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GENERALIZED WILLMORE PROBLEM

Abdénago A. de Barros®

1 Introduction

For an immersion f : M? — R? of a closed surface M into the Euclidean space

R?® we will consider the functional

cf) = %/M(HZ — K)dM. (L1)

Here H is the mean curvature, K the Gaussian curvature and dM the element
of area of M in the induced metric respectivaly. It is important to point out
that C(f) is invariant by change of conformal mappings in R®.

Now if k; and k, denote the principal curvatures of the shape operator A;

in the normal direction ¢ then we may write (1.1) in the form

1

C(f) = S—W/M(kl ~ ky)%dM (1.2)

The variational problem proposed by T. J. Willmore was to achive the infi-
mum of C(f) among compact embedded surfaces M of a given genus. Of course,
C(f) > 0 and equality occur if and only if f(M) is a round sphere. When M is
diffeomorphic to a torus T2 it was conjectured by Willmore that C(f) > x and
C(f) = m if and only if f(T?) is conformally diffeomorphic to a circular vicinity
of a circle whose radii are in the rate 1 : /2, i.e., f(T?) is obtained from the
Clifford torus on S® by stereographic projection.

On the other hand, as M is a closed surface [y, H*dM > 4, so the Gauss-

Bonnet formula implies

C(f) 2 Bi(M; Z,), (1.3)
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where f; is the first Betti number of M with Z, - coefficient.

Now for an immersion f : M™ — R™ of a closed manifold M on R™ let N(f)
be the unit normal bundle of f. Given ¢ € Ny(f) let A¢ be the shape operator
in the direction ¢ and ky(£), ..., kn(€) its eigenvalues. Set

o(Ae) 1= 5 (ki — k)’ (14)
and
Ouf) = oy o A (1.5)

where vol(S™~') is the canonical volume of S™! and d¢ the natural volume
element of N(f). Of course this agrees with C(f) for surfaces and Cy(f) > 0
with equality if and only if f(M) is a round sphere.

We observe that this functional appears in the literature in many works.
We may cite N. Abe, R. Bryant, B. Y. Chen, U. Pinkall, B. White, J. Weiner
among others. But our source here is Pinkall’s work [9]. There he proved the

following fact which generalizes (1.3)

n-1
Ci(f) = Y ap, (1.6)
k=1

where a, = [k/(n — k)]("=2%)/2 and B, is the k** Z,— Betti number of M. For
M not homeomorphic to S™ he also showed that if C;(M) = inf(C;(f)) and
Ci(n) = inf(Cy(M)) then

Ci(n) > 2a, (1.7)
and conjectured Cy(n) = C;(S'xS™!) = %}g:—)—llv ':"1 :

Here we present a new conformal invariant Cp(f) which agrees with C;(f)

for p = 1 and obtain similar inequalities as above. At first we have

n—1
Co(f) 2 3 aiBr, (1.8)
k=1
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where a = a) and B, is also the k" Z,— Betti number of M. So (1.6) is
obtained from (1.8) by setting p=1.

On the other hand for M not homeomorphic to S™ there is a constant a(p)
such that a(1) = 2 and if Cy(n) = inf(inf (Cp(f))) then

Cp(n) 2 ofp)af, (1.9)
therefore (1.7) is a particular case of the last inequality and we also expected

that

Cp(n) = (Sle"_ ) =

nﬂ

4mvol(S™- l)\/(n — 1)(n(-p)/p)+1
vol(S™) '
Next we start with the functional Co(f).

2 The functional C,(f)

Let M™ be a closed manifold, . f : M™ — R™ an immersion and
N(f), & A¢ Kki(6), ..., k.(£) the same quantities as before. Given a positive

integer p set

(o(A)* := — Z(k (2.1)

i<y
The total p—conformal curvature, Cp(f), of the immersion f is defined by

Co(1) 1= oty Joy oAt (22)

At first we note that the functional Co(f) satisfies:
Proposition 2.1
(i) If n=2 then Cy(f) = C(f) = (1/(2x)) fo (| HI — K)dM
(1) Cp(f) > 0 and equality occurs if and only if f(M™) is a round sphere.
(#) If g is a Mobius transformation in R™ then Cy(f) = Cy(g o f).

