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COMPLETE MINIMAL SURFACES IN R3 OF
FINITE TOPOLOGY AND INFINITE TOTAL
CURVATURE.

Celso J. Costa

The construction of examples with prescribed geometry or topology is a basic
problem in the theory of minimal surfaces in R® . The aim of this work is
to construct complete minimal surfaces in R?® with finite topology and infinite
total curvature. In Theorem A we take a perturbation of a Catenoid to obtain
a proper complete minimal surface in R® with one end of Catenoid type and
one end of infinite total curvature. In Theorem B we construct a one-parameter
family of complete minimal surfaces in R3 given by a perturbation of Costa’s
surface and in Theorem C we prove that every compact Riemann Surface of
genus one punctured at a point can be immersed in R2 as a complete minimal
surface with infinite total curvature.

More precisely, we prove the following results.

Theorem A: (Perturbation of the Catenoid) For every a > 0 we have a
Weierstrass representation of a complete minimal immersion X : C\ {0} - R?

of infinite total curvature and with one end of Catenoid type given by

—az’

e
o) = 2o = & (1)

Furthermore, X is proper and for each fized v > 0 the curves 38, := X(re),0 <
6 < 2m lie in a plane P, parallel to the (21, 22)-plane of R® and P,N P, = 0, «f
r#r.
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Theorem B: (Perturbation of Costa’s surface) There ezists a one-parameter
family of complete minimal surfaces in R® of genus one, three ends and infinite
total curvature. Furthermore, each membér of this family has two ends of finite

total curvature, respectively a planar end and a Catenoid type end.

Theorem C: Let M, be a compact Riemann surface of genus one and p € M;
a point. Then, there ezists a complete minimal immersion X : M; \ {p} — R?

of infinite total curvature.

We will use Weierstrass representations to construct examples of complete
minimal surfaces in R with the properties required by Theorems A, B, and C.

We summarize this procedure in Theorem 1 below.

Theorem 1:Let M be a non compact, connected Riemann surface M and let
(g9,m) be a pair, where g is a meromorphic function and  a holomorphic differ-

ential on M. Suppose that (g,n) satisfies:

(c1)a point p € M is a pole of order m of g if and only if p is a zero of order
2m of 7,

(c2) for every closed curve v in M

Re/gn=0,/g’n=/n,

4 4 Y

(ca) For every divergent curve | in M
Ja+1ainl= +oo.

Then, X : M — R3,

X() = Re [ (1= g*)m,i(L+g'n), 29m), 20 € M, (2)

is a complete minimal immersion of M in R®. The pair (g,n) is called the

Weierstrass representation of X.
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In order to prove Theorems B and C, we need some basic facts and notations

about elliptic functions. In C we consider the set FM

FM={r=z+iye Cia®+y* > 1,|z |< 1/2,y > 0}
and for 7 € FM the lattices L(1) = {m + nt,m,n € Z}. Then C/L(r) is
a genus one compact Riemann surface. Also, it is well known that if 7 is a
compact Riemann surface of genus one, then there exists + € FM such that

C/L(r) is conformally equivalent to M. Associated to the lattices L(t) we have

the P-function of Weierstrass. Also, we define the complex numbers

€j = P(wJ):] == 172’3;92 = _42 €€k, g3 = 46192631 (3)
i<k
where
1
wy =1/2,w, = — ;T,wa =7/2
and
20;= = [ P(s)dz,=1,3, (4)
’ |

where, [; : [0,1] — C are the paths
L(t)=7/3+¢,1s(t) =1/3 + tr. (5)

Observe that [; is a basis of the first group of homology of C/L(7).

1. Proof of Theorem A.

We observe that if @ = 0 the pair (9,m) given in (1) is the Weierstrass
representation of the Catenoid. Nevertheless, by using the hypothesis a > 0 we
obtain

dz 5
gn=— and Res,g’n = Res,n =0, (6)
for every 2 € CU {oo}, where Resy represents the residue of the differential ¢.
So, (g,7) satisfies (c;) of Theorem 1. On the other hand, g is holomorphic in
C\ {0} and 5(2) # 0 for every z € C \ {0}. So, (g,7) satisfies (c;) of Theorem
1. This shows that X : C \ {0} — R? defined by (g,7) as in (2) is a minimal

immersion. Also, from (6) we find that

Xa(z) = Re/ gn = log

)

z
<0
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where X3 is the third coordinate of X. Then X is proper and complete. Fur-
thermore, if » > 0,

: ) T
X3(re‘e) = log I—z—l
0

This completes the proof of Theorem A.

