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SPACELIKE HYPERSURFACES WITH CONSTANT
MEAN CURVATURE IN LORENTZ SPACE

Joao Lucas Marques Barbosa *® Vladimir Oliker!®

1. Introduction .

Hypersurfaces with constant mean curvature in Riemannian manifolds are crit-
ical points of the area functional under variations that keep constant a certain
volume function. In this context the notion of stability was introduced by Bar-
bosa and do Carmo [BC] for the case of immersions in the Euclidean space.
Later Barbosa, do Carmo and Eschenburg [BCE] extended this notion to the
case of immersions in Riemannian manifolds. In this work we consider space-
like immersions into Lorentz spaces. In such spaces hypersurfaces with constant
mean curvature are also critical points of the area functional with the constraint
that the variations leave constant a certain volume function. However, there is
a distinct difference between the Riemannian and Lorentz ambient spaces. In
contrast to the Riemannian case it is the problem of mazimization of the area
functional that makes sense in Lorentz spaces. Thus, it is necessary to reex-
amine in this context many of the classical notions. In this paper the concept
of stability is introduced and a second variation formula is derived. It follows
from this formula that any spacelike immersion with constant mean curvature
in a flat Lorentz space is stable. We also consider the case when the ambient
manifold is the de Sitter space S7'*! with constant curvature one and prove that
spheres (compact umbilical hypersurfaces) are stable. We observe that spheres
are the only spacelike immersions with constant mean curvature of compact

manifolds into the de Sitter space. We also observe that complete spacelike
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immersions with constant mean curvature H? < 4(n — 1)/n? into the de Sitter
space are spheres. This result was obtained earlier by Akutagawa [A] and Mon-
tiel [M] and in [O] it was generalized in several directions. For the noncompact
case we prove stability of complete spacelike immersions with constant mean
curvature H such that either H> > 1 or H? < 4(n — 1)/n%. In particular, any
spacelike immersion with constant mean curvature of a complete surface into
52 is stable, and any spacelike complete maximal immersion (of codimension

one) into de Sitter space is also stable.

2. Preliminaries

Let M™! be an orientable Lorentz manifold, i.e., an orientable C* manifold
edowed with a pseudo-Riemannian structure ds? = (.,.) of signature (1, n) called
the metric of M .This metric extends in a natural way to tensors of all orders.

In particular, for vector fields tangent to M,
(Xa A AX VI A L AY,) =det ((X,Y5)) (1)

where ((X;,Y;)) stands for the matrix formed by all the products (X;,Y;) with
1<4,j<p AsetW,..., Vo of vectors in the tangente space T,M at the

point p of M is said to be orthonormal if

An orthonormal frame field is simple a set of n + 1 vector fields, ey, ..., ent1,
defined in an open set of M which, at each point, are orthonormal. It is clear

that only one of the (e;, e;) can be equal to —1. We set
Ei = (e;,e,') . (2)
To fix notation let’s write down the structure equations on M. Consider an

orthonormal frame field, as defined above, and the coframe 6y,...,0n41. The

connection forms w;; are defined by the equations:

w,-_.,- = —wj,' (3)
n+l
dg; = Z gjwi; N 0; (4)

i=1
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The curvature form is defined by

] n+1l
Ql'j = dw;,- - Z ExWik N\ Wi (5)
k=1

This definition makes true the following equation

n+1 _
3 el AG;=0.
Jj=1
Hence we must have
4 n+l _
Qi = D) Z ex€tRijuibr N 6 (6)
' ki=1

where Rl’jk( +R.’j[k =0.IfV = E}‘;"ll v;e; then its covariant differential is defined

by DV = Y2 (Dv;)e; where

n+1
Dv; = dv; + &; Y vjwj (7
j=1
It follows that
_ n+1
De.- = Z EjWwij€; (8)
j=1
wi; = <D€;,€j) (9)

It is useful to use the standard notation DxY to mean DY (X). It is a simple
computation to show that, for vector fields X and Y on M, and for 1 < 14,5 <
n+1

dV,W) = (DV,W)+(V,DW) (10)
Q,-_,-(X,Y) = (Dnye.'—DyDXe‘-—D[x,y]e,-,eﬁ (11)

