
Matemática Contemporânea, Vol. 40, 1–16

http://doi.org/10.21711/231766362011/rmc401

©2011, Sociedade Brasileira de Matemática
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Abstract

Under suitable restrictions on the image of the Gauss mapping

and on the values of the mean curvature, we extend the technique

developed by Colares jointly with the second author in [7], in order to

establish characterization results concerning the Euclidean domains

of the steady state spaceHn+1 and of the hyperbolic space Hn+1. As

applications of such characterizations, we obtain rigidity theorems

for the spacelike hyperplanes of Hn+1 and for the horospheres of

Hn+1.

1 Introduction

In the last years, many authors have approached the problem of estimating the

height function of a compact hypersurface whose boundary is contained into an
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umbilical hypersurface of a certain ambient space. The first result in this direc-

tion is due by Heinz [11] who proved that a compact graph of positive constant

mean curvature H in the 3-dimensional Euclidean space R3 with boundary on a

plane can reach at most height 1
H from the plane. Later on, an optimal bound

was also obtained for compact graphs and also for compact embedded surfaces

with constant mean curvature and boundary on a plane in the 3-dimensional

hyperbolic space H3 by Korevaar, Kusner, Meeks and Solomon [13]. Afterwards,

Rosenberg [23] extended these previous results for the case of a compact embed-

ded hypersurface with a positive constant r-th mean curvature in Rn+1 and in

Hn+1.

In the Lorentzian setting, López obtained in [16] a sharp estimate for the

height of compact spacelike surfaces immersed into the 3-dimensional Lorentz-

Minkowski space L3 with constant mean curvature. For the case of constant

higher order mean curvature, by applying the techniques used by Hoffman, de

Lira and Rosenberg in [8], the second author obtained in [15] another sharp height

estimate for compact spacelike hypersurfaces immersed in Ln+1 with a positive

constant r-th mean curvature. As an application of such estimate, he studied the

nature of the end of a complete spacelike hypersurface in Ln+1.

More recently, the second author jointly with Colares [7] obtained height esti-

mates concerning to a compact spacelike hypersurface Σn immersed with constant

mean curvature H in the half Hn+1 of the de Sitter space which models the so-

called steady state space, when its boundary is contained into some hyperplane

of Hn+1. Moreover, they applied their estimates to describe the end of a com-

plete spacelike hypersurface and to get theorems of characterization concerning

spacelike hyperplanes of Hn+1.

In this paper, we extend the technique developed in [7] in order to establish

characterization results concerning the Euclidean domains of the steady state

spaceHn+1 and of the hyperbolic space Hn+1 (that is, domains entirely contained

in a spacelike hyperplane of Hn+1 and in a horosphere of Hn+1, respectively).

More precisely, we prove the following (cf. Theorems 3.3 and 4.1, respectively):

Let ψ : Σn → Hn+1 be a compact spacelike hypersurface with H2 constant and

whose boundary ∂Σ is contained in a hyperplane Lτ , for some τ > 0. If the mean

curvature H verifies

1 ≤ H ≤ H2,

then Σn is an Euclidean domain of Hn+1.

Let ψ : Σn → Hn+1 be a compact hypersurface, with H2 constant and whose
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boundary ∂Σ is contained in a horosphere Lϱ, for some ϱ > 0. Suppose that

Σn lies in L−
ϱ and that the image of its Gauss mapping N(Σ) is contained into

L+
τ ⊂ Hn+1, for some τ > 0. If the mean curvature H verifies

H ≥ H2 ≥
(ϱ
τ

)2

,

then Σn is an Euclidean domain of Hn+1.

Here, H2 = 2
n(n−1)S2 denotes the mean value of the second elementary sym-

metric function S2 on the eigenvalues of the shape operator of Σn. Moreover,

L−
ϱ and L+

τ stand for regions naturally associated to the horosphere Lϱ and the

hyperplane Lτ , respectively (see Section 4). In our approach, we use suitable ex-

pressions of the Cheng-Yau’s square operator [6] acting on the height and support

functions of the hypersurface (see Lemma 2.1).

