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On the Ricci curvature equation and the

Einstein equation for diagonal tensors

Romildo Pina * Keti Tenenblat �

Abstract

We consider the pseudo-euclidean space (Rn, g), with n ≥ 3.

We provide necessary and sufficient conditions for a diagonal tensor

to admit a metric ḡ, conformal to g, that solves the Ricci tensor

equation or the Einstein equation. Examples of complete metrics

are included.

Introduction

We consider the following two general problems. Given a symmetric tensor T ,

of order two, defined on a manifold Mn, n ≥ 3, does there exist a Riemannian

metric g such that Ric g = T? Find necessary and sufficient conditions on a

symmetric tensor T , so that one can find a metric g satisfying Ric g − K
2 g = T ,

where K is the scalar curvature of g. Both problems correspond to solving

nonlinear differential equations. The first one we call the Ricci tensor equation

and the second one the Einstein equation.
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DeTurck [D1] showed that, when T is nonsingular, a local solution of the Ricci

equation always exists. The singular case, with constant rank and additional con-

ditions, was considered by DeTurck-Goldschmidt [DG]. Rotationally symmetric

nonsingular tensors were considered by Cao-DeTurck [CD]. Other results were

obtained by DeTurck [D2], DeTurck-Koiso [DK], Lohkamp [L] and Hamilton [H].

DeTurck [D3] also considered the Cauchy problem for nonsingular tensors for

the Einstein field equation, i.e. n = 4. For other results, when T represents

several physical situations, we reffer the reader to [SKMHH] and its references .

In our previous papers, [P, PT1-PT6], we investigated both the Ricci equation

and the Einstein equation, for the following special classes of tensors T and

metrics conformal to the pseudoeuclidean metric g. In [PT1, PT2], we considered

symmetric tensors of type T =
∑
εicijdxidxj where εi = ±1 and cij are real

constants. In [PT3, PT4], we studied tensors T = fg where f is a real function.

Diagonal tensors depending on one variable were considered in [PT5] and tensors

T =
∑

i,j fijdxidxj whose nondiagonal terms f(xi, xj) depend on xi, xj were

investigated in [PT6].

In this paper, we consider diagonal tensors T on a pseudo-euclidean space

(Rn, g), n ≥ 3, and we provide necessary and sufficient conditions for the exis-

tence of a metric conformal to g, whose Ricci tensor is a given tensor T . A similar

question is considered for the Einstein equation. The theory is also extended to

locally conformally flat manifolds.

More precisely, we consider the pseudo-euclidean (Rn, g), with n ≥ 3, coordi-

nates x = (x1, .., xn) and gij = δijϵi, ϵi = ±1, where at least one ϵi is positive.

We consider diagonal tensors of the form T =
∑
i

ϵifi(x)dx
2
i , where fi(x) is a

differentiable function. For such a tensor, we want to find metrics ḡ = g/φ2, that

solve the Ricci equation or the Einstein equation.

Our main results in this paper assume that not all the functions fi to be equal

and not all to be constant, since we studied the case when all functions fi are

constant in [PT1] and [PT2] and we investigated the case when all functions

fi are equal in [PT4]. For the sake of completeness we include these results in

Section 1.

Our first theorem (Theorem 1.1) gives a characterization of such tensors when

the functions fi depend on r variables where 1 < r < n. Theorems 1.2 and 1.3

give necessary and sufficient conditions, in terms of ordinary differential equa-

tions, for the existence of conformal metrics for the Ricci and Einstein equations.

As a consequence of Theorem 1.2, we show that for certain functions K̄, depend-
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ing on functions of one variable, Uj(xj), there exist metrics ḡ, conformal to the

pseudo- euclidean metric g, whose scalar curvature is K̄. This result is related to

the prescribed scalar curvature problem: Given a differentiable function K̄, on

a Riemannian manifold (M, g), is there a metric ḡ conformal to g whose scalar

curvature is K̄? This problem has been studied by many authors. In particular,

when K̄ is constant, it is known as the Yamabe problem.

By applying the theory, we exhibit examples of complete metrics on Rn, on the

n-dimensional torus Tn, or on cylinders T k×Rn−k, that solve the Ricci equation

or the Eisntein equation.

1 Main results

We will now state our main results. The proofs will be given in the next section.