We define, for vector fields X, Y, Z and W on M,
QX,Y,Z2,W) = (DxDyZ — DyDxZ — Dixy)Z,W) (12)

It is easy to see that

UX,Y,Z,W) = Y zw;iQ;(X,Y)
t,j=1
£ d— E ziw;zryierer Riju
ided
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Since M is orientable there exists on it a non-zero (n + 1)-form dM (called

the volume form) such that if ey, . . ., en41 is any orthonormal basis of T,M then
de(el, ey €"+1) =ikl

If the result is +1 the bases is positively oriented. In this case, if 61,...,60nq41 is
its dual bases, then

dMy =6, A...NOpys .

Let £ : M™ — M™! be an immersion of a compact, connected, orientable,
C* manifold with boundary M (possibly empty). We will consider M endowed
with the induced pseudo-metric do? = z*ds?, so that ¢ becomes an isometry.
The immersion z is called spacelike when do? is a Riemannian metric. From
now on we will assume that z is spacelike.

Since M is orientable, there exists a vglobal unit section N of its normal
bundle TM*. We choose the orientation of M to be compatible with the one
of M. This means to choose the volume form dM on M defined by

dMp(Wy,..., Va) = dM=(P)(dzp(Vl)y ooy dzg(Va), N(p)) (13)

Locally z is an embedding and so, for local matters, we may always consider
M as a submanifold of M and z as the inclusion map. A frame field ey, ..., en41
on M is adapted to M if, restricted to M, ey,...,e, are tangent to M and
positively oriented, and furthermore e,4; = N. Restricted to the tangent bundle

TM of M, 6,41 = 0 and, consequently,
Zw'ﬂ-li /\9,’ =0.
j=1
It follows by Cartan’s lemma that
Wntri = 3 hijb; (14)
i=1

where h;; = hj; . The second fundamental form of the immersion z is then
defined as

IT =" hi;0ifj

i,j=1
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The mean curvature is the trace of II and it is given by
H=_= Z ha; (15)
We define the mapping B : TM — TM by putting B(V) = Dy N so that
1I(V,W) = (B(V), W) (16)
It follows that

P =B = Y B,

1,j=1

The structure equations for the immersion z are the usual ones:

df; = Z wij A 0]' (17)
j=1
n 1 n
Q,‘j = dw;j - Zw;k ANwg; = —5 Z R.-,-k,()k A6 (18)
k=1 " k=1

where Riju + Rijie = 0. Using '(5), the observation that €,,; = —1, and the

equation (14) one obtains

Qi = Qij =3 hachpbi A 6,
From this one deduces the Gauss equation:

Riju — Riju = hichji — hihj (19)
3. Variations

A Variation of z is a differentiable map X : M x (—€,€) — M such that
Xi: M — M, t € (—¢,¢), defined by Xi(p) = X(p,t), p € M, is a spacelike
immersion, Xo = z and X, |gp = z|anr, for all ¢.

We define the area function A : (—¢,€) — IR by

At) = /M M, (20)
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where dM, is the volume element of M in the metric induced by X;, and the

volume function V : (—¢,e) —» R by

V(t) = X*dM 21
= [0 (21)
Let W(p) = (8X/8t)|e=o be the variation vector field of X and set f =

—(W, N) so that
W = fN + tangent component (22)

Lemma 3.1 We have
(i) (dA/dt))eco = — [y n H £ dM

(i) (dV/dt)|e=o = [y fdM

where H is the mean curvature of the immersion z.

Proof: The computation of dA/dt is well known and is the same as for the
Riemannian case. One ends up with the equation

dA

0= —/M n (W, H)dM

where H = L1y% (De;€:)* is the mean curvature vector. Using (8) one obtains
that H = —H N and so, using (22) one readly obtains (i). To prove (ii), fix
a point p e M and choose a positively oriented adapted orthonormal moving

frame ey, ..., €en,eny1 = N around z(p). Then
X*(dM) = a(p,t)dM A dt

where

—) = dM(ng(el), ey dXt(en)7 a—a)?()

Hence, using (22), we obtain

Il

a(p,0) = dM(dz(e1),...,dz(en), W)
fdM(dz(e1),...,dz(en), N)

fdM(es,...,en) = f
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Since

av d
d—t(t) = a(p,7)dM Ndr = /M a(p,t)dM

Mx[o0,t]

it follows that .
A%
7= [, fam

as we wished. q.e.d.