As an application of our characterization of the Euclidean domains of Hn+1,

we obtain the following rigidity result concerning complete hypersurfaces with

one end (that is, complete hypersurfaces which can be regarded as the union of a

compact hypersurface whose boundary is contained into a hyperplane of Hn+1,

with a complete hypersurface diffeomorphic to a cylinder; see Theorem 3.4):

The spacelike hyperplanes are the only complete spacelike hypersurfaces with

one end in Hn+1 with H2 constant and whose mean curvature H satisfies 1 ≤
H ≤ H2.

Finally, in Hn+1 we also establish the following characterization for the horo-

spheres (cf. Theorem 4.2):

Let ψ : Σn → Hn+1 be a complete hypersurface with one end, which is tangent

from below at the infinity to a horosphere Lϱ of Hn+1, for some ϱ > 0. Suppose

that N(Σ) is contained into L+
τ , for some τ > 0. If H2 is constant and the mean

curvature H satisfies

H ≥ H2 ≥
(ϱ
τ

)2

,

then Σn is a horosphere of Hn+1.

2 Preliminaries

Let M
n+1

be a semi-Riemannian manifold of index ν ≤ 1, with metric tensor

⟨ , ⟩ and Levi-Civita conection ∇. We denote by C∞(M) the ring of real functions

of class C∞ on M
n+1

and by X(M) the C∞(M)-module of vector fields of class

C∞ on M
n+1

. For a vector field X ∈ X(M), let ϵX = ⟨X,X⟩. We say that X



4 C.P. Aquino, H. F. de Lima and M. A. L. Velásquez

is a unit vector field when ϵX = ±1, timelike unit vector field if ϵX = −1 and

spacelike unit vector field if ϵX = 1.

In all that follows, we consider Riemannian immersions ψ : Σn → M
n+1

,

namely, immersions from a connected, n-dimensional orientable differentiable

manifold Σn into the semi-Riemannian manifold M
n+1

, such that the induced

metric tensor turns Σn into a Riemannian manifold. In this case, it is customary

to denote (and so will do) the metric tensors of Σn and M
n+1

by the same

symbol. In the Lorentz case (that is, ν = −1), we refer to Σn as a spacelike

hypersurface of M
n+1

. When M
n+1

is Riemannian (namely, if ν = 0), Σn is

always assumed orientable, and in the Lorentzian case, we assume that M
n+1

is

time-orientable (cf. [22], Lemma 5.32). In any case Σn is orientated by the choice

of a unit normal vector field N on it. Let ∇ be a Levi-Civita connection of Σn.

In this setting, if we let A : X(Σ) → X(Σ) denote the corresponding shape

operator (or second fundamental form) of Σn, then, at each p ∈ Σn, A restricts

to a self-adjoint linear map Ap : TpΣ → TpΣ. Thus, for fixed p ∈ Σn, the

spectral theorem allows us to choose on TpΣ an orthonormal basis {E1, . . . , En}
of eigenvectors of Ap, with corresponding eigenvalues λ1, . . . , λn, respectively.

Along this paper, we will deal with the first three r-th mean curvatures of Σn,

namely

H =
1

n
ϵN

n∑
i=1

λi,

H2 =
2

n(n− 1)

∑
i<j

λiλj ,

H3 =
6

n(n− 1)(n− 2)
ϵN

∑
i<j<k

λiλjλk.

One also let the Newton transformation T : X(Σ) → X(Σ) be given by setting

T = nH Id− ϵNA,

where Id : X(Σ) → X(Σ) denotes the identity map.

Associated to Newton transformation T one has the well known Cheng-Yau’s

square operator [6]

2 : C∞(Σ) → C∞(Σ)

ξ 7→ 2 ξ = tr(T ◦Hess ξ).