2. Proof of Theorem B.

Let L(iy),y > 1 are the lattices L(iy) = {m + niy € C;m,n € Z}. We will
prove that there exist € > 0 and real positive functions a = a(y), A = A(y),1 <
y < 1+ € such that

9y = ’\eapgwﬂu = e_apﬁw (M

where

P! . (P-¢)

72y =

(P —e1) P—e

9y =

dz (8)

are Weierstrass representations of complete minimal immersions of

M, = C/L(iy) — {x(0), m(w1), m(w2)} (9)

in R® with the desired properties. ‘Here m : C — C/L(iy) is the canonical
projection, P is the function of Weierstrass of L(iy) and ej,j = 1,2,3 is as
given in (3).

Also, we will prove that limy_,; a(y) = 0 and limy_,; A(y) = & m With
these limit values for o and A, (7) is exactly the Weierstrass representation of
Costa’s surface. In this sense, the one-parameter family that we obtain is a
perturbation of this surface (see Remark 1 after the proof of Theorem B).

We observe that g, and 7, are analytic in M, and 7, does not have zeros.

So, (gy,ny) satisfies (c;) of Theorem 1. Also, by using that

(P =4 T[(P - ) = 4P° — 2P — gs, (10)

i=1
we find that

—anep| P—e1 |2+4AzeaneP|P_e3| ldz|.

2 -
|77y|+|9y"1y|—5 |P—Cz| |P_ell
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As P is an even function with a double pole at z = 0, we conclude that (7
satisfies (c3) of Theorem 1.
On the other hand, if A = A, is a real number and | C M, is a closed curve,

we obtain
Re/lg,,n,,:/\log| P(z) - e |, = 0. (11)
So, (gy,my) satisfies the first equality in (c,) of Theorem 1.
Also, from (8) and (10) we conclude that

2
Ty = P—ez+2(ez—e1)+(ez—_61—)— dz (12)
i P—Cz
and
= N2 €1 — €3
@) =4 (14 5= d. (13)

So, from (7) and (12) we find that

Il

My

[P+(ez—2e1)+(P el)] [ —aP+a2§(;—1!)"a"-2P"] dz =

— ey

[P —aP? + (e2 — 2¢;) — afe; — 2e;)P +

+ o [i ﬂa"-zp"} fiy =

(e2 — 81)2 (e2 — &)
Pe, a el P|dz

= {P- ( P" 12)+(62—261)—a(ez—2el)P+
+ —:_E [P(z—wz)—ez]—a(ez—e )2 %[P(Z—wz)—ez]}dz

+ o [Z;—( e 2P"] i

where g, is given in (3). Then we can write

a
M= [=5P"+ % + 1P + 7P(z — w)ldz + o, (14)
where
2
=03 € +2€183 €3
T = Fa 4 262 — €3 €2 — €3 (62 ¥ elea)a,
71 = 1- a(ez = 261), (15)

00 n—2
e (1 —aep) and 6, = [Z(—l)"aTP"J Ty-
=2 ®;

€3 — €3
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Also, from (7) and (13) we can obtain

€3 e n—2

1 2 ei= — €3 2( 81—83)°°a
— = |1 P —P 1+ ——=
e [+a TP TSP T\ ,,2 nl

P

= {1+aP+M+a(e1—e3)+ i [P(z —w;) — ]
€1 — €2 €1 — €2
00 n—2
2 €1 — €3 a n
" (1+P—el)"z=:z n! i
So,
9oty = 4X°[Bo + 1P + B2 P(z — w1) + o?6)dz, (16)
where,
Bo = 1 [a(e? + eze3) — €3]
i liovreen LR 2],
Bi = a [z= : (1 + ceq) and (17)
€1 — €3
1 e; —ez) a7l
by = (1+P—el)ﬂz=:2 n! %

From (14) and (16) and by using that P is an even function we can conclude
that
Res,gzr,y = Res,n, =0 (18)

for every z € M, where M, is defined in (9). Now we need an assertion:

Assertion 1. There exist real functions A; = A;(y), B; = Bj(y),y > 1, such
that
/4 §; = 2mA; + 2w By i = 1,2,k = 1,3,
k

where Iy, is defined in (5) and 6; are given in (15) and (17).
Proof. From [7] vol 3 page 59 and vol. 4 page 109, we find that
/1‘ Prdz = —2mB*_ | +2wB®, k=13,n=12..., (19)
x
where BR_, = B} ,(y), By = B2(y),y > 1 are the c¢™ functions given by

g 3g. gs
B;=1,B}=0,Bf=0,322=E,B;’:z_o’,Bg:ﬁ, (20)
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and