" A variation is normal if W is parallel to N, and volume-preserving if V(t)
= V(0) = 0 for all ¢.

Lemma 3.2 Given a smooth function f : M — IR with f|opr = 0 and [p, fdM =
0 there ezists a volume preserving normal variation whose variantion vector is

iN.

This lemma was proved as Lemma(2.2) in [BCE]. Although the proof was
carried out for the Riemannian case, it works as well for the Lorentzian case.

For a given variation X of an immersion = : M™ — M™+! we set
= A-1/M HdM , A= A®0)
and define J : (—¢,e) — R by
J(t) = A(t) + nH,V(t).

Proposition 3.3 Letz : M™ — M™! be a spacelike immersion. The following
statements are equivalent

(1)  has constant mean curvature H,;

(#i) For all volume-preserving variations A'(0) = 0;

(tii) For all (arbitrary) variations, J'(0) = 0.

The Riemannian version of this proposition was given in [BC]. The same
proof works also in the Lorentzian case. Note that the assumption H, # 0
made in [BC] is not needed.

To compute the second variation of J, we observe that

dJ

%= /M(—nH, +nH,)f.dM,
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2.4

Here H, is the mean curvature of X;, and f; = (ﬁ,

N:), where N, is the unit

normal vetor of X;. Thus

J"(0) = — /M (%) (0) fdM . (23)

The computation is essentially the same as for the area function in the Rieman-
nian case with a few changes of sign. For the sake of completeness we present

its proof the appendix.

Theorem 3.4 Let z : M™ — M be a spacelike immersion with constant mean
curvature H and let X be a variation of = that keeps the volume fized. Then

J"(0) is given by

JO)f) = [ (FAF = IBIPS + Rico(N)f*) dM

Here A is the Laplacian in the induced metric, | B|| is the norm of the second
fundamental form of , and Ricc(N) is the (normalized) Ricci curvature of M
in the direction of N.

Definition. Let M™ be compact and z : M™ — M™! a spacelike immersion
with constant mean curvature. The immersion z is stable if J”(0) < 0 for all
volume-preserving variations of z. If M is noncompact, we say that z is stable
if for every compact submanifold M C M, the restriction z|; is stable.

Just as in [BC], one can prove, using (3.2) and (3.4) the following criterion
for stability. Let F be the set of differentiable functions f : M — IR with
flosr = 0 and [, fdM = 0.

Proposition 3.5 = : M™ — M™! is stable if and only if J"(0)(f) < 0 for all
feF.

We define a bilinear form I : F — IR by
1(£,9) = [, o{Af ~ ||BI*f + Ricc(N)f}dM

Definition. A normal vector field V = fN, f € F, to an immersion = : M™ —
M™*! with constant mean curvature is a Jacobi field if f € Ker I, i.e.,if I(f,g) =

0, for all g e F.
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Proposition 3.6 Let f ¢ F. Then fN is a Jacobi field if and only if
Af + (Rice(N) — ||B||*)f = const. (24)

The proof is simple. If fN is a Jacobi field then the condition I(f,g) = 0
implies that A f+(Ricc(N)— B?)f is orthogonal in the L?(M) inner product to
all nonconstant functions in L?(M). This implies (24). The converse is obvious.

This proposition is analogous to Proposition 2.9 in [BCE].

4. The main results

Let’s consider the case when M is the Minkowski space IL™*!, i.e., the vector

space R™*! endowed with the pseudo-metric
(V, W) = —voWp + E vijw;
i=1

This is a flat space and therefore, for any spacelike immersion z with constant

mean curvature, we have for the second variation:

I(f,f)= | (fAf—|BI*f*)dM = — [ (||grad f|* + || B|*f*)dM < 0
M M

Hence z is stable. The same argument can be used to prove the following simple

result.