When M
n+1

has constant sectional curvature, Rosenberg proved in [23] that

2 ξ = divΣ(T ∇ξ),
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where divΣ stands for the divergence on Σn. Moreover, from Lemma 3.10 of [9],

when H2 > 0 we have that 2 is an elliptic operator.

For a smooth function g : R → R and ξ ∈ C∞(Σ), it follows from the properties

of the Hessian of functions that

2(g ◦ ξ) = g′(ξ)2 ξ + g′′(ξ)⟨T∇ξ,∇ξ⟩. (2.1)

Now, let Mn be a n-dimensional (n ≥ 2) oriented Riemannian manifold with

metric ⟨ , ⟩M , I ⊂ R an interval with the induced metric dt2 and f : I → R
a positive smooth function. In the product differentiable manifold I ×Mn, let

πI and πM denote the projections onto the I and M factors, respectively. A

particular class of semi-Riemannian manifolds is the one obtained by furnishing

I ×Mn with the metric tensor

⟨ , ⟩ = ϵ (πI)
∗ (
dt2

)
+ (f ◦ πI)2 (πM )∗ (⟨ , ⟩M ) ,

where ϵ ∈ {−1, 1}. Such a space is called a semi-Riemannian warped product,

and in what follows we will write ϵI ×f M
n to denote it. In this setting, Mn is

called the Riemannian fiber of ϵI ×f M
n.

The formulas collected in the following lemma are particular cases of results

obtained by Aĺıas and Colares in [2] and Aĺıas, Impera and Rigoli in [4].

Lemma 2.1. Let M
n+1

= ϵI ×f M
n be a semi-Riemannian warped product and

ψ : Σn → M
n+1

a Riemannian immersion, with unit normal vector field N .

Then, by denoting h = πI |Σ : Σn → I the vertical height function of Σn, we have

2h = (log f)′(h){ϵ n(n− 1)H − ⟨T∇h,∇h⟩}+ ϵ n(n− 1)⟨N, ∂t⟩H2.

Moreover, if the Riemannian fiber Mn of M
n+1

has constant sectional curvature

κ, we have that

2⟨N, f(h)∂t⟩ = −ϵn(n− 1)

2
{⟨∇H2, f(h)∂t⟩+ 2f ′(h)H2

+⟨N, f(h)∂t⟩(nHH2 − (n− 2)H3)}

−ϵ n(n− 1)⟨N, f(h)∂t⟩
{

κ

f2(h)
− (log f)′′(h)

}
|∇h|2

+ϵ ⟨N, f(h)∂t⟩
{

κ

f2(h)
− (log f)′′(h)

}
⟨T∇h,∇h⟩.
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3 Euclidean domains of the steaty state space

Let Ln+2 denote the (n + 2)-dimensional Lorentz-Minkowski space (n ≥ 2),

that is, the real vector space Rn+2 endowed with the Lorentz metric defined by

⟨v, w⟩ =
n+1∑
i=1

viwi − vn+2wn+2,

for all v, w ∈ Rn+2. We define the (n + 1)-dimensional de Sitter space Sn+1
1 as

the following hyperquadric of Ln+2

Sn+1
1 =

{
p ∈ Ln+2; ⟨p, p⟩ = 1

}
.

The induced metric from ⟨ , ⟩ makes Sn+1
1 into a Lorentz manifold with constant

sectional curvature one. Let a ∈ Ln+2 be a past-pointing null vector, that is,

⟨a, a⟩ = 0 and ⟨a, en+2⟩ > 0, where en+2 = (0, . . . , 0, 1). Then the open region of

the de Sitter space Sn+1
1 , given by

Hn+1 =
{
x ∈ Sn+1

1 ; ⟨x, a⟩ > 0
}

is the so-called steady state space. Observe thatHn+1 is a non-complete manifold,

being only half of the de Sitter space. Its boundary, as a subset of Sn+1
1 , is the

null hypersurface

L0 =
{
x ∈ Sn+1

1 ; ⟨x, a⟩ = 0
}
,

whose topology is that of R× Sn−1 (cf. Section 2 of [21]).

