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Abstract

Among the results we discuss in this work we will see how to

transform non-singular analytic curves Σ in C2 into strictly convex

scalar flat 3-dimensional hypersurfaces.

1 Introduction.

A number of authors have studied the existence of hypersurfaces with pre-

scribed curvatures in Rn+1. As we know, such a hypersurface is locally given

as a graph Γf of a real-valued function f defined over a domain Ω ⊂ Rn. In

the induced metric the first and the second fundamental form of Γf are given

respectively by  gij = δij + fifj

hij = −fij/W

where W =
√
1 + |∇f |2, ∇f = (f1, · · · , fn) and (fij) ≡ f∗∗ is the Hessian of f .

The r−th mean curvature Hr of Γf vanishes if and only if
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∑
i1<···<ir

Di1···in(f) = 0, (1.1)

where Di1···in(f) is the determinant of the n×n matrix obtained from G = (gij)

by replacing its i1, · · · , ir columns by the corresponding columns of f∗∗. In

particular, Γf is scalar flat if and only if∑
i<j

Dij(f) = 0.

According to [8], the partial differential equation Hr(f) = 0 is elliptic precisely

at the points where rank(f∗∗) ≥ r. Obviously, the ellipticity of Hr(f) = 0 holds

if Γf is a strictly convex hypersurface. In this particular case

Hr(f) = 0, det f∗∗ ̸= 0. (1.2)

Even though the elipticity of equation H2(f) = 0 fails for flat solutions, M. L.

Leite [13] was able to proof the following interesting result.

Theorem 1.1. If the graph of f : R3 → R is flat at infinity and H2 ≡ 0, then

Γf is globally flat.

Remark 1. In [13], M. L. Leite extended the above result to the case H2 ≥ 0,

proving the veracity of Geroch conjecture [5] in this special case.

We also note that a solution of equation (1.2) on a bounded domain with

smooth boundary is completely determined by the values of f and ∇f on the

boundary. This uniqueness result is a consequence of the following more general

Fact (proved in section 5).

Theorem 1.2. Let M1,M2 ⊂ Rn+1 be strictly convex compact hypersurfaces

with the same smooth boundary X. If

a) for some r, the r-th mean curvatures of M1 and M2 vanishes.

b) X have the same induced orientations and the same normal vectors.

Then M1 = M2.
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The main part of this paper is dedicated to the construction of non trivial

examples of strictly convex scalar flat hypersurfaces of R4. This was discussed

in a previous paper [1] and is accomplished by looking at the structure of the

focal locus of a complex analytic curve in complex euclidian 2-space C2. This

construction lead us to the following unexpected result (see proof in section 4).

Theorem 1.3. The focal locus of a non-singular analytic curve Σ in C2 is the

union

F (Σ) = FΣ ∪ Σ∗

of a singular set Σ∗ and a strictly convex scalar flat hypersurface FΣ of R4.

Remark 2. We may as well think of Theorem 1.3 as a transform, i.e., from a

complex analytic curve we construct its focal locus that in turn produce a solution

of the equation ∑
i<j

Dij(f) = 0.

2 The mean curvature equations of a graph

This section is concerned with real-valued functions f : Ω → R defined over

a domain Ω ⊂ Rn. In the induced metric the first and the second fundamental

form of Γf are given respectively by gij = δij + fifj

hij = −fij/W

where W =
√
1 + |∇f |2, ∇f = (f1, · · · , fn) and (fij) ≡ f∗∗ is the Hessian of f .

A straightforward computation shows that detG = W 2.

Let Di1···in(f) be the determinant of the n×n matrix obtained from G = (gij)

by replacing its i1, · · · , ir columns by the corresponding columns of f∗∗. In this

section we always assume that f is a solution of the partial differential equation

ϵr(f) =:
∑

i1<···<ir

Di1···in(f) = 0, det f∗∗ ̸= 0. (2.1)

Proposition 2.1. The function f is a solution of the equation (6.1) if and only

if Γf is a strictly convex hypersurface with Hr ≡ 0.

Proof. The proof is a consequence of the following lemma.
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Lemma 1. Let f : Ω → R be a real function defined over a domain Ω ⊂ Rn.