2n —1
M= — - _pn-l &B" = land n >3. (21
r 4(21’1 o l)Br— 292 + (2 n + 1) r-393, T =n,n+1land n ( )

Here, we observe that in the rectangular lattices L(iy),y > 1,9, = 92(y) and
g3 = g3(y) as defined in (3) are real functions of variable y.
"On the other hand, from (12), (15), and (17) we can write

= ( wJ)
=3 alp® 4 )dz_[ afpry g T8 g . g
: (Z 2 oy

where (k,t,7) is a permutation of (1,2,3) and af = di(a),n = 0,1---,4 =
b (a) are ¢® functions of a given by convergent series. By integrating term by
term &; on curves Iy and by using (5), (19), (20), and (21) we conclude the proof

of Assertion 1.

Now we continue the proof of Theorem B. By using Assertion 1 together
with (4), (14), (16), and Legendre’s relation we obtain

| 9o = 43180 — 20408, + B2) + a*(2nsy + By), (22)
1
S 7= = 2103+ 72) + ¥ (20, s + By), (23)
1

[ g:‘r]y = 4/\2{[ﬁo = 27]1(,@1 £ ﬂz) + 042(27]1 A+ Bl)]iy + (24)
+ 2mi(B1 + B, — o?4)},

and

/1 Ty = [ —2m(n1 +72) + o*(201 4, + By)Jiy + (25)
3
+ 2mi(y + 7y, — azA;).

Now for a small e > 0 we consider the ¢® function H : (0,00) x R x

(1—€*,00) = C given by

H(’\) a)y) = Hl(’\y a:y) + ZHZ(’\a a:y):
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where H; = H;(A, a,y),7 = 1,2 are the functions

Hl=/lg;7ly_/7lny2=_i [ gjﬂy~/17y|-
1 Iy 1 13

Observe that at the point

P= (el\/l/—27r,0, 1)

we have Hy(P) = H,(P) = 0 and (g91,m1) is the Weierstrass representation of
Costa’s surface. Also, we recall that in the lattice L(z) we have 27, = 7, ¢; =

—e3 > 0,e; = 0. So, from (15), (17), (22), (23), (24), and (25) we find that

6H1 _ 6H2 _
Sr(P) = —avam, ZX(P) = 4vom,
6H1 = _ 261 2 4

aa (P) = T(el — ?61 +7I' ) B.I'ld
6Hz = _ 261 2 4_7!’ 2

T ) = SlEt gt

By using that e; > 27 we find that

O0(H\,H,) 16 2 2
detw— ?\/ﬁ(e1+7r)<0.

Hence, from Implicit Theorem’s Function there exist € > 0, open sets I =

(1—5,1+€),J (61\/1/27I' €, 61\/—+E —€, E and a ¢® function 6 : | —
J,8(y) = (M), a(y),y) such that

H(b(y),y) = 0. (26)

So, by using (11) and (18) we conclude that if 1 < y < 14+ ¢ and A =
A(y), @ = a(y) are given by (26), then the pair (g,,n,) satisfies the condition (c;)
of Theorem 1. This completes the proof of the existence of ¢ functions a(y) and
Ay),1 < y < 14¢, such that (g,n,) given in (7) are Weierstrass representations
of a one-parameter family of complete minimal immersions X, : M, — R3.

We recall that M, are given by (9). Observe that at z = w;,j = 1,2, each
gy has, respectively, a pole of order three and a zero of order one. Also, at

these points, each 7, has respectively a zero of order four and a double pole. So
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z = ws are ends of Catenoid type and z = w, are planar ends of the immersions
Xy. Finally, we affirm that gy has essential singularities at z = 0. That is,
a(y) # 0 forevery 1 <y < 1+e¢. In fact, suppose that a(y) = 0 for some
1 <y <1+e Then,at z =0, gy has a single zero and 7, has a double
pole, respectively. In this situation (9ymy) is a Weierstrass representation of a
complete minimal surface in R? of genus one with finite total curvature and
three ends. Furthermore, two ends are of Catenoid type, one end is planar of
order two, and the normal vectors at the ends are parallel. On the other hand,
as y > 1, Theorem 1 in [1] shows that there does not exist an immersion in R3
with these properties. This contradiction proves that z = 0 are ends of infinite
total of the complete minimal immersions Xy for every 1 < y < 1+e¢. This

completes the proof of Theorem B.