According [1], the null hypersurface L0 represents the past infinity of Hn+1,

while the limit boundary

L∞ = {x ∈ Sn+1
1 ; ⟨x, a⟩ = ∞}

represents the future infinity of Hn+1.

Remark 3.1. We note that Hn+1 corresponds to a model of the universe that

was proposed by Bondi and Gold [5] and Hoyle [12], when looking for a model of

the universe which looks the same not only at all points and in all directions, that

is, spatially isotropic and homogeneous, but at all times (cf. Section 5.2 of [10]).

Now, we shall consider in Hn+1 the timelike field

K = −⟨x, a⟩x+ a.
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We easily see that

∇V K = −⟨x, a⟩V, ∀V ∈ X(Hn+1),

that is, K is closed and conformal field on Hn+1 (cf. [14], Section 5). Then, from

Proposition 1 of [19], we have that the n-dimensional distribution D defined on

Hn+1 by

p ∈ Hn+1 7−→ D(p) =
{
v ∈ TpH

n+1; ⟨K(p), v⟩ = 0
}

determines a codimension one spacelike foliation F (K) which is oriented by K.

Moreover, from Example 1 of [18], we conclude that the leaves of F (K) are given

by

Lτ =
{
x ∈ Sn+1

1 ; ⟨x, a⟩ = τ
}
, τ > 0,

which are totally umbilical hypersurfaces of Hn+1 isometric to the Euclidean

space Rn, and having constant mean curvature one with respect to the unit

normal fields

Nτ = x− 1

τ
a, x ∈ Lτ . (3.1)

Remark 3.2. An explicit isometry between the leaves Lτ and Rn can be found at

Section 2 of [1]. So, in what follows, we will refer each leave Lτ as a hyperplane

of Hn+1.

We observe that the steady state space Hn+1 can also be expressed in an

isometrically equivalent way as the following Robertson-Walker spacetime:

−R×et Rn.

To see it, take b ∈ Ln+2 another null vector such that ⟨a, b⟩ = 1 and let

Φ : Hn+1 → −R×et Rn be the map given by

Φ(x) =

(
ln(⟨x, a⟩), x− ⟨x, a⟩b− ⟨x, b⟩a

⟨x, a⟩

)
.

Then it can easily be checked that Φ is an isometry between both spaces which

conserves time orientation (see [1], Section 4). In particular, for all τ > 0, we

have that

Φ (Lτ ) = {ln τ} × Rn and Φ∗(Nτ ) = ∂t.

Let ψ : Σn → Hn+1 be a spacelike hypersurface of Hn+1. We recall that there

exists a unique unitary timelike normal field N globally defined on Σn which

is future-directed (that is, ⟨N, en+2⟩ < 0). Throughout this paper we will refer
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to N as the future-pointing Gauss mapping of Σn. Moreover, we note that the

Gauss mapping N of Σn can be thought of as a map

N : Σn → Hn+1

taking values in the hyperbolic space

Hn+1 =
{
x ∈ Ln+2; ⟨x, x⟩ = −1, ⟨x, a⟩ < 0

}
,

where a is a non-zero null vector in Ln+2, which will be chosen as in the previous

section. In this setting, the image N(Σ) is called the hyperbolic image of Σn.

Furthermore, we note that all the horospheres of Hn+1 can be realized in the

Minkowski model in the following way

Lρ =
{
x ∈ Hn+1; ⟨x, a⟩ = ρ

}
, ρ > 0.

As observed in [7], when Σn is a spacelike hypersurface of Hn+1 whose bound-

ary in some hyperplane Lτ and its hyperbolic image is contained in the closure

of the interior domain enclosed by some horosphere Lϱ, we must have ϱ ≥ τ .

When a compact spacelike hypersurface ψ : Σn → Hn+1 is entirely contained

into some hyperplane Lτ , it is called an Euclidean domain of Hn+1. Now, we are

in position to state and prove our first result.

