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SUBMANIFOLDS OF CONSTANT NON NEGATIVE
CURVATURE

Paulo Tadeu de Almeida Campos ®

1. Introduction

The n-dimensional submanifolds M™(K) of the euclidean space IR**~! with
constant sectional positive curvature X > 0 and no weak umbilic points, are
in correspondence with solutions of a system of differential equations called the
intrinsic generalized elliptic sinh-Gordon equation. Similarly, flat submanifolds
with no weak umbilic points M™ of the hyperbolic space H>*~! correspond
to solutions of the intrinsic generalized Laplace equation. The correspondence
between the submanifolds M"(K) contained in a space form M?*~1(K) such
that K > K, with no weak umbilic points, and the solutions of the equations
mentioned above was obtained by Tojeiro [15] inspired by the work of Moore [8]
and the dual results for the case K < K considered by Aminov [1], Tenenblat-
Terng [13] for K = 0 and by Tenenblat [12] and Beals-Tenenblat [2] for any K.
The submanifolds in the latter case are in correspondence with the solutions of
the intrinsic generalized equation (K = 0) and the intrinsic generalized sine-
Gordon equation (K # 0).

In [10] (see also [9]) Rabelo-Tenenblat considered the special solutions of
these equations which depend only on one variable and proved that the associ-
ated submanifolds are toroidal submanifolds. Such submanifolds are generated
by a curve in such a way that each point of the curve describes an (n — 1)-
dimensional torus. Moreover, they also provided a classification of the toroidal
submanifolds M™ of IR?"! and the toroidal flat submanifolds M™ of S?"~1.

In this note, we consider the special solutions of the intrinsic generalized
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elliptic sinh-Gordon equation and the intrinsic generalized Laplace equation
that depend on one variable (Theorems 3.1, 3.2, 4.1, and 4.2) and we obtain
the associated submanifolds, which in contrast with the dual case considered in

[10], they are not always toroidal submanifolds.

In the case of constant positive curvature the special solutions exist only for
n < 3, and the associated submanifolds are toroidal submanifolds generated ei-
ther by curves which are given explicitly in terms of a family of elliptic functions
or by a family of helices in IR®. These provide a classification of the constant
positive curvature toroidal submanifolds with no weak umbilic points (see The-
orems 3.2-3.5). As an immediate consequence, one concludes that there are no
complete toroidal submanifolds with no weak umbilic points M™ in IR?*~!, with

constant sectional curvature 1.

The flat n-dimensional submanifolds of the hyperbolic space H?*"~!, with
no weak umbilic points, which correspond to the special solutions of the in-
trinsic generalized Laplace equation are given explicitly in Theorems 4.3 and
4.4. We observe that not all of them are toroidal submanifolds. However, those
submanifolds which are toroidal are the only flat toroidal submanifolds of the
Lorentzian space L?™ contained H?*"~! with no weak umbilic points. In parti-
cular, we conclude that the only complete flat toroidal submanifold of H?*"1,

with no umbilic points, is generated by a plane curve (see Theorem 4.5).

We want to observe that besides the solutions given in this paper for the
intrinsic generalized elliptic sinh-Gordon and Laplace equations, one can also

obtain explicit solutions by the method of Backlund Transformations (see [4]).

This work is part of the author’s Doctoral thesis at the Universidade de
Brasilia. The author wishes to thank Prof. K. Tenenblat for proposing the
problem, for helpful conversations and encouragement and also the referee for

his comments.
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2. Preliminary Results

We consider M™(K) an n-dimensional manifold of constant sectional curvature
K. The following theorem for submanifolds M™K) C M’"‘I(R), K > K, are
known (see [4], [8] and [15]).

Theorem 2.1. Let M™(K) be a riemannian manifold isometrically immersed
in M**Y(K), such that K > K. Then in a neighboorhood with no weak umbilic
points there exist local coordinates (zy,...,z,) such that the first and second

fundamental forms are given by

= Z it it =% 2 deeny, (21
i=1,j=2\/K — K
‘n
where a2, — Z afj =1andenyj1, 2 < j <n, is an orthonormal frame normal

j=2
to M.

Without loss of generality, we normalize the curvatures by considering K —
K = 1. Under the conditions of Theorem 2.1, one can show [15] that the n x n

matrix function a = (a;;) satisfies the following system of equations

T (2.2)
Bay; .