Remark 1. Suppose for every 1 <y < 1+ ¢ the complete minimal immersions
Zy: M, - R? Z, = Xy 0 ¢y where p, : M; — M, are the diffeomorphism
py(mi(u + 1v)) = m(u + iyv). Observe that X1 is Costa’s surface. By using
properties of the P-function it is not hard to prove that on compact sets K C

M,, Z, converges smoothly to Z;.
3. Proof of Theorem C. In order to prove Theorem C, we need a lemma.

Lemma 1: Let M; = C/L() be a genus one compact Riemann surface, where
T € FM and L(t) = {m + nr € C;m,n ¢ Z}. Then there ezist € > 0 and
differentiable functions A,f : D(e) — C, where D(e) = {a € C;0 <l a|<e&}

and such that
/gi"la :/ ULY) (27)
I, A

where g, and 7, are, respectively, the meromorphic functions and the holomor-
phic differentials on M; \ {(0)} given by

1
P
and l is as defined in (5). Furthermore,

Ja = [Ae@/DPG) | g1 = P"*(2)dz (28)

A(a) # 0 and A(a) 4 B(a)el®/Dei #0 (29)
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for every a € D(e) and j = 1,2,3.

Proof: From (3), (10), and (28) we find that
e = 4P% — g2P — g5

and

9o = {,\’ [1 4 i Z—:P"(z)] +2)\8 [1 ot i

So, by using (4), (19) and (20) we conclude that (27) is true if and only if

9nn) PH(Z)] " ﬂz} &

AT 2wk — 2mk@1 + 2wi S1] + (30)
+ 2/\/3[2w,, - 21]on + 2wk5'o] + 2‘wk,32 =
= 4(—2m B3 + 2w B3) + 2mkg2 — 2wigs, k= 1,3,

where
@1 = 2;1 HBn—lysl = ngl HBM (31)
Q = 2 guibn o= X ggBn

and B}_,, B} are defined in (20) and (21). By using Legendre’s relation, 53 =

mT — i, we conclude that equation (30) is equivalent to

A1 —201Qy + Si] 4+ 208[1 — 2 Qo + So] + B2 = A (32)
and
22Q1 + 2)08Q0 = —E/x, (33)
where
A = 4(-2m B3 + B3) + 2mg2 — g3 (34)
and
E =yA+x(4B} —g,). (35)

We observe that (A4, E) # (0,0). In fact, if A = E = 0 then from (20), (34),
and (35) we find

g2=g3=0.
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But for every lattice L(r),r € FM, we know that (92,93) # (0,0). This
contradiction proves that (4, E) # (0, 0). Also, equations (32) and (33) are
equivalent to

NQ1 +2)8Qo + E/7 = 0 (36)

and

XN(1+5)+208(1+ So) +f2—F =0, (37)

where
F=A- 20, (E /).

Notice that (4, E) # (0,0) implies that
(E,F) #(0,0). (38)

Also, by using (20), (21), and (31) we conclude that §; = Si(a),Q; = Qj(a)

are holomorphic functions,
5i(0) =Q,(0)=0,j =0,1 (39)
and there exists £ > 0 such that
Si(@) #0,Q5(a) #0,j =0,1,0 <| a |< &. (40)

Now we will prove that there exist ¢ > 0 such that (36) and (37) have
solutions (A(a), B(a)) with A(a) # 0 for every 0 <| a |< e. We prove this by
considering separately the case £ = 0 and the case £ #0.

In the first case, it suffices to find ¢ > 0 and (Ma), B(e)) with Ala) # 0 for

every 0 <| a |< € and such that

AQ1+26Qo =0 (41)

and

A1+ 51) 4+ 208(1 + So) + B2 = F = 0. (42)

Now let ¢ = (a) be the holomorphic function

() = (14 51)Q5 — (1+ 50)Q1Q0 + 1/4Q?, (43)
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defined in a neighbourhood of & = 0 € C. After a long calculation and by using
(20), (21), and (31) we conclude that

d*p . d*p
W(O) = 0, k = 0, 1, 2,3, W(O) = gg/8 (44)
and .
d 3_(]3
<l — DSOS 45
& ol0) (45)

8
As (g2,93) # (0,0) for every lattice L(t),T € F M, we conclude that there exist
€ > 0 such that p(a) # 0 for all 0 <| & |< €. This result together with (38)
shows that (41) and (42) have solutions (A(a),8()) with A(a) # 0 for every
0 <| @ |< € and completes the proof of the first case.

