Theorem.

Theorem 5.2. For each i = 1, 2, let $M_i \subset \mathbb{R}^{n+1}$ be a strictly convex compact hypersurface with boundary ∂M_i . If

- a) $P_s(M_1) = P_s(M_2)$, for some $1 \le s \le n$.
- b) $T(\partial M_1) = \partial M_2$ for some translation $T : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$.
- c) the boundaries have the same orientations and the same normal vectors at corresponding points.

Then $T(M_1) = M_2$.

We note that Theorem 1.2 is a consequence of the slightly more general result.

Theorem 5.3. For each i = 1, 2, let $M_i \subset \mathbb{R}^{n+1}$ be a strictly convex compact hypersurface with boundary ∂M_i . If

a)
$$H_r(M_1)/H_n(M_1) = H_r(M_2)/H_n(M_2)$$
, for some $0 \le r < n$

- b) $T(\partial M_1) = \partial M_2$ for some translation $T : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$.
- c) the boundaries have the same orientations and the same normal vectors at corresponding points.

Then $T(M_1) = M_2$.

Proof. We know from equation 5.1 that $P_{n-r}(M_1) = P_{n-r}(M_2)$. Since $1 \le n-r \le n$, the results follows from the extended Alexandroff-Fenchel-Jessen Theorem.

6 Final comments

In general a solution of equation

$$\epsilon_r(f) =: \sum_{i_1 < \dots < i_r} D_{i_1 \dots i_n}(f) = 0, \quad \det f_{**} \neq 0.$$
(6.1)

on a bounded domain with smooth boundary is completely determined by the values of f and ∇f on the boundary. This is the content of the following theorem.

Theorem 6.1. Let $f, g: \Omega \to \mathbb{R}$ be solutions of equation (6.1) in a bounded domain $\Omega \subset \mathbb{R}^{n+1}$ with smooth boundary $\partial \Omega$. Suppose in addition that in the boundary $|f - g| + |\nabla (f - g)| = 0$. Then $f \equiv g$.

Proof. Let ν_f and ν_g be the vector fields given by

$$\begin{cases} W\nu_f = (\nabla f, -1) \\ W\nu_g = (\nabla g, -1) \end{cases}$$
(6.2)

They are the unit normals to Γ_f and Γ_g respectively and coincide on their common boundary. Obviously Γ_f and Γ_g induce the same orientation on their common boundary. By assumption Γ_f and Γ_g are strictly convex hypersurfaces with $H_r(\Gamma_f) = H_r(\Gamma_g) = 0$. Using Theorem 1.2 we see that $\Gamma_f = \Gamma_g$ and f = g. \Box

In this paper we exhibit a special family \Im of 3-dimensional hypersurfaces of \mathbb{R}^4 with $H_2 \equiv 0$. The family

$$\mathfrak{T} = (F_{\Sigma})_{\Sigma \in \Lambda}$$

was indexed by the set Λ of non-singular analytic curves in \mathbb{C}^2 . From each $F_{\Sigma} \in \mathfrak{F}$ we obtain a chain of scalar flat hypersurfaces

$$M_n(\Sigma) =: F_{\Sigma} \times \mathbb{R}^n$$

of \mathbb{R}^{n+4} . With this notation we have the following result.

Theorem 6.2. Let $M \in \mathfrak{S}_n = \{M_n(\Sigma) : F_{\Sigma} \in \mathfrak{S}\}$. Then $H_2(M) = 0$ and M is a scalar flat hypersurfaces of \mathbb{R}^{n+4} .

Question 1. For each $k = 1, \dots, n$ let $X_k : \Sigma_k \to \mathbb{C}^2$ be a non-singular analytic curve with focal locus F_k . What is the geometry of the product $F = F_1 \times \cdots \times F_n$ as a codimension-*n* submanifold of \mathbb{C}^{2n}

Question 2. What can we say about the structure of the focal locus of a complex curve $X : \Sigma \to \mathbb{C}^n$.

These and other questions will be addressed in another occasion.

References

- S. C. de Almeida, On the structure of the focal locus of a complex curve, Matemática Contemporânea, 4, (1993) 5-20.
- [2] L. Cafarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. 155, (1985) 261-301.
- [3] S.S. Chern, Integral Formulas for Hypersurfaces in Euclidean Space and Their Applications to Uniqueness Theorems, Journal of Mathematics and Mechanics, 8 (1959), 269-277.
- [4] P. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc., 277 (1983), 685-709.
- [5] R. Geroch, General Relativity. Proceedings of Symposia in Pure Mathematics, Diff. Geometry, AMS, XXVII, (1975).
- [6] B. Guan and P.Guan, Convex hypersurfaces of prescribed curvature, Ann Math, 156 (2002), 655-673.
- [7] P.Guan, Xi-Nan Ma, N, Trudinger and X. Zhu, A Form of Alexandrov-Fenchel Inequality, Pure and Applied Mathematics Quartely, 6 (2010), 999-1012.
- [8] J. Hounie and M. L. S. Leite, The maximum principle for hypersurfaces with $H_r = 0$. Journal of Differential Geometry, **41**, (1995), 247-258.
- [9] J. Hounie and M. L. S. Leite, Uniqueness and nonexistence theorems for hypersurfaces with $H_r = 0$. Annals of Global Analysis and Geometry, **17**, (1999) 397-407.
- [10] J. Hounie and M. L. S. Leite, Two-ended hypersurfaces with zero scalar curvature. Indiana University Mathematics Journal. 48, (1999), 867-892.
- [11] H. B. Lawson, Jr., Lectures on Minimal Submanifolds, IMPA, Rio de Janeiro, (1973). Reprinted by Publish or Perish, (1980).
- [12] W. Y. Hsiang, On rotational W-hypersurfacesbin spaces of constant curvature and the generalizaed laws of sine and cosine, Bull. Inst. Math. Acad. Sinica 11, (1983), 349-373.

- [13] M. L. S. Leite, Geroch's conjecture for a hypersurface of ℝ⁴. Bulletin of the Brazilian Mathematical Society, 8, (1977), 121-126.
- [14] M. L. S. Leite, Rotational hypersurfaces with constant scalar curvature. Manuscripta Mathematica, 67, (1990), 285-304.
- [15] M. L. S. Leite, An example of a triply periodic complete embedded scalarflat hypersurface of ℝ⁴. Anais da Academia Brasileira de Ciências, **63**, (1991), 383-385.
- [16] H. Mori, Rotational hypersurfaces in Sⁿ and Hⁿ with constant scalar curvature, Yokohama Mathematical Journal, **39**, (1992), 151-162.
- [17] O. Palmas, Complete rotation hypersurfaces with H_k constant in space forms, Bol. Soc. Bras. Mat., **30**, (1999), 139-161.
- [18] W. Sheng, N. Trudinger and X.J. Wang, Convex Hypersurfaces of Prescribed Weingarten Curvatures, Comunications in Analysis and Geometry, 12, (2004), 213-232.
- [19] N. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal., 111, (1990), 153-179.

CAEN, Universidade Federal do Ceará, Av. da Universidade, 2700 - 2º andar - Benfica, 60020-181 Fortaleza-CE, Brazil. e-mail: sebastc@caen.ufc.br