Then

(−W )2+r(nr )Hr = ϵr(f). (2.2)

Proof. Let k1, k2, · · · , kn be the principal curvatures of Γf . They are the roots

of the polynomial equation p(λ) = 0, where

detG p(λ) = det ( λG+ f∗∗/W )

=
∑

σ sgn(σ)
∏n

i=1

(
λgiσ(i) − hiσ(i)

)
=

∑
σ sgn(σ) g1σ(1) · · · gnσ(n)

∏n
i=1

(
λ− hiσ(i)

giσ(i)

)
=

∑n
r=0 (−1/W )r (nr ) ϵr(f)λ

n−r.

In the above identities σ is a permutation of {1, · · · , n} while sgn(σ) denotes the

sign of the permutation σ. Since

p(λ) =

n∑
r=0

(−1)r (nr )Hrλ
n−r,

the result follows by comparing the coefficients of p(λ) in the two expressions.

Corollary 2.2. Let Aij(f) be the i, j cofactor of f∗∗. Then Γf is a 3−dimensional

scalar flat hypersurface of R4 if and only if

ϵ2(f) =
∑
i<j

gijAij(f) = 0.

As we know a 3−dimensional hypersurface M ⊂ R4 is scalar flat if and only

H2 = 0. In this particular case, if M is a graph of a function f , then f is a

solution of the partial differential equation

ϵ2(f) = A(f) + 2B(f) = 0,

where A(f) = g11
(
f22f33 − f2

23

)
+ g22

(
f11f33 − f2

13

)
+ g33

(
f11f22 − f2

12

)
B(f) = g12 (f13f23 − f12f33) + g13 (f12f32 − f13f22) + g23 (f21f31 − f23f11) .

This lengthy but highly symmetric equation was studied by M. L. Leite [13] who

among other things proved the so called Geroch’s Conjecture for a smooth graph

in R4. Explicitly, she proved the following result.
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Theorem 2.3. If the graph of f : R3 → R is flat at infinity and ϵ2(f) ≥ 0, then

Γf is globally flat.

3 The focal locus construction

In this section we will describe a method for constructing a special class of

scalar flat hypersurfaces in the Euclidean space R4.

3.1 Basic definitions

Let Σ ⊂ C2 be a non-singular holomorphic curve. We will denote by ⟨, ⟩ the

standard inner product on C2 and by J : C2 → C2 the multiplication by
√
−1.

If z ∈ C2, we set

|z| = ⟨z, z⟩1/2.

Let ∇ be the Riemannian connection on C2. The second fundamental form of Σ

is defined by

BV,W ≡ (∇V W )N, (3.1)

for V,W ∈ TXΣ ≡ tangent space of Σ at X. Here ( )N denotes projection onto

NXΣ ≡ normal space of Σ at X. Given a normal vector ξX ∈ NXΣ we define

Aξ : TXΣ → TXΣ by

Aξ(V ) = −(∇V ξ)
T , (3.2)

where ξ is an arbitrary vector field in C2 with the property that ξ is normal to

Σ in a neighborhood of X and ( )T denotes projection onto TXΣ.

Remark 3. It is a well known fact (cf. [11]) that the N(Σ)-valued bilinear form

B is symmetric and also complex bilinear, i.e., BJV,W = JBV,JW = BV,JW . Note

that A and B are related by

< BV,W , ξ >=< Aξ(V ),W > . (3.3)

In particular Aξ is self-adjoint. The eigenvalues ±λ(X, ξ) of Aξ are independent

of the choice of ξ at X, and if B ̸= 0, they vanish only at isolated points. In this

paper we will avoid those points.
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Given a normal vector field ξ of unit length at X on Σ we associate to ξ the

eigendirection of Aξ with positive eigenvalue λ. There are two eigenvectors of unit

length on this “eingen-line”, υξ and −υξ. We denote by ξt the unit normal vector

ξcost+(Jξ)sint. It follows from the above remark that the eigenvalues of Aξt do

not depend on t. They are given by λ and −λ and the eigenline corresponding

to −λ is determined by Jυξt . An easy computation shows that

±υξt = υξ cos(t/2) + Jυξ sin(t/2).

From now on we will choose the sign of υξ so that

υξt = eit/2υξ, i =
√
−1. (3.4)

Definition 1. The focal locus of Σ is the set

FΣ = {X + ρ(X)ξ : X ∈ Σ, ξ ∈ N1Σ},

where N1Σ is the unit normal sphere bundle of Σ and ρ(X) ≡ 1/λ(X, ξ).

