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Abstract

Among the results we discuss in this work we will see how to
transform non-singular analytic curves ¥ in C? into strictly convex

scalar flat 3-dimensional hypersurfaces.

1 Introduction.

A number of authors have studied the existence of hypersurfaces with pre-
scribed curvatures in R, As we know, such a hypersurface is locally given
as a graph I'y of a real-valued function f defined over a domain Q@ C R”. In
the induced metric the first and the second fundamental form of I'y are given
respectively by

Gij = 0i5 + fif;
hij = = fi; /W

where W = /1 4+ |Vf|2, Vf = (f1,---, fn) and (fij) = fus is the Hessian of f.

The r—th mean curvature H, of I'y vanishes if and only if
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S Diein () =0, (1.1)

1< <ip
where D;, ...;,, (f) is the determinant of the n x n matrix obtained from G = (g;;)
by replacing its i1,--- ,4, columns by the corresponding columns of f... In

particular, I'y is scalar flat if and only if

ZDij(f) =0.

1<j

According to [8], the partial differential equation H,.(f) = 0 is elliptic precisely
at the points where rank(f..) > r. Obviously, the ellipticity of H,(f) = 0 holds

if I'y is a strictly convex hypersurface. In this particular case

Hy(f) =0, detf., #0. (1.2)

Even though the elipticity of equation Hs(f) = 0 fails for flat solutions, M. L.

Leite [13] was able to proof the following interesting result.

Theorem 1.1. If the graph of f : R?® = R is flat at infinity and Hy = 0, then
T’ is globally flat.

Remark 1. In [13], M. L. Leite extended the above result to the case Hy > 0,
proving the veracity of Geroch conjecture [5] in this special case.

We also note that a solution of equation (1.2) on a bounded domain with
smooth boundary is completely determined by the values of f and Vf on the
boundary. This uniqueness result is a consequence of the following more general

Fact (proved in section 5).

Theorem 1.2. Let My, My C R™" be strictly convexr compact hypersurfaces
with the same smooth boundary X. If

a) for some r, the r-th mean curvatures of My and My vanishes.

b) X have the same induced orientations and the same normal vectors.

Then M1 = MQ.



Scalar flat hypersurfaces in R* 229

The main part of this paper is dedicated to the construction of non trivial
examples of strictly convex scalar flat hypersurfaces of R*. This was discussed
in a previous paper [1] and is accomplished by looking at the structure of the
focal locus of a complex analytic curve in complex euclidian 2-space C2. This

construction lead us to the following unexpected result (see proof in section 4).

Theorem 1.3. The focal locus of a non-singular analytic curve ¥ in C? is the
UnLon
F(X)=Fux®

of a singular set ¥* and a strictly convex scalar flat hypersurface Fs, of R*.

Remark 2. We may as well think of Theorem 1.3 as a transform, i.e., from a
complex analytic curve we construct its focal locus that in turn produce a solution
of the equation

ZDij(f) =0.

1<j
2 The mean curvature equations of a graph

This section is concerned with real-valued functions f : Q@ — R defined over
a domain 2 C R™. In the induced metric the first and the second fundamental

form of I'; are given respectively by

gij = 0ij + fif;

hij = =fi /W
where W = \/1+|Vf|2, Vf = (f1,--, fn) and (fij) = fes is the Hessian of f.
A straightforward computation shows that det G = W2,

Let D;,...;,, (f) be the determinant of the n x n matrix obtained from G = (g;;)
by replacing its i1, -- - , %, columns by the corresponding columns of f,.. In this

section we always assume that f is a solution of the partial differential equation
e(f) =t D Dii,(f)=0, det fo. #0. (2.1)
g <o <l

Proposition 2.1. The function f is a solution of the equation (6.1) if and only
if 'y is a strictly convex hypersurface with H, = 0.

Proof. The proof is a consequence of the following lemma. O
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Lemma 1. Let f : Q — R be a real function defined over a domain 2 C R™.
Then

(W) () H: = e(f). (2.2)

Proof. Let ki,ka, -+, ky be the principal curvatures of I'y. They are the roots
of the polynomial equation p(\) = 0, where

det G p(A) = det ( AG+ fux/ W)
> s9n(0) Ty (Mio (i) — Pio(i))

n hio(i
= Zo’ sgn(o) 91o(1) " " Yno(n) Hi:l (A - ?El)))

= Yoo CU/W)T () e (HAT

In the above identities o is a permutation of {1,--- ,n} while sgn(o) denotes the

sign of the permutation o. Since

P =D (1) () Ho A",

r=0
the result follows by comparing the coefficients of p(A) in the two expressions.
O