Proposition 4.1 Let A, be the first eigenvalue of the laplatian of M. Any
spacelike immersion with constant mean curvature H of M™ into M™ for which
A1+ ||B||> = Ricc(N) > 0 is stable. In particular this occurs when Ricc(N) < 0
along M. ‘

If M is small, then ); is big and the above inequality always holds in a
sufficiently small disk around any point of a spacelike immersion with constant
mean curvature. In fact, when the above inequality occurs, we have A”(0) < 0
for any variation of the immersion z. In the literature this is usually called

strong stability.
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Since any immersion with constant mean curvature in the Minkowski space
is stable (in fact strongly stable), we move to the next interesting example
of Lorentz space, namely the de Sitter space SP*'. This is a quadric in the
Minkowski space L™t defined by the condition (V, V) = 1. From this equation
one can deduce that (dV,V) = 0 and, consequently, the position vector V is
everywhere normal to the de Sitter space. Hence, if V = ey,...,e,, ey is an
adapted frame field on SP*! then we have

nt1
vV = Z 0;e;
e
deo = E EiWo;i€;
i=1
Since V = e we have

Woi = E,’g" (25)

The coefficients of the second fundamental form of ST*! are given by

n+1 "
Wo; = Z e;h,-,-()j.
i=1

Therefore,
hi; = &; (26)
and the curvature form of SP*! is
Qij = wio Awo; = —€:€0; A 6; (27)
From this we deduce that
Riji = 661 — 6abjn (28)

Therefore S7*! has constant sectional curvature Rij;; = 1. Now we consider a
spacelike immersion « : M™ — S7*! of an orientable manifold M. As before,
we fix a unit vector field N along M and observe that (N,N) = —1. Let
€1,...,€n,ent1 = N be an adapted frame field to z. Using (28) we get
Rice(N) =" Ruptinpri = n (29)

i=1
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If z has constant mean curvature then the second variation formula is given by

1(f,f)

[ (FAF = IBIE +nf?)iM
— [ {llgrad £1 + (IBI - n)f*}dbt (30)

Following Montiel [M], we obtain examples of hypersurfaces in SP*! with
‘constant mean curvature by considering intersections of S} with affine hy-
perplanes of IL"*?. Specifically, let W € IL"** be a constant vector such that
<W,W >= —1, and let

M={VeL"?(V,V)=1 and (V,W)=r1}

where the range for admissible values of  is determined by the requirement that

V € SPtL. Note, that the hyperplane (V, W) = r is spacelike. The hypersurface

. e 2 . . . .
M is compact, umbilic, || B||> = nH? = 7751 and its sectional curvature is given

by Riju = ;,—:—1(5;,,6,-1 — 6u46;). By analogy with the Riemannian case we call

M a small sphere of S7*' if 7 # 0. If 7 = 0 we call it a big sphere. Observe

that spheres of S7*! with mean curvature H are isometric to Euclidean spheres

with possible values for H? in the interval [0,1).

Proposition 4.2 Spheres of SPt! are stable.

Proof: Consider a sphere M in SP*! with constant mean curvature H. Since

M is isometric to an Euclidean sphere with sectional curvature -r’l+1 then the

first eigenvalue of the laplacian of M is A; = 7. Using (30) we obtain

14,5) = = [ {llgrad fI? + (IBI - m)f*}dns
_/M(,\1 +nH? —n)f?dM = 0

IN

Hence the inclusion of M into the de Sitter space is stable. In fact we will prove
that the converse of this result is also true. For that we need some lemmas and
the Theorem 4.6 below which may be found in the literature (see, for example,

[M]; note that the mean curvature in [M] is the negative of the mean curvature
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here). For the sake of completeness we present here the corresponding results

with the proofs.

Lemma 4.3 Let ¢ : M™ — SP*! be a spacelike immersion of an orientable
manifold M and represent by N its unit normal vector field. If z has con-
stant mean curvature then, for each fized vector A € IL™*?, the Laplacians of the

functions g = (z, A) and f = (N, A) are given by:
Ag=nHf —ng Af =|B|*f -nHg

Proof. Take a local adapted frame field z = eq, ey, ..., €y, €np; = N. It follows
that, at each point z, we have dg = Y%, (e;, A)8; = ¥ ¢;6; and