We will consider diagonal tensors T =

n∑
i=1

εifi(x)dx
2
i on a pseudo-euclidean space,

(Rn, g), n ≥ 3, with coordinates x = (x1, ..., xn), and metric gij = δijϵi, where

ϵi = ±1. We wil assume that not all fi are constant and not all are equal. Our

results will complete the study of solving the Ricci and Einstein equations, in the

conformal class, for diagonal tensors, in the pseudo-euclidean space. For the sake

of completeness, we will include in this section the corresponding results for the

case when all fi are constants and when they are all equal. These were solved in

our previous papers [PT1], [PT2] and [PT4]. We will denote by φ,ij and fi,k the

second order derivative of φ with respect to xixj and the derivative of fi with

respect to xk, respectively.

Our first result considers tensors whose diagonal elements depend on r < n

variables.

Theorem 1.1 Let (Rn, g), n ≥ 3, be the pseudo-euclidean space, with coordinates

x1, ..., xn, and metric gij = δijϵi, ϵi = ±1. Let T =

n∑
i=1

εifi(x̂)dx
2
i , be a diagonal

tensor such that the functions fi depend on x̂ = (x1, ..., xr) where 1 < r < n.

Assume not all fi to be constant and not all to be equal and let Fi = fi−fn ∀, i <
n. Let W ⊂ Rn−1 be an open set such that I = {i < n; Fi(x̂) ̸= 0, ∀x̂ ∈ W} is

non empty. Then there exists a conformal metric ḡ =
1

φ2
g such that Ric ḡ = T
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or Ric ḡ − K̄

2
ḡ = T if, and only if, for all distinct indices i, j, k ∈ I ,(

ln
Fi

Fk

)
,j

= 0,

(
ln
Fi

Fj

)
,ij

= 0, (1.1)

and for all r ̸∈ I, φ,rr = 0.

Our next two results give a characterization of our problems in terms of systems

of ordinary differential equations.

Theorem 1.2 Let (Rn, g), n ≥ 3, be a pseudo-euclidean space, with coordinates

x = (x1, ..., xn), and gij = δijϵi, ϵi = ±1. Consider a diagonal tensor T =
n∑

i=1

εifi(x)dx
2
i . Assume not all the functions fi to be equal and not all to be

constant. Then there exists a metric ḡ =
1

φ2
g such that Ric ḡ = T if, and only

if, there exist functions Uj(xj), 1 ≤ j ≤ n which satisfy the system of differential

equations

U
′′

i =
ϵi

n− 2
( fi −

n∑
s=1

fs

2(n− 1)
)

n∑
s=1

Us +

ϵi

n∑
s=1

ϵs(U
′

s)
2

2

n∑
s=1

Us

(1.2)

and φ =

n∑
s=1

Us(xs). In particular, if fi = fj for i ̸= j then Ui and Uj are

quadratic functions in xi and xj respectively. Moreover, if all functions fi do not

depend on a variable xs, then Us is constant.

Theorem 1.3 Let (Rn, g), n ≥ 3, be a pseudo-euclidean space, with coordinates

x = (x1, ..., xn), and gij = δijϵi, ϵi = ±1. Consider a diagonal tensor T =
n∑

i=1

εifi(x)dx
2
i . Assume not all the functions fi to be equal and not all to be

constant. Then there exists a metric ḡ =
1

φ2
g such that Ric ḡ − K̄

2
ḡ = T if,

and only if, there exist functions Uj(xj), 1 ≤ j ≤ n which satisfy the system of
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differential equations

U
′′

i =
ϵi

n− 2
( fi −

n∑
s=1

fs

n− 1
)

n∑
s=1

Us +

ϵi

n∑
s=1

ϵs(U
′

s)
2

2

n∑
s=1

Us

(1.3)

and φ =

n∑
s=1

Us(xs). In particular, if fi = fj for i ̸= j then Ui and Uj are

quadratic functions in xi and xj respectively. Moreover, if all functions fi do not

depend on a variable xs, then Us is constant.

We observe that a particular case of Theorems 1.2 and 1.3 was obtained in [PT5],

when the the functions fi of the tensor T depend on one variable.

Corollary 1.4 If (Rn, g) is the Euclidean space and 0 < |φ(x)| ≤ C for some

constant C, then the metrics given by Theorems 1.2 and 1.3 are complete on Rn.

Before going on with our results, for the sake of completness, we will state the

theorems analogous to Theorems 1.2 and 1.3 in the cases when the functions fi

of the tensor T are either all equal or they are all constants. The next theorem

considers the case when the functions fi of the tensor T are all equal.