Corollary 2.2. Let A;;(f) be the i, j cofactor of fes. ThenT 'y is a 3—dimensional
scalar flat hypersurface of R* if and only if

ea(f) = gijAis(f) = 0.
i<j
As we know a 3—dimensional hypersurface M C R* is scalar flat if and only

Hy; = 0. In this particular case, if M is a graph of a function f, then f is a

solution of the partial differential equation

ea(f) = A(f) +2B(f) = 0,

where

A(f) = g11 (fozfss — f33) + g22 (f11fss — f3) + 933 (firfo2 — [T2)

B(f) = g12 (f13f23 — fi2f33) + 913 (fiafs2 — fis3fo2) + 923 (f21 f31 — fazfi1) -
This lengthy but highly symmetric equation was studied by M. L. Leite [13] who

among other things proved the so called Geroch’s Conjecture for a smooth graph

in R*. Explicitly, she proved the following result.
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Theorem 2.3. If the graph of f : R — R is flat at infinity and ex(f) > 0, then
I's is globally flat.

3 The focal locus construction

In this section we will describe a method for constructing a special class of
scalar flat hypersurfaces in the Euclidean space R%.

3.1 Basic definitions

Let ¥ C C? be a non-singular holomorphic curve. We will denote by (,) the
standard inner product on C? and by J : C? — C? the multiplication by /—1.
If z € C?, we set

2] = (2, 2)1/2,

Let V be the Riemannian connection on C2. The second fundamental form of ¥
is defined by

Byw = (VyW)Y (3.1)

for V,W € TxX = tangent space of > at X. Here ()" denotes projection onto
Nx3 = normal space of ¥ at X. Given a normal vector £x € Nx3 we define
AE : TXZ — TXE by

AS(V) = (V)T (3.2)

where ¢ is an arbitrary vector field in C? with the property that ¢ is normal to
¥ in a neighborhood of X and () denotes projection onto Tx X.

Remark 3. It is a well known fact (cf. [11]) that the N(X)-valued bilinear form
B is symmetric and also complex bilinear, i.e., Bjv,w = JBv, jw = By, jw. Note
that A and B are related by

< Byw,§ >=< Ag(V),W > (3.3)

In particular A¢ is self-adjoint. The eigenvalues £\ (X, ¢) of A¢ are independent
of the choice of £ at X, and if B # 0, they vanish only at isolated points. In this

paper we will avoid those points.
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Given a normal vector field £ of unit length at X on X we associate to £ the
eigendirection of A¢ with positive eigenvalue . There are two eigenvectors of unit
length on this “eingen-line”, v¢ and —ve. We denote by & the unit normal vector
Ecost + (J€)sint. It follows from the above remark that the eigenvalues of A% do
not depend on t. They are given by A and —\ and the eigenline corresponding

to —A is determined by Jvg,. An easy computation shows that
+ve, = ve cos(t/2) + Jug sin(t/2).
From now on we will choose the sign of v¢ so that
Ve, = eit/%g, i=+—1. (3.4)
Definition 1. The focal locus of ¥ is the set
Py ={X+p(X) : X€X, {€NX},
where N1 ¥ is the unit normal sphere bundle of ¥ and p(X) = 1/A(X,§).

In order to determine the structure of the focal locus we will consider the
mapping [: X x St — Fy C C? given by

I(X,t) = X + p(X)e'vy, (3.5)

where v is a unit normal vector field on ¥. One can prove easily that at a point
(X,t) € ¥ x S! we have

Levy AL Joy, N1L.OJOt = 2p(vy,.p)ve A Juy, A Jug. (3.6)

Lemma 2. The mapping [ : ¥ x S' — C? given by (3.5) is an immersion at
(X,t) € ¥ x St if and only if

< Vp,v,, >#0. (3.7)

Proof. Lemma 2 follows from equation (3.6). O

From now on we will assume that ¥ contains no critical points of p. In par-

ticular |Vp| # 0 and we can define the vector fields vy, ve on 3 by

Juy = vy = Vp/|Vp|. (3.8)
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Remark 4. The vector field v in (3.5) may be chosen in such a way that v, = v;.
This vector field is obviously unique. With this notation we have the following

result.

Lemma 3. The focal locus of X is the union FxsUX* of a 3-dimensional manifold

Fy, and a singular set ¥*. Moreover

Fy={X +p(X)e'vx : X €%, 0< t < 27}

Y ={X+p(X)vx: X € I},
where v is the unique unit normal vector field on ¥ such that v, = vy.