In order to prove the existence of solutions (A(c),3(c)) of (36) and (37)
with A(e) # 0 and under the hypothesis of the second case, that is E # 0,
we introduce homogeneous coordinates (),3,7) in P2C. From (36) and (37)
we define in P2C a family (depending on the complex parameter a # 0) of

algebraic curves
AQ; +2M8Qo + E[my* =0 (46)
and
(14 51)+2X8(1 + So) + 8% — F* = 0. (47)
As (E, F) # (0,0), we conclude that (46) and (47) have no common compo-
nents. So, from Bezout’s Theorem, these curves are four points of intersection
(counting with multiplicities). Let g1 = gi(a),g1 = (A1,B1,m) € P2C, one of
these points of intersection. We will prove that v, # 0.

We reason by contradiction to prove this last statement. If 4, = 0, then
from (40), (46), and (47) we conclude that,

AM#0,8 #0,04Q1+28:Qo=0 (48)

and
A2(14 51) + 2M1Bi(1 + So) + B; = 0. (49)

These equations, together with (40) imply that

A2[(14 51)Q% — (1 + 50)Q1Q0 + 1/4Q7] = Mip(a) =0, (50)



COMPLETE MINIMAL SURFACES IN R® OF FINITE TOPOLOGY 91

where p(a) is the holomorphic fuction defined in (43). But, from the first case,
we know that a = 0 is an isolated zero of . This contradicts (48) and (50).
So, the points of intersection g, = g1(a) are such that ; # 0.

As E # 0, and g, is a solution of (46), we conclude that A, # 0. Then, we
can write in homogeneous coordinates g, o (A,8,1) and then (X, 8) with A # 0
are the desired solutions of (36) and (37) for the second case.

‘ In order to finish the proof of Lemma 1, we need only to complete the proof

of (29). That is, we need to show that for small a #0,
del*/De 4 5205 =1,2 3 (51)

We observe that A = A(a),B = B(a), are solutions of (36) and (37), where
A # 0. This implies that

1+Sl+2(1+5‘o)§+ ('g) } %4— [Q1+2Q0§J F=0. (52)

Now suppose that (51) is not true. That is, for some J € {1,2,3} and for a

sequence an, an, — 0, the solutions A, = A(e,), 4, = B(ay) are such that
—B = Ae(®/?ei,

Then from (20), (21), (31), and (52) we can define in a neighbourhood of 0 € C

a holomorphic function 6;(a), by the expression
8i(a) = [14 81 — 2(1 + Sp)ela/?es 1 e*i] = Q1 — 2Qoel/?| . (53)

Notice that 6;(c,) = 0 implies that §;(a) = 0 for every a in a neighbourhood of
a = 0. Observe that for a fixed lattice L(r), E and F are constants. Suppose
that E # 0. Then f(a) = £0i(a) is such that f*)(0) = 0 for every k =
0,1,2,..., where f(¥) is the k-derivative of the holomorphic fuction f(a). Now
by using that e; + e; + e3 = 0 together with (3), (20), (21), (31), (48) and
f®(0) = 0, we conclude that

92 = 12¢;(26 — ¢;) and g5 = —8e}(36 — ¢;), (54)
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where § = 7 F/E. These results together with f(*)(0) = 0 show that e; = 0 or
e; = 8. In this situation, we find from (54) that g, = g3 = 0 or g, — lZe? =
(ej —ex)(e; —e:) = 0, where (7, k, t) is a permutation of (1,2,3). But, for every
lattice L(t),7 € FM we have (g3,93) # (0,0) and e; # ek, if j # k. This
contradiction shows that (51) is true with the hypothesis E # 0. In the same
way we can prove (51) for the case F' # 0. This finishes the proof of Lemma 1.

Proof of Theorem C. Let + € FM fixed. We will prove that for each 0 <
| @ | < €, the pair (ga, 7«) given by Lemma 1 is a Weierstrass representation of a
complete minimal immersion of M = C/L(7)\ {w(0)} in R? with the properties
of Theorem C. From (29) we can conclude that A = {w(w;),7 = 1,2,3} is,
respectively, the set of poles of g, (with multiplicity one) and the set of zeros
of 7 (with multiplicity two) on M. So, (ga, 7. ) satisfies (c1) of Theorem 1.
On the other hand, as g27, and 7, are holomorphic differentials on M with

only a singularity at w(0) € C/L(r), we conclude that
Res,(o)gzn = Resy(o)n = 0. (55)
Also, ga7. are exact differentials on M. So,
/l galla = 0, (56)

for every closed curve Il C M. From (53), (54), and by using Lemma 1 we can
conclude that (gq,7«) satisfy (c;) of Theorem 1. Also, as 7, have poles of order
six at m(0), we conclude that (ga,7) satisfy (c3) of Theorem 1. This completes
the proof of Theorem C.
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