In order to determine the structure of the focal locus we will consider the

mapping l : Σ× S1 → FΣ ⊂ C2 given by

l(X, t) = X + ρ(X)eitνX , (3.5)

where ν is a unit normal vector field on Σ. One can prove easily that at a point

(X, t) ∈ Σ× S1 we have

l∗υν ∧ l∗Jυν ∧ l∗∂/∂t = 2ρ(υνt .ρ)νt ∧ Jυνt ∧ Jνt. (3.6)

Lemma 2. The mapping l : Σ × S1 → C2 given by (3.5) is an immersion at

(X, t) ∈ Σ× S1 if and only if

< ∇ρ, υνt > ̸= 0. (3.7)

Proof. Lemma 2 follows from equation (3.6).

From now on we will assume that Σ contains no critical points of ρ. In par-

ticular |∇ρ| ≠ 0 and we can define the vector fields υ1, υ2 on Σ by

Jυ1 = υ2 = ∇ρ/|∇ρ|. (3.8)
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Remark 4. The vector field ν in (3.5) may be chosen in such a way that υν = υ1.

This vector field is obviously unique. With this notation we have the following

result.

Lemma 3. The focal locus of Σ is the union FΣ∪Σ∗ of a 3-dimensional manifold

FΣ and a singular set Σ∗. Moreover

FΣ = {X + ρ(X)eitνX : X ∈ Σ, 0 < t < 2π}

Σ∗ = {X + ρ(X)νX : X ∈ Σ},

where ν is the unique unit normal vector field on Σ such that υν = υ1.

Proof. A point X∗ ∈ FΣ may be written as X∗ = l(X, t) for some X ∈ Σ and

t ∈ [0, 2π). We observe now that ⟨∇ρ, υνt⟩ = |∇ρ| sin (t/2) > 0. The result follows

by applying Lemma 2.

3.2 The second fundamental form of FΣ

In this section we analyse the geometric structure on the focal locus of a non-

singular analytic curve Σ in C2. Over FΣ we define a field of orthonormal frames

X∗e1, e2, e3, e4 such that for X∗ = X + ρ(X)ξ ∈ FΣ we have

e1 = Jυξ, e2 = ξ, e3 = Jξ, e4 = υξ. (3.9)

The vector field e4 is obviously normal to FΣ. We let ωA , 1 ≤ A ≤ 4, be the

dual coframe of eA. To eA we also associate the connection 1-forms ωAB given

by

deA =
∑
B

ωABeB . (3.10)

The Cartan structure equations are

 dωA =
∑

B ωAB ∧ ωB

dωAB =
∑

C ωAC ∧ ωCB , ωAB + ωBA = 0.
(3.11)

Let T (FΣ) and T ∗(FΣ) be respectively the tangent and cotangent bundle of FΣ.

The second fundamental form II of FΣ is a section on T ∗(FΣ) ⊗ T (FΣ) whose

components with respect to the given orthonormal frame eA are
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II = (hij), ωi4 =

3∑
j=1

hijωj . (3.12)

Lemma 4. At the point X∗ = X + ρ(X)ξX ∈ FΣ we have

(υξ.ρ
2)II =


−|∇ρ|2/2 (Jυξ).ρ −υξ.ρ

(Jυξ).ρ −2 0

−υξ.ρ 0 0

 . (3.13)

Proof. We are going to use the moving frame method. For this we consider the

distinguished orthonormal frame field υA on Σ obtained by making

υ2 = Jυ1 = ∇ρ/|∇ρ|, υ3 = ν, υ4 = Jν (3.14)

where ν is the unique normal vector field such that υν = υ1. We then associate

to υA its dual coframe θA, 1 ≤ A ≤ 4 and denote by θAB the 1-forms on Σ given

by

dυA =

4∑
B=1

θABυB . (3.15)

We recall that the focal locus is given by the mapping l : Σ× S1 → C2 where

l(X, t) = X + ρeitυ3. (3.16)

Taking the differential of (3.16) gives

dl = dX + dρeitυ3 + ρdteitυ4 + ρeitdυ3.

By construction  ρθ31 = ρθ42 = −θ1

ρθ32 = ρθ14 = θ2.
(3.17)

Therefore

dl = (1− eit)θ1υ1 + (1 + eit)θ2υ2 + dρeitυ3 + ρeit[dt+ θ34]υ4.
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Then

dl = 2

[
− sin

(
t

2

)
θ1 + cos

(
t

2

)
θ2

]
e1 + dρe2 + ρ[dt+ θ34]e3. (3.18)

It follows that 
l∗ω1 = 2

[
− sin

(
t
2

)
θ1 + cos

(
t
2

)
θ2
]

l∗ω2 = dρ = |∇ρ |θ2

l∗ω3 = ρ [ dt+ θ34 ] .