3-31;' = ay;hji, i#j )
Bh;,- ahji _ ¢ . (24)
T+ e 3 b = —Kosons, i

Ohij _ hishaj, i,j,s distinct )
Oz,

Oaj

:ajihl'l) i;él, j=>2

Oz; (2.6)

where the off diagonal matrix function h = (hi;) is defined by (2.3) and J = (J;;)

is the n x n diagonal matrix

J = diag(1,-1,...,-1). (2.7)
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When K = 1 this is the Generalized Elliptic Sinh-Gordon Equation (GESGE)
and when K = 0 this is the Generalized Laplace Equation (GLE).

The above equations are equivalent to the Gauss and Codazzi equations.
As a consequence of the fundamental theorem for submanifolds, given a ma-
trix function a, which satisfies the equations (2.2)-(2.6), defined on a simply
connected open subset 2 C IR™, there exists an isometric immersion X :  —

M?=1(K) whose first and second fundamental forms are given by (2.1).

In the two-dimensional case, the Codazzi equation (2.6) is a consequence of
the Gauss equation (2.4) and (2.5). Motivated by this result, intrinsic general-
izations for the elliptic sinh-Gordon and Laplace equations are introduced. The

following result is essentially due to Bianchi [3] (see also [2], [15]

Theorem 2.2. Let Q be a simply connected open subset of IR™ with coordinates

©y,..., ¢, endowed with a riemannian metric g = (gi;) of constant sectional
n

curvature K. Suppose g is diagonal and g1 — Zgjj = 1. Then the smooth
j=2

function v: Q > IR, v = (vy,...,Vn), defined by v} = g;; satisfies

vJvi=1 (2.8)
av; : .
By vihji, 1#7] (2.9)
3’1,‘_,' th; i 4

sl L e = —Kvivs 2.10
% (2.11)

3z, = hi,h,;, 1,j,s distinct

where 1 < 1,7,5 < n, the off diagonal matriz function h = (hi;) is defined by
(2.9) and J is the diagonal matriz given by (2.7). Conversely, given a solution
of (2.8)-(2.11) such that vi(z) # 0, for all z € Q, then g;; = &;;u? defines a

metric on ) which satisfies the above conditions.

One can show that, whenever v;(z) # 0, for all ¢ € @ and 1 <7 < n, then
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v and h satisfy

Jii‘? + " Jivihi; =0 (2.12)
i >
6h,~i (9’7.,;]' _ s @
J, 6—1:‘ + J'”a‘:c]- + ’gi:'j J,,h,,h“ == 0, 1 ?’-‘ Js (213)

The system (2.8)-(2.13) is called the Intrinsic Generalized Elliptic Sinh-Gordon
Equation (IGESGE) when K = 1 and the Intrinsic Generalized Laplace Equa-
tion (IGLE) when K = 0.

In what follows, we consider solutions v; of these equations, which define
metrics as in Theorem 2.2. Therefore, the intrinsic equations reduce to (2.8)-
(2.11). Under these conditions, the relation between the generalized equations
is stated in the following result, whose proof follows the same arguments used

in [2] (see also [15]).

Theorem 2.3.

(i) If a is a solution of the GLE, then each row of a, whose elements do not

vanish, is a solution of the IGLE.

(i) Suppose a is a solution of the GESGE. Then the first row of a is a solution
of the IGESGE, whenever its elements do not vanish.

(i) Conversely, if v is a solution of the IGESGE (resp. IGLE) whose coordi-
nate functions do not vanish on a simply connected domain Q C IR™, then
there exists a solution a on Q for the GESGE (resp. GLE) whose first row
is v. Moreover, if a and @ are two these solutions, then @ = PJa, where
P € O(1,n — 1) is a constant matric and J is the diagonal matriz given
by (2.7).

It follows from the above results that the solutions v of the IGESGE (resp.
IGLE), which do not vanish on a simply connected open subset 2 C IR™ are
in correspondence with the isometric immersion X : § — [R2n-! (resp. X :
2 — H?™ 1) of constant curvature K = 1 (resp. K =0). Such an immersion is

determined up to rigid motions and is called the immersion associate to v.
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We denote by L?" the space of vectors (z1,...,2a,), ¢; € IR, endowed with
2n
the Lorentzian metric ((z,y)) = —21y1 + ) 2;y;, and now we introduce the

v =2
definition of toroidal submanifolds.