Theorem 3.3. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface with

H2 constant and whose boundary ∂Σ is contained in a hyperplane Lτ , for some

τ > 0. If the mean curvature H verifies

1 ≤ H ≤ H2, (3.2)

then Σn is an Euclidean domain of Hn+1.

Proof. We consider the warped product model Hn+1 = −R ×et Rn and define

the function ξ : Σn → R by

ξ(p) = c eh(p) − ⟨N,V ⟩p, (3.3)

where h = πR|Σ : Σn → R is the vertical height function of Σn, V = eh∂t, N is

the future-pointing Gauss mapping of Σn and c is a positive constant.

From equation (2.1) and Lemma 2.1 we have

2 ξ = c2 eh −2 ⟨N,V ⟩ (3.4)

= −n(n− 1)c eh(H + ⟨N, ∂t⟩H2)

−1

2
n(n− 1)eh {2H2 + ⟨N, ∂t⟩(nHH2 − (n− 2)H3)} .
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We claim that

nHH2 − (n− 2)H3 ≥ 2H
3/2
2 . (3.5)

In fact, from (3.2) and Proposition 2.3 of [9] we have H ≥ H
1/2
2 and H2

2 ≥ HH3.

Next,

HH2 −H3 ≥ HH2 −
H2

2

H
=
H2

H
(H2 −H2) ≥ 0.

Thus,

nHH2 − (n− 2)H3 = nHH2 − nH3 + 2H3 + 2HH2 − 2HH2

= (n− 2)(HH2 −H3) + 2HH2

≥ 2H
3/2
2 .

Now, since ⟨N, ∂t⟩ ≤ −1, the relationships given in (3.4) and (3.5) assure us

that

1

n(n− 1)
2 ξ ≥ eh

{
−cH − c ⟨N, ∂t⟩H2 −H2 − ⟨N, ∂t⟩H3/2

2

}
≥ eh

{
−cH + cH2 −H2 +H

3/2
2

}
= eh

{
c (H2 −H) +H2(H

1/2
2 − 1)

}
≥ 0 ,

where in last inequality we use hypothesis (3.2). Then 2 ξ ≥ 0 em Σn. Conse-

quently, since H2 > 0 guarantees that the operator □ is elliptic (see Lemma 3.10

of [9]), the maximum principle ensures that

ξ ≤ ξ
∣∣
∂Σ
. (3.6)

On the other hand, the compactness of Σn we obtain that the hyperbolic image

of Σn is contained in the closure of a interior domain of a horosphere Lϱ ⊂ Hn+1,

for some ϱ > 0. This implies that 0 > ⟨N, a⟩ ≥ −ϱ. Hence, along the boundary

∂Σ we have

−1 ≥ ⟨N, ∂t⟩
∣∣
∂Σ

= ⟨N,Nτ ⟩ = ⟨N,−ψ +
1

τ
a⟩ ≥ −ϱ

τ
,

where Nτ is the normal field of Lτ ⊂ Hn+1. Thus, from (3.3) and (3.6),

c eh ≤ c eh − ⟨N, eh∂t⟩ = ξ ≤ ξ
∣∣
∂Σ

≤ c+
ϱ

τ
.

Thus, we get

eh ≤ 1 +
ϱ

τc
. (3.7)

Consequently, since the positive constant c is arbitrary, we have that h ≡ 0 and,

hence, we conclude that ψ(Σn) ⊂ Lτ .
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According [15], we say that a complete spacelike hypersurface ψ : Σn → Hn+1

has one end Cn if Σn can be regarded as Σn = Σn
τ ∪ Cn, where Σn

τ is a compact

hypersurface with boundary contained into a hyperplane Lτ , for some τ > 0, and

Cn is diffeomorphic to a cylinder [ln τ,+∞)× Sn−1.

From Theorem 3.3, we obtain the following rigidity result:

Theorem 3.4. The spacelike hyperplanes are the only complete spacelike hyper-

surfaces with one end in Hn+1 with H2 constant and whose mean curvature H

satisfies 1 ≤ H ≤ H2.