(3.19)

In the following we are going to compute l∗ωj4, j = 1, 2, 3. Note that

l∗ω14 = ⟨dJυνt , υνt⟩ =
〈
deit/2Jυν , e

it/2υν
〉

=
〈
eit/2 [dJυν − υν dt/2] , eit/2υν

〉
= θ21 − dt/2.

(3.20)

l∗ω24 = ⟨dνt, υνt
⟩ =

〈
deitν, eit/2υν

〉
=

〈
eit[ dν + Jν dt], eit/2υν

〉
=

〈
eit/2dν, υν

〉
= cos(t/2) θ31 + sin(t/2) θ41

= −ρ−1 [ cos(t/2) θ1 + sin(t/2) θ2 ] .

(3.21)

Similarly we obtain

l∗ω34 = −ρ−1[− sin(t/2) θ1 + cos(t/2) θ2]. (3.22)

It follows from (3.19), (3.21) and (3.22) that 2ρω34 = −ω1

2ρω24 = cot(t/2) ω1 − 2 [|∇ρ| sin(t/2)]−1
ω2.

(3.23)

To express ω14 in terms of the coframe field ω1, ω2, ω3 we first observe that

0 = l∗dω4 =
∑
j

l∗ωj ∧ l∗ωj4 = Θ ∧ [sin(t/2)θ1 − cos(t/2)θ2],
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where Θ = θ34−2θ12−|∇(ln ρ)| θ1. Since this is true for all 0 < t < 2π, it follows

that

2θ12 − θ34 + ρ−1|∇ρ|θ1 = 0. (3.24)

This allow us to rewrite equation (3.20) as

2ρl∗ω14 = |∇ρ|θ1 − ρ(θ34 + dt). (3.25)

Using equations (3.19) and (3.25) we obtain

2ρ sin(t/2) ω14 = −2−1|∇ρ|ω1 + cos(t/2) ω2 − sin(t/2) ω3. (3.26)

At the given point X∗ = X + ρ(X)ξX ∈ F we may write the unit normal vector

ξX as ξX = eitν for some t ∈ (0, 2π). Since υξ = eit/2υν , it follows that ⟨∇ρ, υξ⟩ = υξ.ρ = |∇ρ|sin(t/2)

⟨∇ρ, Jυξ⟩ = Jυξ.ρ = |∇ρ|cos(t/2).

The second fundamental form II can be obtained from the following expressions.
2ρ(υξ.ρ) ω14 = −2−1|∇ρ|2ω1 + (Jυξ.ρ)ω2 − (υξ.ρ)ω3

2ρ(υξ.ρ) ω24 = (Jυξ.ρ)ω1 − 2ω2

2ρ ω34 = −ω1.

4 Proof of Theorem 1.3

Proof. In the proof, we will use the notation introduced in the previous sections.

For this, choose we 0 < t < 2π and let

X∗ = X + ρ(X)eitν

be a point in FΣ = F (Σ)−Σ∗. We know from Lemma 4 that at X∗, the second

fundamental form II with respect to the orthonormal frame eA is given by

(υξ.ρ
2)II =

 −|∇ρ|2/2 (Jυξ).ρ −υξ.ρ

−2 0

0

 ,
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where ξ = eitν. The Gauss-Kronecker K of FΣ is given by the determinant of

the symmetric matrix II. Then

K =
(
4ρ3υξ.ρ

)−1
.

Since υξ.ρ = |∇ρ|sin(t/2) > 0, it follows that FΣ is a strictly convex hypersurface.

To compute the scalar curvature of FΣ we first notice that (υξ.ρ
2)traceII = −(4 + |∇ρ|2)/2

(υξ.ρ
2)2traceII2 = (4 + |∇ρ|2)2/4.

To complete the proof of Theorem 1.3 we observe that the scalar curvature κ of

F is given by

κ/6 = (traceII)2 − traceII2 = 0.