Definition.

(i) Let o(t) = (fi(t),...,fa(t)), t € I C R, be a parametrization of a
regular curve em IR®, n > 3, such that for all j > 2, f; do not vanish in
the open interval I. The submanifold which up to a rigid motion of IR?*~!

13 given by

(f1(t), fa(t)cos zy, fo(t)sinay,. .., fa(t)cos Tn 1, fa(t)sinz,_ ;)
15 called a toroidal submanifold M™ of IR*™ ! generated by the curve a.

(i) Let B(t) = (fo(t), fi(t),-.., fa(t)), t€ICTR, be a parametrization of
a regular curve in R™!, n > 3, such that, for all j > 2, f; do not vanish
in the open interval I. The submanifold which up to a rigid motion of L*"

is given by

(fo(t), fu(t), fa(t)cos m1, fo(t)sinay,. .., fa(t)cos Tu_1, fu(z))sinz, ;)
ts called a toroidal submanifold M™ of L*" generated by the curve .

A toroidal submanifold is generated by a curve in such a way that each point

of the curve describes a flat (n — 1)-dimensional torus T""! contained in IR2"~2,

3. Submanifolds of Curvature 1 of Euclidean Space

The solutions of the intrinsic generalized elliptic sinh-Gordon equation which
depend only on one independent variable are given in the following two result.
Without loss of generality we may assume that the independent variable on
which the solutions depend is z; or z,. The proofs in this section follow by

modifying conveniently the proofs in [10].
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Proposition 3.1. Let v = (v1y...,vn), m > 2, be a solution of the IGESGE
which depends only on z1, such that vi(z;) #0, 1 <i < n, for z; in an open
interval I C IR.

Thenn < 3 and

@) Ifn =2,
(v)? = (v -1)(r* —2d) 3.1)
vi = vi-1
where 1 <recR;
(i) ifn =3 andp? =1,
v = m
v2 = pbsen(mz, — §) (3.2)
v3 = bcos(maz, — §)

where bym,p,§ € IR, m?>1, m?—b? = 1, and z; € I such that
Ir/2<mz;—6<(+1)n/2, LteZ :

(i) ifn =3 and p*> £ 1,

2 2
P+qg—1
ful)f = (vf—T> (@)
2 2 2
2 _ p 2_P +q_—_1 3.3
V2 = p’—l(v1 p? ) )
1
v o= pz_l(q”—vf)

where p,q,€ R", p*#1, ¢*>>1.

Proof: It follows from the hypothesis that equations (2.8)-(2.11) reduce to
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vJvt = 1 (3.4)

= Y (3.5)
1>2

v; = vhyy, §2>2 (3:6)

hij = 0, i>2 (3.7)

hihi; = —vwj, 1#£35, 4,522 (38)

hllj = —Uuvj, Jj=>2, ( )

where 1<1,5,58<mn.
If n = 2, it is easy to see that this system is equivalent to (3.1).

If n > 3, using (3.6), the equations (3.9) and (3.8) reduce to

N
("—J) = vy §22, (3.10)
U1
Loy
&'v_":—vivji 174]., l)jzz (311)
VT U

It follows from (3.10) and (3.11) that
v;- = CjU1V;, 1 # j, i,j 2 2, (312)
where cj; is a nonzero real constant.

If n = 3, then the equations (3.12) reduce to

" p— (3.13)
1

vy = ——v1vy, (3.14)
p

p € IR*. Therefore, we have

_ <p _ %) V205, (3.15)

If p2 = 1, then v; is a constant m with m® > 1 and it is easy to obtain the

solutions (3.2).

If p? # 1, then it follows from the equations (3.14) and (3.15) that

vv) + (p2 — 1)vavy = 0,
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; 1
ie. v§=pz_1(q2—vf), geR, ¢*>1.

Now, using (3.4) we have

> P’ 2 PPH¢-1
v =5 = ——],
-1 P

Hence, from the equation (3.15) we obtain
2 | .2
PPt+e—1
o = (-2 -
’ p
Finally, if n > 4 from the equation (3.12) we have

vi(21) = ¢;f(z1), j>2, (3.16)

where c; is a nonzero constant and f ‘is a nowhere zero real function on .
We observe that it follows from (3.10) that v, #0, £> 2. Substituting (3.16)
into (3.11), we obtain

(fl)z‘i‘uf 2=0’

re. f=0.