Proof. A point X* € Fx, may be written as X* = [(X,t) for some X € ¥ and
t € [0,27). We observe now that (Vp,v,,) = |Vp|sin (t/2) > 0. The result follows
by applying Lemma 2. O

3.2 The second fundamental form of Fy,

In this section we analyse the geometric structure on the focal locus of a non-
singular analytic curve ¥ in C2. Over Fy, we define a field of orthonormal frames
X*e1,eq, e3,e4 such that for X* = X + p(X)¢ € Fx. we have

er=Jue, ea=¢& e3=JE es =g (3.9)

The vector field e4 is obviously normal to Fy,. We let wy , 1 < A <4, be the
dual coframe of e4. To e4 we also associate the connection 1-forms wap given
by

deA:ZwABeB. (3.10)
B

The Cartan structure equations are

dwa =) pwap Awp
(3.11)

dwap =) swac Nwep, wap+wpa = 0.
Let T'(Fx) and T*(Fy) be respectively the tangent and cotangent bundle of Fy;.
The second fundamental form I of Fy is a section on T*(Fx) ® T(Fs) whose

components with respect to the given orthonormal frame e 4 are
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3
II = (hij), wia= Zhijwj~ (3.12)
i=1

Lemma 4. At the point X* = X + p(X)éx € Fx we have

=|Vol?/2 (Jue)p  —vep
(ve.p)IT = | (Jue).p -2 0 . (3.13)
—Ve.p 0 0

Proof. We are going to use the moving frame method. For this we consider the

distinguished orthonormal frame field v4 on ¥ obtained by making

v = Juy =Vp/|Vp|, vs=v, vs=Jv (3.14)

where v is the unique normal vector field such that v,, = v{. We then associate
to v4 its dual coframe 04,1 < A < 4 and denote by 045 the 1-forms on ¥ given
by

4
dva = 0apvB. (3.15)
B=1

We recall that the focal locus is given by the mapping [ : ¥ x S! — C? where
I(X,t) = X + pe'us. (3.16)
Taking the differential of (3.16) gives
dl = dX + dpe'tvg + pdte'tvy + petdus.
By construction

ps1 = plao = —61
(3.17)

P32 = pbiy = 0s.

Therefore

dl = (1 — e")0rv1 + (1 + €M)y + dpe'tvs + pe' [dt + Oz4]vy.
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Then
. t t
dl =2 [— sin (2> 61 + cos <2> 92} e1 + dpes + pldt + O34]es. (3.18)

It follows that
*wy =2 [— sin (%) 61 + cos (%) 02]

Fwy =dp=|Vp |l (3.19)
l*wg :p[dt+034].

In the following we are going to compute [*w;4, j =1,2,3. Note that

PFwig = (dJu,,,v,,) = <deit/2JUV’eit/2vy>

= <6”/2 [dJv, — v, dt/2] ,e”/zvy> (3.20)
= 0y — dt/2.
PFwsy = (dvg,v,,) = (detv, e/?v,)

= (e dv+ Jv dt],e*/?v,)
= (e/2dv,v,) (3.21)
= cos(t/2) 031 + sin(t/2) 041
= —p [ cos(t/2) 61 +sin(t/2) O .
Similarly we obtain

I*wsy = —p~ t—sin(t/2) 0; + cos(t/2) 62)]. (3.22)
It follows from (3.19), (3.21) and (3.22) that

2pws4 = —wq
) (3.23)
2pwag = cot(t/2) w1 — 2[|Vp|sin(t/2)] " wa.

To express wy4 in terms of the coframe field wy,wo, w3 we first observe that

0=1"dwy = Zl*wj Al*wjs = O A[sin(t/2)0; — cos(t/2)0],
J
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where © = 034 — 2612 — |V(In p)| 6;. Since this is true for all 0 < t < 2, it follows
that
2019 — O34 + p~ 1 Vpl|0y = 0. (3.24)

This allow us to rewrite equation (3.20) as

Using equations (3.19) and (3.25) we obtain
2psin(t/2) wig = =27 |Vplwi + cos(t/2) wy — sin(t/2) ws. (3.26)

At the given point X* = X + p(X)Ex € F we may write the unit normal vector

éx as Ex = ety for some t € (0,27). Since ve = e'/?v,, it follows that

(Vp,ve) = ve.p = |Vplsin(t/2)
(Vp, Jue) = Jue.p = |Vp|cos(t/2).
The second fundamental form I can be obtained from the following expressions.

2p(ve.p) wia = =27 VpPPwr + (Jug.plws — (ve.p)ws
2p(ve.p)

2p W34 = —Wq.

Wy = (ng.,o)wl — 2(AJ2

4 Proof of Theorem 1.3

Proof. In the proof, we will use the notation introduced in the previous sections.
For this, choose we 0 <t < 27 and let

X* = X + p(X)e''v

be a point in Fy, = F(3) — X*. We know from Lemma 4 that at X*, the second

fundamental form I1 with respect to the orthonormal frame e4 is given by

=IVolP/2 (Jve).p —vep
(ve.p*)IT = -2 0 ,
0
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where ¢ = e®®v. The Gauss-Kronecker K of Fy is given by the determinant of

the symmetric matrix I1. Then

K= (4p3v§.p)_1.