Proof. Suppose, by contradiction that, Σn is not a spacelike hyperplane of Hn+1.

Then there are constants τ2 > τ1 > 0 such that the Lτ1∩Σn ̸= ∅ and Lτ2∩Σn ̸= ∅.
Consequently, from Theorem 3.3, we get that Σn

τ1 ⊂ Lτ1 and Σn
τ2 ⊂ Lτ2 . Hence,

since Σn
τ1 ⊂ Σn

τ2 , we arrive at a contradiction.

4 Euclidean domains of the hyperbolic space

In this section, instead of the more commonly used half-space model for the

(n+ 1)-dimensional hyperbolic space, we consider the warped product model

Hn+1 = R×et Rn.

An explicit isometry between these two models can be found at [3], from where

it can easily be seen that the fibers Mt0 = {t0} × Rn of the warped product

model are precisely the horospheres of Hn+1. Moreover, these have constant

mean curvature 1 if we take the orientation given by the unit normal vector field

N = −∂t (cf. Section 4 of [20]).

Another useful model for Hn+1 is (following the notation of the previous sec-

tion) the so-called Lorentz model, obtained by furnishing the hyperquadric

{p ∈ Ln+2; ⟨p, p⟩ = −1, pn+2 > 0}

with the (Riemannian) metric induced by the Lorentz metric of Ln+2. In this

setting, if a ∈ Ln+2 denotes a fixed null vector as in the beginning of the previous

section, we have that a typical horosphere is

Lϱ = {p ∈ Hn+1; ⟨p, a⟩ = ϱ},

for some ϱ > 0. A straightforward computation shows that

ηp = p+
1

ϱ
a ∈ Hn+1
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is a unit normal vector field along Lϱ, with respect to which Lϱ has mean curva-

ture −1 (cf. [17]). Therefore, any isometry Φ between the warped product and

Lorentz models of Hn+1 must carry (∂t)q to Φ∗(∂t) = ηΦ(q). Thus, it is natural

to consider the Lorentz Gauss mapping of a hypersurface ψ : Σn → Hn+1 with

respect to N as given by

Σn → Hn+1

p 7→ −Φ∗(Np)

In order to establish our next result, according to [17], we will consider the

following region naturally associated to a horosphere Lϱ of Hn+1:

L−
ϱ = {x ∈ Hn+1; ⟨x, a⟩ ≤ ϱ };

and, according to [21], we will also work with the following region naturally

associated to a hyperplane Lτ of Hn+1:

L+
τ = {x ∈ Hn+1; ⟨x, a⟩ ≥ τ }.

Moreover, in a analogous way of the previous section, when a compact hypersur-

face ψ : Σn → Hn+1 is entirely contained into some horosphere Lϱ, it is called

an Euclidean domain of Hn+1.

Theorem 4.1. Let ψ : Σn → Hn+1 be a compact hypersurface, with H2 constant

and whose boundary ∂Σ is contained in a horosphere Lϱ, for some ϱ > 0. Suppose

that Σn ⊂ L−
ϱ and that the image of its Gauss mapping N(Σ) is contained in

L+
τ ⊂ Hn+1, for some τ > 0. If the mean curvature H verifies

H ≥ H2 ≥
(ϱ
τ

)2

, (4.1)

then Σn is an Euclidean domain of Hn+1.

Proof. We consider the warped product model Hn+1 = R×et Rn and orient Σn

by choosing a unit normal vector field N such that

⟨N, ∂t⟩ ≥ −1. (4.2)

We observe that

Σn ⊂ L−
ϱ if, and only if, ⟨ψ, a⟩ ≤ ϱ, (4.3)

and

N(Σn) ⊂ L+
τ if, and only if, ⟨N, a⟩ ≥ τ. (4.4)
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Thus, since from (4.3) and (4.4) we have that

−1 ≤ ⟨N, ∂t⟩ = ⟨N,−ψ − 1

⟨ψ, a⟩
a⟩ = −⟨N, a⟩

⟨ψ, a⟩
≤ −

(
τ

ϱ

)
,

we get

− ⟨N, ∂t⟩ ≥
τ

ϱ
, (4.5)

On the other hand, similarly as in the proof of Theorem 3.3, our assumption

on the curvatures H and H2 guarantees that the inequality (3.5) is valid.