Theorem [PT4] Let (Rn, g), n ≥ 3, be a pseudo-euclidean space, with coordi-

nates x = (x1, ..., xn), and gij = δijϵi, ϵi = ±1. Then there exists ḡ =
1

φ2
g such

that Ric ḡ = fg, (resp. Ric ḡ − K̄

2
ḡ = fg) if, and only if,

φ(x) =

n∑
i=1

(ϵiax
2
i + bixi) + c

f(x) =
−(n− 1)

φ2
λ, (resp. f(x) =

(n− 1)(n− 2)

2φ2
λ, ),

where a, bi, c are real numbers and λ =
∑

i ϵib
2
i − 4ac. Any such metric ḡ is

unique up to homothety. Whenever g is the euclidean metric then:

a) If λ < 0 then ḡ is globally defined on Rn and T is positive (resp. negative)

definite.
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b) If λ ≥ 0 then, excluding the homothety, the set of singularity points of ḡ

consists of

b.1) a point if λ = 0;

b.2) a hyperplane if λ > 0 and a = 0;

b.3) an (n− 1)-dimensional sphere if λ > 0 and a ̸= 0.

The next theorems consider the case when the functions fi of the non zero

tensor T are all constant.

Theorem [PT1] Let (Rn, g) be a pseudo-Euclidean space and let

T =
∑n

i=1 εicidx
2
i be a non zero diagonal tensor. Then there exists ḡ = g/φ2

such that Ric ḡ = T if, and only if, there exits k, 1 ≤ k ≤ n and b ∈ R, such

that ck = 0, bεk < 0 and Tk = b
∑

i̸=k εidx
2
i . In this case, up to homothety,

φ = exp(±
√

−bεk
n− 2

)xk.

Theorem [PT2] If T =
∑n

i=1 εicidx
2
i is a non zero diagonal tensor, then there

exists a solution ḡ such that Ric ḡ − K̄ḡ/2 = 0 if, and only if, there exits k,

1 ≤ k ≤ n and b ∈ R, such that bεk > 0 such that

T =


bεkdx

2
k if n = 3,

b

n∑
i ̸=k,i=1

εidx
2
i +

n− 1

n− 3
bεkdx

2
k if n ≥ 4.

In this case, up to homothety,

φ =

 exp(±
√
bεk xk) if n = 3,

exp

(
±
√

2bεk
(n− 2)(n− 3)

xk

)
if n ≥ 4.

The next theorem considers the case when the tensor T = 0.

Theorem [PT1] [PT2] Let (Rn, g) be a pseudo-Euclidean space. Then there

exists ḡ = g/φ2 such that Ric ḡ = 0 or Ric ḡ − K̄ḡ/2 = 0 if, and only if,

φ =

n∑
j=1

(aεjx
2
j + bjxj) + c, where 4ac−

∑
j

εjb
2
j = 0
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and a, c, bj are real constants. In both cases, K̄ ≡ 0, i.e. Ric ḡ ≡ 0.

We will now state corollaries of Theorem 1.2 obtained by considering u =

φ−(n−2)/2 and the expression of the scalar curvature obtained from the Ricci

tensor T , These corollaries are related to the prescribed scalar curvature problem,

as one can see in Corollary 1.6.

Corollary 1.5 Let (Rn, g) be a pseudo-euclidean space, n ≥ 3, with coordinates

x = (x1, ..., xn), gij = δijϵi, ϵi = ±1. Let K̄ : Rn → R be given by

K̄ = (n− 1)

{
2(

n∑
s=1

ϵsUs)

n∑
s=1

U ′′
s − n

n∑
s=1

ϵs(U
′
s)

2

}
. (1.4)

where Uj(xj), 1 ≤ j ≤ n, are arbitrary nonconstant differentiable functions.

Then the differential equation

4(n− 1)

n− 2
∆gu+ K̄(x)u

n+2
n−2 = 0 (1.5)

where ∆g denotes the laplacian in the metric g, has a solution, globally defined

on Rn, given by

u =

(
n∑

s=1

ϵsUs

n− 2

)−n−2
2

. (1.6)

The geometric interpretation of the above results is the following:

Corollary 1.6 Let (Rn, g) be a pseudo-euclidean space, n ≥ 3 and K̄ a function

given by (1.4). Then there exists a metric ḡ = u
4

n−2 g, where u is given by (1.6),

whose scalar curvature is K̄. In particular, if (Rn, g) is the euclidean space and

u is a bounded function then ḡ is a complete metric.