5 The Alexandroff-Fenchel-Jessen Theorem. -

Proof of Theorem 1.2

Let k1, k2, ..., kn be the principal curvatures of a strictly convex n-dimensioanal

hypersurfaceM of Rn+1. As usual let Pr(M) denote the rh elementary symmetric

function of the radii of principal curvatures 1/k1, ..., 1/kn. Note that

(nr )Pr(M) =
∑

i1<···<ir

1

ki1

1

ki2
· · · 1

kir
.

For each 1 ≤ r ≤ n, we let Hr be r-th mean curvatures of M . We set H0 = 1

and note that for each 0 ≤ r < n,

Pn−r(M) =
Hr(M)

Hn(M)
(5.1)

Now we recall the following uniqueness theorem of Alexandroff-Fenchel-Jessen.

Theorem 5.1. Two closed strictly convex hypersurfaces of Rn+1 differ by a

translation T : Rn → Rn if Ps, 1 ≤ s ≤ n takes the same value at points with the

same normal vector.

Proof. See Chern, [3].
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In [3], S. S. Chern emphasized that Theorem 5.1 can be extended to hyper-

surfaces with boundaries. For this, it is necessary that the boundaries differ by a

translation and that corresponding points have the same normal vectors. We will

refer to the next result as the extended Alexandroff-Fenchel-Jessen Theorem.

Theorem 5.2. For each i = 1, 2, let Mi ⊂ Rn+1 be a strictly convex compact

hypersurface with boundary ∂Mi. If

a) Ps(M1) = Ps(M2), for some 1 ≤ s ≤ n.

b) T (∂M1) = ∂M2 for some translation T : Rn+1 → Rn+1.

c) the boundaries have the same orientations and the same normal vectors at

corresponding points.

Then T (M1) = M2.

We note that Theorem 1.2 is a consequence of the slightly more general result.

Theorem 5.3. For each i = 1, 2, let Mi ⊂ Rn+1 be a strictly convex compact

hypersurface with boundary ∂Mi. If

a) Hr(M1)/Hn(M1) = Hr(M2)/Hn(M2), for some 0 ≤ r < n

b) T (∂M1) = ∂M2 for some translation T : Rn+1 → Rn+1.

c) the boundaries have the same orientations and the same normal vectors at

corresponding points.

Then T (M1) = M2.

Proof. We know from equation 5.1 that Pn−r(M1) = Pn−r(M2). Since 1 ≤
n − r ≤ n, the results follows from the extended Alexandroff-Fenchel-Jessen

Theorem.

6 Final comments

In general a solution of equation

ϵr(f) =:
∑

i1<···<ir

Di1···in(f) = 0, det f∗∗ ̸= 0. (6.1)
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on a bounded domain with smooth boundary is completely determined by the

values of f and ∇f on the boundary. This is the content of the following theorem.

Theorem 6.1. Let f, g : Ω → R be solutions of equation ( 6.1) in a bounded

domain Ω ⊂ Rn+1 with smooth boundary ∂Ω. Suppose in addition that in the

boundary |f − g|+ |∇(f − g)| = 0. Then f ≡ g.

Proof. Let νf and νg be the vector fields given by Wνf = (∇f,−1)

Wνg = (∇g,−1)
(6.2)

They are the unit normals to Γf and Γg respectively and coincide on their com-

mon boundary. Obviously Γf and Γg induce the same orientation on their com-

mon boundary. By assumption Γf and Γg are strictly convex hypersurfaces with

Hr(Γf ) = Hr(Γg) = 0. Using Theorem 1.2 we see that Γf = Γg and f = g.

In this paper we exhibit a special family ℑ of 3−dimensional hypersurfaces of

R4 with H2 ≡ 0. The family

ℑ = (FΣ)Σ∈Λ

was indexed by the set Λ of non-singular analytic curves in C2. From each FΣ ∈ ℑ
we obtain a chain of scalar flat hypersurfaces

Mn(Σ) =: FΣ × Rn

of Rn+4. With this notation we have the following result.

Theorem 6.2. Let M ∈ ℑn = {Mn(Σ) : FΣ ∈ ℑ}. Then H2(M) = 0 and M is

a scalar flat hypersurfaces of Rn+4.

Question 1. For each k = 1, · · · , n let Xk : Σk → C2 be a non-singular analytic

curve with focal locus Fk. What is the geometry of the product F = F1×· · ·×Fn

as a codimension-n submanifold of C2n

Question 2. What can we say about the structure of the focal locus of a complex

curve X : Σ → Cn.

These and other questions will be addressed in another occasion.
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