Now, we consider the function ξ : Σn → R given by

ξ(p) = c eh(p) + ⟨N,V ⟩p, (4.6)

where h is the vertical height function of Σn, V = eh∂t and c > 1 is a constant.

From equation (2.1) and Lemma 2.1, we obtain

2 ξ = c2 eh +2 ⟨N,V ⟩ (4.7)

= n(n− 1)c eh(H + ⟨N, ∂t⟩H2)

−n(n− 1)

2
eh {2H2 + ⟨N, ∂t⟩(nHH2 − (n− 2)H3)}

≥ n(n− 1)eh
{
c (H + ⟨N, ∂t⟩H2)−H2

(
1 + ⟨N, ∂t⟩H1/2

)}
,

where in last inequality we use (3.5). So, applying (4.2) and (4.5) in (4.7) we

obtain

1

n(n+ 1)
2 ξ ≥ eh

{
c (H −H2) +H2

(
τ

ϱ
H

1/2
2 − 1

)}
≥ 0 ,

for any constant c > 1, where in last inequality we use (4.1). Then 2 ξ ≥ 0 em

Σn. We observe that 2 is elliptic, because H2 is constant and H2 > 0. Thus, the

maximum principle ensures that

ξ ≤ ξ
∣∣
∂Σ
. (4.8)

From (4.6), (4.2), (4.8) and (4.5) follows that

eh(c− 1) ≤ ξ ≤ ξ
∣∣
∂Σ

= c+ ⟨N, ∂t⟩
∣∣
∂Σ

≤ c−
(
τ

ϱ

)
,

and therefore

eh ≤ c

c− 1
− τ

(c− 1)ϱ
,

for any constant c > 1. Finally, following the last steps of the proof of Theo-

rem 3.3, we obtain that ψ(Σn) ⊂ Lϱ.
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Similarly to the situation of the steady state space, we say that a complete

hypersurface ψ : Σn → Hn+1 has one end Cn when Σn can be regarded as

Σn = Σn
ϱ ∪ Cn, where Σn

ϱ is a compact hypersurface with boundary contained

into a horosphere Lϱ and Cn is diffeomorphic to the cylinder [ln ϱ,+∞)× Sn−1.

Now, let ψ : Σn → Hn+1 be a complete hypersurface with one. We say that

Σn is tangent from below at the infinity to a horosphere Lϱ, if either Σn is a

horosphere Lϱ̃, for some ϱ̃ ≤ ϱ or, for all ϱ̃ ≤ ϱ, we have

i. Lϱ̃ ∩ Σn ̸= ∅;

ii. the compact part of Σn is contained in L−
ϱ̃ .

Finally, we are in position to present our last result:

Theorem 4.2. Let ψ : Σn → Hn+1 be a complete hypersurface with one end,

which is tangent from below at the infinity to a horosphere Lϱ, for some ϱ > 0.

Suppose that N(Σ) ⊂ L+
τ , for some τ > 0. If H2 is constant and the mean

curvature H satisfies

H ≥ H2 ≥
(ϱ
τ

)2

,

then Σn is a horosphere of Hn+1.

Proof. Suppose that Lϱ̃ ∩ Σn ̸= ∅, for some ϱ̃ ≤ ϱ. Thus,

H ≥ H2 ≥
(ϱ
τ

)2

≥
(
ϱ̃

τ

)2

.

Hence, from Theorem 4.1, we obtain that Σn ⊂ Lϱ̃. Therefore, from the com-

pleteness of Σn we conclude that, in fact, Σn = Lϱ̃.
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Universidade Federal do Piaúı,
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