Examples 1.7 As a direct consequence of Theorems 1.2 and 1.3 and Corollary

1.4, we get the following examples, where we are considering (Rn, g), n ≥ 3,

the pseudo-euclidean space with coordinates (x1, ..., xn) such that gij = δijϵi,

ϵi = ±1.

a) Consider for each j = 1, ..., n, the function Uj = exp(−x2mj

j ), where mj

is a positive integer and the tensor T determined as in Theorem 1.2 by

(1.2). We observe that although this tensor may have singular points
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(depending on the integers mj), there exists ḡ =
1

φ2
g such that Ric ḡ = T ,

globally defined on Rn with φ = exp(−
∑

j x
2mj

j ). Moreover, it follows

from Corollary 1.4, that in the euclidean case, the metric ḡ, is a complete

metric on Rn.

b) Consider any periodic nonconstant function Uj(xj) for each j = 1, ..., n.

Then the symmetric tensor T =

n∑
i=1

fi(x1, ..., xn)dx
2
i , defined as in Theo-

rem 1.2, admits a metric ḡ, on an n-dimensional torus, Tn, conformal to

the pseudo-euclidean metric, whose Ricci tensor is T . Observe that in the

Euclidean case (ϵk = 1,∀k), ḡ is a complete metric on Tn. If we consider

k periodic functions Uj , we get metrics defined on T k × Rn−k, conformal

to the pseudo-euclidean metric. In the euclidean case, if moreover φ is a

bounded function, then ḡ is a complete metrics on T k ×Rn−k.

c) As a consequence of Theorem 1.3, we observe that periodic functions

Uj(xj), for each j = 1, ..., n, determine a tensor T which admits a so-

lution ḡ, conformal to g, for the Einstein equation, defined on Tn. If we

consider k periodic functions Uj , k < n, we get solutions for the Einstein

equation on T k ×Rn−k. In the Euclidean case, if moreover φ is a bounded

function, then ḡ is a complete metric.

We now consider a Riemannian manifold locally conformally flat (Mn, g). It

is easy to see that the following results hold.

Corollary 1.8 Let (Mn, g), n ≥ 3 be Riemannian manifold, locally conformally

flat. Let V be an open subset of M with coordinates x = (x1, ..., xn) such that

gij = δij/F
2. Consider a diagonal symmetric tensor T =

n∑
i=1

fi(x)dx
2
i . Assume

not all functions fi to be equal and not all to be constant. Then there exists

ḡ =
1

ψ2
g such that Ric ḡ = T if, and only if, there exist Uj(xj), 1 ≤ j ≤ n

differentiable functions such that, Uj and φ are given as in Theorem 1.2 and

ψ = φ
F .

The following result provides the analogue theorem for the Einstein equation.

Corollary 1.9 Let (Mn, g), n ≥ 3, be Riemannian manifold, locally conformally
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flat. Let V be an open subset of M with coordinates x = (x1, ..., xn) such that

gij = δij/F
2. Consider a diagonal symmetric tensor T =

n∑
i=1

fi(x)dx
2
i . Assume

not all functions fi to be equal and not all to be constant. Then there exists a

metric ḡ =
1

ψ2
g such that Ric ḡ − K̄

2
ḡ = T if, and only if, there exist Uj(xj),

1 ≤ j ≤ n differentiable functions such that, Uj and φ are given as in Theorem

1.3 and ψ = φ
F .

We observe that there are similar results for manifolds that are locally confor-

mal to the pseudo-euclidean space.

2 Proof of the main results

Before proving our results, we observe that if (Rn, g) is a pseudo-euclidean

space and ḡ = g/φ2 is a conformal metric, then the scalar curvature of ḡ is given

by

K̄ = (n− 1)
(
2φ∆gφ− n|∇gφ|2

)
. (2.1)

Moreover, studying the Ricci and Einstein equations, in the conformal class,

when T =

n∑
i=1

ϵifi(x)dx
2
i is equivalent to studying repectively the following sys-

tems of equations:{
ϵifi =

1
φ2 {(n− 2)φφ,ii + (φ△gφ− (n− 1)|∇gφ|2)εi} ∀ i : 1, ..., n,

φ,ij = 0 ∀i ̸= j,

(2.2)


ϵifi =

1
φ2 {(n− 2)φφ,ii + (−(n− 2)φ△gφ+ (n−1)(n−2)

2 |∇gφ|2)εi}
∀ i : 1, ..., n.