Since ve.p = |Vplsin(t/2) > 0, it follows that F; is a strictly convex hypersurface.

To compute the scalar curvature of Fy we first notice that
(ve.p*)tracel I = —(4 4 |Vp|?)/2
(ve.p?)?tracel I? = (4 + |Vp|?)?/4.
To complete the proof of Theorem 1.3 we observe that the scalar curvature x of

F is given by
/6 = (tracelI)? — tracelI* = 0.

5 The Alexandroff-Fenchel-Jessen Theorem. -
Proof of Theorem 1.2

Let k1, ko, ..., k,, be the principal curvatures of a strictly convex n-dimensioanal
hypersurface M of R"*!1. As usual let P.(M) denote the 7" elementary symmetric
function of the radii of principal curvatures 1/kq, ..., 1/k,. Note that

1 1 1
RO = 3
v 1‘1<~Z<z; ki, ki, ki,
For each 1 < r < n, we let H, be r-th mean curvatures of M. We set Hy = 1
and note that for each 0 < r < n,

P (M) =

(5.1)
Now we recall the following uniqueness theorem of Alexandroff-Fenchel-Jessen.

Theorem 5.1. Two closed strictly convex hypersurfaces of R differ by a
translation T : R™ — R" if P, 1 < s <n takes the same value at points with the
same normal vector.

Proof. See Chern, [3]. O
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In [3], S. S. Chern emphasized that Theorem 5.1 can be extended to hyper-
surfaces with boundaries. For this, it is necessary that the boundaries differ by a
translation and that corresponding points have the same normal vectors. We will

refer to the next result as the extended Alexandroff-Fenchel-Jessen Theorem.

Theorem 5.2. For each i = 1,2, let M; C R™"! be a strictly convexr compact
hypersurface with boundary OM;. If

a) Ps(My) = Ps(Ms), for some 1 < s <mn.
b) T(OM,) = OMsy for some translation T : R"T1 — RPFL,

¢) the boundaries have the same orientations and the same normal vectors at

corresponding points.
Then T(Ml) = Mg.
We note that Theorem 1.2 is a consequence of the slightly more general result.

Theorem 5.3. For each i = 1,2, let M; C R"™! be a strictly convexr compact
hypersurface with boundary OM;. If

a) H.(My)/H, (M) = H.(Ms)/H, (M), for some 0 <r <n
b) T(OM,) = OM> for some translation T : R**1 — RHL

¢) the boundaries have the same orientations and the same normal vectors at

corresponding points.
Then T(Ml) = MQ.
Proof. We know from equation 5.1 that P,_,.(M;) = P,_.(Mz). Since 1 <
n —r < n, the results follows from the extended Alexandroff-Fenchel-Jessen
Theorem. O

6 Final comments

In general a solution of equation

e(f)=t > Di.i,(f) =0, detfo, #0. (6.1)

11 < <ty
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on a bounded domain with smooth boundary is completely determined by the

values of f and V f on the boundary. This is the content of the following theorem.

Theorem 6.1. Let f,g : Q@ — R be solutions of equation ( 6.1) in a bounded
domain Q C R™ ! with smooth boundary 0S). Suppose in addition that in the
boundary |f — gl +|V(f —g)| =0. Then f =g.

Proof. Let vy and v, be the vector fields given by

Wiy = (Vf,-1) o
Wy, = (Vg,—1)

They are the unit normals to I'y and I'y respectively and coincide on their com-
mon boundary. Obviously I'; and I'y induce the same orientation on their com-
mon boundary. By assumption I'y and I'y are strictly convex hypersurfaces with
H,(I'y) = H-(T'y) =0. Using Theorem 1.2 we see that 'y =Ty and f=¢g. O

In this paper we exhibit a special family & of 3—dimensional hypersurfaces of
R* with Hy = 0. The family

S = (Fx)sea
was indexed by the set A of non-singular analytic curves in C2. From each Fy; € &
we obtain a chain of scalar flat hypersurfaces
M,(X) = Fs xR"
of R4, With this notation we have the following result.

Theorem 6.2. Let M € 3, = {M,(X) : Fx, € S}. Then Ha(M) =0 and M s
a scalar flat hypersurfaces of R™14.

Question 1. Foreach k = 1,--- ,nlet X} : ¥, — C? be a non-singular analytic
curve with focal locus Fj,. What is the geometry of the product F' = F} x--- X F},
as a codimension-n submanifold of C2"

Question 2. What can we say about the structure of the focal locus of a complex
curve X : ¥ — C™.

These and other questions will be addressed in another occasion.
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