Similar arguments provide the solutions which depend only on z,.

Proposition 3.2. Letv = (v, ... ), T > 2, a solution of the IGESGE which
depends only on z,, such that v;(z,) #0, 1 <i < z, for z; in an open interval
ICR.

Then n < 3 and

i) Ifn=2,
(v2)* = (1+93)(r* —v})

2
v; = 142

(3.17)

where 0 <r € IR;
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(i) ifn =3,
(v2)* = (v2+¢)(P’¢" —p* —1-v})
u2 _ P2 (v2+q2)
1 P +1 2 (3.18)
1
v = szrl(p’q’—znz— 1-93)

where p,q € R*, ¢ > 1.

One can show that the isometric immersions M™ C, IR*™ ! of constant
curvature K = 1 associated to these solutions are, up to rigid motions, toroidal

submanifolds.

Theorem 3.3. The submanifolds M™ C IR*™ ! with constant sectional curva-
ture K = 1, associated to the solutions of the IGESGE given in Proposition 3.1

are, up to a rigid motion,
(1) the surface of rotation generated by the curve
1
(—/vfd:cl, _pg) s f T=2
T r
where v, e vy are definid by (3.1);
(i) the toroidal submanifolds generated by the helices

(z p s T if

1= 2y — — ) n =3,
m m

where m?> —b? =1, p> =1, fr/2 <ma; —§ < (L + 1)n/2, L € Z, and
v1,V2,v3 are defined by (8.2);

(iii) the toroidal submanifolds generated by the curves

P / 2 (%) pU3
N N Y *)
(q\/P’+q’—1 g VPP + ¢ -1

where v1,v,,v3 are defined by (3.3).
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Proof: Let v = (vy,...,v,) be a solution of the IGESGE as in Proposition 3.1.
By Theorem 2.3 there exists a solution (aij) of the GESGE such that a;; = vj,
for 1 <j<n. Moreover, a;;, 2 <1 < n, also depend only on z;.

The submanifold associated to v is determined by the first and second fun-

damental forms given by
I= E afl-da:? and II = E (Z aj,-alidmf) entj-1
i=1 i=2 \i=1

where e,1;_1, 2 < j < n,‘ is an orthonormal frame for the normal bundle. The
proof of the theorem follows from the fundamental theorem for submanifolds
of the euclidean space, which says that the immersion X : Q) C R* —» IR?»-1,
where () is a simply connected domain, is determined, up to a rigid motion, by
solving the following system of differential equations for the vector fields X,

and eny, 1, where 1 <i<n, 2<s< n,

n n
k
Xz,'z,' = Z I‘,'J‘sz + Z aliariaijen+r—l
k=1 r=2
Qg
Cnts—1,2; = “a—Xz.- .
1¢

Since the riemannian metric g is diagonal and the functions g; = a% depend

only on z,, the Chritoffel symbols are given by

I'f-‘j = 0, 1,7,k distinct

I = Ty=Ti=0, j>2
7
o o aq:
P ==t
1 1 all
!
aj;al; .
F}i = —%, 1 2 2
a1

Therefore the parametrization X is obtained by solving the following system

of partial differential equations,



66 P.T.A.CAMPOS

’
a
_ 11
X:uz; = - X:n +¢lu§ A41€nts-1
11 8>2

ay;
X:;z,- = _’Xz,'a .7 >2

a.lj
1
@1:ay; o
Xz.'::.' = ey Xn,-l + ay; Z Qsi€nys—1, 1 > 2
a1 >2

Xl‘-':l:j = 0, 1’5'1;], 1’1]22

[ 1 .
Ents—1,2; — ——a"Xz‘- y 3 Z 2, 1 Z 1’
1i

where 1 <1 < j <mn and 2 < s < n, subject to appropriate initial conditions.
]

Similarly, in the following result we obtain the submanifolds of the Euclidean

space associated to the solutions given in Proposition 3.2.