φ,ij = 0 ∀i ̸= j.

(2.3)

where △g and ∇g denote the laplacian and the gradient in the pseudo-euclidean

metric g. It follows from the second and first equations of (2.2) (resp. (2.3)) that

φ =

n∑
i=1

φi(xi) and

ϵiφ
′′

i − ϵjφ
′′

j =
(fi − fj)

(n− 2)
φ, ∀i ̸= j. (2.4)
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Proposition 1.10 Let φ(x1, ..., xn) be a solution of (2.2) or (2.3), where fi(x̂)

are functions that depend on x̂ = (x1, ..., xr) and r < n. Assume not all fi to be

constant and not all to be equal. Then φ,s = 0, ∀s > r.

Proof: If φ is a solution of (2.2) or (2.3), then φ =
∑n

i=1 φi(xi) and (2.4) holds

for all i ̸= j. Now we fix s, such that r < s ≤ n and consider (2.4) for i, j, s

distinct. Taking the derivative with respect to xs we have

(fi − fj)φ,s = 0 ∀ i ̸= j distinct from s.

Assume φ,s ̸= 0 in an open subset W ⊂ Rn. Then fi = fj ∀ i ̸= j, distinct

from s. It follows from (2.4) that ϵiφ
′′

i = ϵjφ
′′

j ∀i ̸= j, distinct from s in W .

Hence, φ
′′

i = 2ci and φ
′′

j = 2cj in W where ϵici = ϵjcj .

It follows from (2.4) that

ϵsφ
′′

s − 2ϵici =
(fs − fi)

(n− 2)
φ ∀ i ̸= s (2.5)

Taking the derivative of (2.5) with respect to xj with j ≤ r, we have

(fs − fi),jφ+ (fs − fi)φ,j = 0 ∀ i ̸= s, j ≤ r. (2.6)

If there exists i0 ̸= s such that fs− fi0 is not a constant in V ⊂W , then there

exists j0 ≤ r such that

φ =
(fs − fi0)

(fs − fi0),j0
φ′
j0

in V . Taking the derivative with respect to xs we get φ,s = 0, which is a

contradiction.

Therefore, ∀i ̸= s, we have fs−fi = ci, where ci ∈ R and it follows from (2.6),

that ciφ
′

j = 0 ∀ j ≤ r, i ̸= s. Since not all functions fi are equal, there exists

i0 such that ci0 ̸= 0. Hence φ
′

j = 0, ∀j ≤ r in W , i.e. φ depends on xr+1, ..., xn.

It follows from (2.2) or (2.3) that fi depend on these variables. However, by

hypothesis, fi depend on x̂. Therefore, we conclude that all functions fi are

constant, which is a contradiction on the hypothesis of the proposition.

We conclude that φ,s = 0, for all s > r.

2.

Proof of Theorem 1.1:

Suppose ḡ = g/φ is a solution of Ric ḡ = T or Ric ḡ− K̄

2
ḡ = T . Then, φ satisfies
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(2.2) (resp. (2.3)) and we are in the conditions of Proposition 1.10. Hence φ,s = 0

for all s > r. In particular, φ,n = 0. It follows from (2.4) that

(n− 2)ϵiφ
′′
i = (fi − fn)φ, ∀i < n. (2.7)

Taking the derivative with respect to xk with k < n and k ̸= i, we have

(fi − fn),kφ+ (fi − fn)φ,k = 0, 1 ≤ i ̸= k < n. (2.8)

Considering Fi = fi − fn, if i ∈ I it follows from (2.8) that the first equality of

(1.1) holds for all i, j ∈ I and k < n distinct from i and j. Moreover, it follows

from the commutativity of the second derivative of lnφ that, (lnFi),ij = (lnFj),ji

for all i ̸= j ∈ I, which proves the second equality of (1.1).

If ℓ ̸∈ I, then Fℓ ≡ 0 and it follows from (2.7) that φ,ℓℓ = 0.

Conversely, if (1.1) holds. Then, ∀i, j ∈ I we have that
Fi

Fj
depends only on

xi and xj and

(
ln
Fi

Fj

)
,ij

= 0. Hence,
Fj

Fi
is a product of functions of separated

variables xi and xj . Therefore, there exist differentiable fuctions Ui(xi) and

Uj(xj) such that
Fj

Fi
=
U

′′

j (xj)

U
′′
i (xi)

. Similarly, for k, i ∈ I, we have
Fk

Fi
=
Ũ

′′

k (xk)

Ũ
′′
i (xi)

.