Proof: The proof of this proposition is standard and we will omit it. For a

reference see e.g. [1].
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Theorem 2.2 Let B, := rankHy(M;Z,) be the k**  Z,—Betti number
of M and af := k(r=2Pk)/2p(n _ f){(1-2P)/2P)+k  Then we have

Cof) > Y b
k=1

Proof: Let N(f) be the unit normal bunble of f and define

Ni :={¢€ € N(f) : A¢ has exactly k negative eigenvalues}

From theory of absolute curvature we have (see e.g. [4] or [10])

/N(n |det Ae|d¢ = / " fi‘o i(v)dv

where pi(v) is the number of critical point of index k of (f, v) and D is a dense

set on S™ 1. Therefore it follows from Morse inequality [7] that

/N |det A¢|de > Buvol(S™1).

Now the theorem follows from this inequality together with Lemma 2.3 be-

low. In fact, from the lemma

(o(A¢))" |, 2 ai|det Al

where af = k(n=2pk)/2p(q — f)™((1-2p)/2P)+k Therefore,

1 n n-1 .
Ce(f) = W/N(!)(U(AE)) d¢ > k};akﬂk-

Lemma 2.3 Given an integer r, 0 < r < n, and real numbers z, ..., ¢, such

that ¢, ..., ¢, <0, T,41,..., T, > 0 then, for any positive integer p, we have

2p
1
{;;,;Z(w.- - ﬁj)zp} > aP|e;...Tn),

i<j

where af = ,.(n-2pr)/2P(n — r)"((l-zP)/2P)+".
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Proof: Without loss of generality we may restrict ourselves to the set

E := {(zl,..., z,) € R™: Y (zi—z;)% = p} .

i<j
where the constant p will be chosen later on. Now the subset E. of E defined
by (i) above is bounded, and the function f(z1,..., Tn) = |z;...z,| vanishes on
the boundary of E, and is differentiable in the interior, 1%‘,. ,of E,. So f attains
its maximal value at some point z, = (zy, ..., T,) € é, . Therefore there is a

Lagrangian multiplier A such that

1 Bptn = 200 Y (2 — )P, i=1,.. n (2.3)
j=1

It follows from (2.3) that

T1P1 = ... = TpPp (24)

Here p; = ¥°7_, (2 —=z;)%*Y, i=1,..., n.

We now claim that p; < 0 for i = 1,..., 7, and Pa >0fora=r+1,..n.
Indeed, if p; > 0 then ¢ = Yio (z1—z;) 1 > 0, since Yy (21—
z;)’' < 0. But p; > 0 implies p; > 0 for i = 1,..., 7. On the other hand

=1 ¢ =0,50 p; <0and p, > 0. This claim implies ¢; = ... = z, = ¢ and
Tr41 = ... = &, = 3. In fact, we suppose z; < z; and z,,, < Z,42. This implies
Pr < p2 and pry; < prya. Therefore z;p, > z2p2 and . 41P,11 < T,paPrys
which contradicts (2.4).

We now choose the constant p such that t = —1. So (2.4) gives us
s = (n—r)/r. Since {(l/(nz")zkj (m;—:cj)z”}"/zp = af|z;..z,| and f

attains its maximal value at z, we conclude the proof of lemma.

3 Generalized Willmore Problem

Let M™ be a closed manifold which is not homeomorphic to S$" and
f: M™ — R™ an immersion. As is [9] we consider the two types of Will-

more problems:
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(1) Determine or estimate at least

Co(M™) = inf(Cy(f))

(ii) Determine or estimate at least

Cyln) := inf(Cp(M™)).

We treat here problem (iz). For n = 2 there is a answer for it given by Li
and Yau [6] see Theorem 2 of [9]. For n > 3 we have the following result which

generalizes the Theorem 3 in [9].