Theorem 3.4. The submanifolds M™ C IR*™ ! with constant sectional curva-
ture K = 1 associated to the solutions of the IGESGE given in Proposition 3.2.

are up to a rigid motion,
i) the surface of rotation generated by the curve
1
(e 2)
r r
where vy and v, are defined by (3.17);

i) the toroidal submanifolds generated by the curves

1
_— / vidz, U W—
gy —p*—1 yre-p-1 4
We can show that these submanifolds characterize the toroidal submanifolds
of IR?™! with constant curvature 1. Consequently, we conclude that there is

no complete toroidal submanifolds M™ C R~ with K = 1.

Theorem 3.5.
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(i) The submanifolds M™ C IR !, n > 3, given by Theorem 3.8 and 3.4
are, up to a rigid motion, the only toroidal submanifolds of IR*™! with

constant sectional curvature K = 1 and no weak umbilic points.

(i) There is no complete toroidal submanifold M™ C R*™ !, with K = 1 and

no weak umbilic points.

Proof: A toroidal submanifold is locally given by

X = (fi(t), fa(t)cos x4, fa(t)sinz, . .. s fa(t)cos zn_y, fa(t)sinz,_;),

wheret.€ ICIR, -t <x;<mand fj(t) #0, Vte€ I, 1<j<n—1 We
will show that there exists a change of coordinates such that the metric (g;;) is
a diagonal matrix whose diagonal satisfies the condition g;; — Z gi; =1.

j=2
We consider the following change of coordinates

il:t(s) 1-7_,'=Ej_1, 2<j<n,

where

Therefore,

Xoy-Xe, =14 f], Xs -Xs = 6;f?

j=2

n
and, consequently, g;; — Y g;; = 1.
i=2
The first fundamental form of this parametrization is given by

n
I=Y"v}(3,)dz},
i=1
n n
where v} =143 7 and v}=f2, j > 2. Moreover, v?— 3 v} =1. Since
j=2 i=2
the manifold has curvature K = 1, it follows that v = (v1,-..,vn) is a solution
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of IGESGE which depends only on one independent variable. Therefore, we
are in the cases (ii), (iii) of Proposition 3.1 or ii) Proposition 3.2. The proof
of (ii) is an immediate consequence of the part (i) and from the fact that for
each solution given in Proposition 3.1 and Proposition 3.2 there exists a value

zo € IR such that v; — 0 when z — .

4. Flat Submanifolds of the Hyperbolic Space

We obtain the results analogous to those in section 3, by considering the cor-
respondence between the flat submanifolds of the hyperbolic space and the
solutions of the IGLE. The solutions of the IGLE which depend only on one in-
dependent variable are given by the following results. Without loss of generality

we may assume the independent variable to be z; or z,.

Proposition 4.1. Let v = (vy,...,vs), n > 2, be a solution of the IGLE
which depends only on z,, such that vi(z;) # 0, 1 < i < n, for z; in an
open tnterval I C IR. Then either v is constant or there exists jo > 2 such
that

v1 = elcosh(mz;, — §)

vj, = Asinh(mz, —9) (4.1)

v = by, j#jo, 722

where m,b;,\,§ € R, € =1, Zb_,z =X —1, bj #0, m # 0 and I does not
j=2
i#io

contain §/m.

Proposition 4.2. Let v = (v1,...,v,), n > 2, be a non constant solution of
the IGLE which depends only on z,, such that vi(z;) #0, 1 <i < mn, forz; in
an open tnterval I C IR. Then
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v1 = elcosh (mz; — §)
i) vz = Asenh(mz, — §) (4.2)
v; = b_,' y ] Z 3,

where m,b;,A\,§ ER, =1, Y b?=X—-1, bj#0, m#0and ]

does not contain §/m.

i) 3 jo > 3 such that
vz = €A cos(maz, — §)
. vj, = A sin(mz, — §) (4.3)
vi=bj, j#Jjo, j#2
where m,b;,\,6 € R, € = 1, S Jgb? =A% 41, bj £ 0, m # 0 and
o
z3 € I is such that fr/2 <mm2—6<(l+1)g yLeZ.
Asin Section 3, one can show that the flat isometric immersions in the hyper-
bolic space, M™ C H*"~! C L?", associated to the solutions given in Proposition

4.1 are toroidal submanifolds. We observe that H?"~! can be caracterized by

the subset of vectors is L™ such that ((X, X)) =-1.