It follows that
Fk

Fj
=
Ũ

′′

k (xk)U
′′

i (xi)

Ũ
′′
j (xj)Ũ

′′
i (xi)

(2.9)

Taking the derivative, with respect to xi, of the logarithm of (2.9), it follows

that

(
Ũ

′′
j (xj)

U
′′
i (xi)

)
i

= 0. Hence, Ũ
′′

i (xi) is a multiple of U
′′

i (xi). Therefore, for each

i, j ∈ I, we have

Fi

Fj
= Cij

U
′′

j (xj)

U
′′
i (xi)

where Cij ̸= 0 is a real constant.

We conclude that, for each i ∈ I we have a differentiable function Ui(xi), and

for each ℓ ̸∈ I, since φ,ℓℓ = 0, there is a linear function Uℓ(xℓ).

We define

φ =
∑
i∈I

Ui(xi) +
∑
ℓ ̸∈I

Uℓ(xℓ). (2.10)

Then ḡ =
1

φ2
g is a solution of the Ricci equation Ric ḡ = T (respectively the

Einstein equation Ric ḡ − K̄

2
ḡ = T ) and the functions fk of the tensor T are

obtained in terms of the functions Ui and Uℓ by the equations (2.2) (resp. (2.3)).
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2

Proof of Theorem 1.2:

The metric ḡ = g/φ2 satisfies the Ricci equation Ric ḡ = T if, and only if, φ

satisfies (2.2), i.e. there exist Uj(xj), 1 ≤ j ≤ n differentiable functions such that

φ =

n∑
s=1

Us(xs) and fj are given by

fi =
1∑n

s=1 Us

(
ϵi(n− 2)U

′′

i +

n∑
s=1

ϵsU
′′

s

)
− (n− 1)

n∑
s=1

ϵs(U
′

s)
2

n∑
s=1

(Us)
2

.

A straightforward computation shows that this system of equations is equivalent

to (1.2).

If fi = fj for any pair of indices i ̸= j < n, then the functions Ui and Uj are

quadratic functions in xi and xj repectively. In fact, this follows immediately

from (2.4).

Moreover, if all functions fi do not depend on a variable xs, then, by reordering

the variables if necessary, it follows from Proposition 1.10, that φ does not depend

on xs and hence Us is constant.

2

Proof of Theorem 1.3:

The metric ḡ = g/φ2 satisfies the Ricci equation Ric ḡ − K̄ḡ/2 = T if, and only

if, φ satisfies (2.3), i.e. there exist Uj(xj), 1 ≤ j ≤ n differentiable functions such

that φ =

n∑
s=1

Us(xs) and fj are given by

fi =
n− 2∑n
s=1 Us

(
ϵiU

′′

i −
n∑

s=1

ϵsU
′′

s + (n− 1)

∑n
s=1 ϵs(U

′

s)
2

2
∑n

s=1(Us)

)
.

A straightforward computation shows that this system of equations is equivalent

to (1.3).

If fi = fj for any pair of indices i ̸= j, then the functions Ui and Uj are

quadratic functions in xi and xj respectively. This follows immediately from

(2.4).
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Moreover, if all functions fi do not depend on a variable xs, then, by reordering

the variables if necessary, it follows from Proposition 1.10, that φ does not depend

on xs and hence Us is constant.

2

Proof of Corollary 1.4:

Consider the Euclidean space (Rn, g), n ≥ 3 and a metric ḡ given by Theorems

1.2 or 1.3. If 0 < |φ(x)| ≤ C, then the metric ḡ is complete, since there exists a

constant m > 0, such that for any vector v ∈ Rn, |v|ḡ ≥ m|v|.
2

Proof of Corollary 1.5:

It follows from (2.1), that for the metric ḡ of Theorem 1.2 the scalar curvature

is given by (1.4). By defining the function u
−2
n−2 = φ, we conclude that u is a

solution of (1.5).

2

Proof of Corollary 1.6:

This result follows immediately from the previous corollaries, since finding a

metric ḡ = u
4

n−2 g, with scalar curvature K̄ is equivalent to solving equation

(1.5).

2

In order to prove Corollaries 1.8 and 1.9, we consider ψ = φF and apply

Theorems 1.2 and 1.3.
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