Theorem 3.1 Let f : M™ — R™ be an immersion of a closed manifold which

is not homeomorphic to S™. Then we have
(i) If n > 4 then Cp(n) > [(27/16)(16/9)"/7 — 1](n — 1)™(1-2p)/2p)+1
(i) Cy(3) > 203-20)/2p

To prove this theorem we will need of the following algebraic lemma.

Lemma 3.2 Set af = k("=2Pk)/2p(n — k)((1=2P)/2)+k yhere n, k and p are

positive integers. If 2 < k <n — 2 then we have
27 [161'/*
i = |
“‘“"16[9] . il

Proof: By taking the log of both sides of (3.1) we get that this is equivalent to
4 4
n [logk(n — k) —log(n — 1) — —logg ] +
n

2p[(n — 1)log(n — 1) — (n — k)log(n — k) — klogk + log16 — log27] > 0
therefore the lemma follows from the following claim:
For (z,y) = (z — 1)log(z — 1) — (z — y)log(z — y) — ylogy + logl6 — log27
and ¢(z,y) = logy(z — y) — log(z — 1) — 2log? defined in the set
A={(z,y) € R*: 2 <y <z -2} we have ¢(z,y) > 0 and ¢(z,y) > 0.
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To show this fix y and consider ¢ (z) := ¥(z,y). Now given ¢ = (z,y) € A
there exists 2’ with 4 < o' < z such that y = ' — 2. Since g, is an increasing

function of z we get

’

27

In a similar manner we show that ¢(z,y) > 0 on A. So we conclude the

Do

proof of lemma.

Proof of theorem (3.1) Let f: M™ — R™ be an immersion with M™ closed
which is not homeomorphic to S™. For almost all v in the unit sphere in R™ the
height function h(z) =< f(z), v > is a Morse function and one of the following

is true:

(1) % has at least two critical points of index 1 or n — 1.

(ii) h has at least one critical point of index r, here 1 <r < n — 1.
(iii) h has only two critical points.

(iv) b or —h has two minima, one critical point of index 1 , one maxima and

no other critical point.

From Reeb’s theorem [7] case (44) cannot occurs. By the same argument (iv)
is not possible, because by using the cancellation theorem [8] we can construct
a Morse function g : M™ — R having only two critical points. So we have (i)
or (ii).

Now we get, by using all previous results, the following:

1 n—1
> — p >
Co(f) > wol(57T) g‘:/m af|det A¢|d¢ >

n-1 27 /16 1/p n-2
e [ 5
! E_, 16 \ 9 Ez
which implies that C,(f) > [(27/16)(16/9)*/? — 1]a?.

Remark 1 Actually for 1 < p <3, Cu(f) > 24} and for p > 4
Co(f) > (27/16)(16/9) /7a?.
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Remark 2 All results obtained here for p = 1 were obtained by Pinkall [9].

Example: Let z : $9(r) —» R*! and y : S™79(y/1 —r?) — Rn9tl pe

standard immersions. Set f = 2 +y : M = R™? ywhere

= 59r)xS"9(+/1—r2). Now we consider (20 BBy Wiy sy g A1
adapted orthonormal frame such that e, -y €q are tangent to S, vy, ..., v,
are tangent to S"%z = re, and y = /1- 1y, If

v =—v1—r2ey + rvy then

: T
2vol(S(1))vol(S™-9(1)) 1/((n — q)q)™/

I 0) R e
and its minimum value is for # = /(n — q)/n. Observe that f is a minimal

immersion if and only if r = ,/q/n.
It was conjectured by Pinkall [9] that for p =1 and n > 3

Therefore

Cp(f) =

Ci(n) = C1(S* x S™'). Therefore we expect the same with respect to any

p, t.e., for n >3

dmvol(Sn-1) \/(n— 1)n«1—p)/p>+1
vol(S™)

Moreover if n > 3 and H;(M™", Z3) = Hy(87 x S™79, Z,) then

Cp(n) = Cp(S' x S™1) =

Cp(n) = Cp(S? x S™9).
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