Theorem 4.3. The flat submanifolds M™ C H?=1, associated to the solutions
of the IGLE given in Proposition 4.1 are, up to a rigid motion, the toroidal

submanifolds generated by the curves

(i) (bycoshz,, by sinhzy, by, ..., bn),

where v; = b; #0, 1 < j < n, whenever m = 0.

(ll) (Afoi ’\fly Af'h b3) gems 1bn)y

where fo, f1, f2 are real functions defined by ezpressions
fo= L_fz'cosh rey — mfysenhrz,
m
r
fi = —frsinhrz, — mfycoshrz, (4.4)
m

fa= 1.'.11,'nh(m:.l:1 —-96),
T
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with > =1+ m? and Y _ b} = A? — 1, whenever m # 0.

i=3

Proof: Let v = (vq,...,v,) be a solution of the IGLE given by Proposition
4.1, where without loss of generality we will assume j, = 2. As in the proof
of Theorem 3.2 such submanifolds are given, up to a rigid motion, locally by
immersions X : Q@ C IR® — H?*~! C L?®, where Q is simply connected. In order

to obtain X, we consider the adapted orthonormal frame in L?"

1 ; ;
e;:a—X,_., 1<i<mn, entj-1, 257 <m, en = X.
1

It is not difficult to see that X has to satisfy the system

n n
k -
X:;:,' = Z F.’sz,, + Z(aliaaiaij)en+n—l + a'lia'ljaijk)
k=1 =2 )
Qi
€nts—1,z; _a_Xz.':
11

where 1<i,7<n and 2<s<mn.
By choosing the initial conditions appropriately we conclude that, up to a

rigid motion, the immersion is given by

X = (by cosh z1,b; sinh zq,b; cos z,,by5in T,. . ., by, cos zp,, by sin z,),
where b; #0, 1<j<m;or

X = (Ao, Af1, Afacosraza, Afasinrazy, ..., bjcos zj, b;sinzj,...) j > 3.

where Z b; =)’ —1and fo, fi, f2 are defined by (4.4).
j=3

In the following result we obtain the flat isometric immersion M™ C H**"! C

L™ associated to the solutions given in Proposition 4.2.

Theorem 4.4. The flat submanifolds M™ C H?>™!, associated to the solutions
of the IGLE given in Proposition 4.2 are, up to a rigid motion,
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i) a) the toroidal submanifold given by
X = (fo(z2), fi(z2), 2 cos rTy, A i rTy,...,bjcos zj, bjsinz;,...) j >3
r r

where fo and fy are defined by the expressions

v !
fo = —vzf+el—:.:i
!
h = —vz£+evlmf
T T
f = sinh rz,

ifr? =m? —1> 0, and vy, v, given by (4.2);

b) the submanifolds parametrized by
_ V1 v . g
X = | —coshrz,, —=sinhrz, fo(zs), fi(zs), +--,bjcos zj, b; sinzj, -,
r r

where
mu

; 1
fo =vy sinrz; + e—— cosre,,
r

muvy

A !
fi = —vycosrz, + sin rz,
ifr? =1—m? >0 and, vy,v, are given by (4.2.)
c) the submanifolds parametrized by

X = (v1 + L, —€L, z,v;, €x0v; — vy, wbjcoszj bisinz;,...), j >3

where

1
L(Zl, 132) = E(If + I;)Ul — ET3V3,
if m? —1 =0 and, v;,v; are given by (4.2.).
ii) the submanifolds generated by
. jo . Vj .
X = (bl cosh ¢, by sinh x4, fo, f1, Y5 sin TTjy, —> COS T}, ..., bjcos z;, bjsinz;, ...
r r

where
7‘n’v_.,'0

€ g
fo(z2) = —vycosrz, — sin 7z,

muj,

. €
fi(z2) = vy sinrz,y — cos TTy,

and v; vj, are given by (4.3)
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The following theorem gives a classification result analogous to Theorem 3.5.

Theorem 4.5.

(i) The submanifolds M™ C H*™! given by Theorem 4.3 and Theorem 4.4(i)a
are, up to a rigid motion, the only toroidal flat submanifolds of L*" con-

tained in H*""!, with no weak umbilic points.

(ii) The only complete flat toroidal submanifolds M™ C H?"', with no weak

umbtilic points, is generated by the plane curve

(bicosh zy, bysinhzy, b,...,b,), bjeR", 1<j<n.
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