D(e;,A) = d(e;, A +Z (ej, A)wji
j=1

n+l n
= E €k ek) wlk + Z eJy w]i
k=0 j=1

= (eO) A)“)zo == <6n+17 A)wm.-H

= —(z, A)0:+ (N, A) Y hi;6; = 3 g:;6;
j=1

i=1

It follows that gij = —gﬁ,'j + fh,'j and so
Ag=3 gi=-ng+nHf

For the case of f we have

df = = (ej, Awnprj = Y hji(e;, A)b; = ¥ fi6;
i=1

J=1 ij=1

Hence

a

Dfi = 3 hjiles, A6k + Y hjsD(e;, A)

Jk=1 j=1
n n+1 n
= Y hju(e, A + Z hJs{Z eler, A)wir + Y (ew, A)wi;}
Jk=1 Jj=1 k=1
= > hjulej, A)bi + Z hji{(eo, A)wjo — (ent1, A)Wins1}

Jk=1 i=1
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hji(es, AYOk — gD hjifi+ f 3 hjihjubs

1 = k=1

{2 hije(ess A) = ghui + £ hjihin}0k = 3 fubr.
= i=1

13 k=1

I
™

2

Il
M=

k

1

Therefore

Af=3 fi= Y H;—nHg+|BI'f

i=1
Since H is constant, H; = 0 for each j and we arrived at the desired formula.
This proves the lemma.

The proof of the following lemma is the same as for the Riemannian case.

Lemma 4.4 For any spacelike immersion we have ||B||* — nH? > 0. Equality

occurs if and only if the immersion is umbilic.

Lemma 4.5 Let z : M™ — STt be a spacelike isometric immersion of a com-
1 P
pact connected oriented Riemannian manifold. If z has constant mean curvature

then z is umbilic.

Proof. We integrate over M the expressions of the Laplacians of the functions

f and g, given in (4.3), to obtain

H/MfdM=/Mng and /M ||B|]"fdM:nH/Mng

Which implies that

[ (IBI? = nE?) g ant = o ()
Remember that f depends on the choice a vector A and we choose it so that
(A, A) = —1. Any vector V in L™? can be decomposed as V = vA + V where
(V,A) =0and (V,V) > 0. Using this decomposition for N and the fact that
(N,N) = —1 we write N = n,A + N and obtain

_1:_n<2>+(N:N)

It follows that
(N,AY =n2=1+(N,N)>1.
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Since M is connected, we may choose A such that f = (N, A) > 1. Taking such
f and using Lemma(4.4) we conclude from equation (31) that || B||? = nH? and

that  is umbilic. This concludes the préof of the lemma.

L3
Theorem 4.6 Let z : M™ — S7?*! be a spacelike isometric immersion of a
compact, connected, orientable Riemannian manifold M into the de Sitter space
St*1. If z has constant mean curvature then M is isometric to an Euclidean

sphere and z is its inclusion as an sphere of ST+,

Proof. We already know, from the previous lemma, that z is umbilic and
therefore || B||*> = nH?. Using this in Lemma(4.3) we obtain A(f — Hg) = 0.

Since M is compact we conclude that
f — Hg = const.
for any choice of the vector A. This means that, in fact, we have
N—-Hz=C

where C is a constant vector in IL™*?. One shall observe that any vector tan-
gent to M is perpendicular to C. Since M is connected it lies in some affine
hyperplane normal to C, not necessarily passing through the origin of IL™2.
Since M is compact, M is a sphere of S}*'. This proves the theorem.
Theorem 4.7 Letz : M™ — S be an immersion with constant mean curva-
iure of a compfete, connected and orientable Riemannian manifold M into the
de Sitter space. Then z is stable, if one of the following conditions hold: a) M
is compact; b) H> > 1; ¢) H? < 4(n — 1)/n?.

Proof. If M is compact, the result follows from the previous theorem. If
H? > 1 then the result follows from equation (30) and Lemma(4.4). Now
assume that H? < 4(n — 1)/n?. We want to estimate the value of the Ricci
curvature at each point of M. Let V = 3, v;e; be any tangent vetor to M.

Since Ricc(V) = 37 k= Rijrjvivk, using (19) and (28) we obtain
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RICC(V) = Z (6;k6jj = 6,-_,-6,~k)v,-vk = Z(hikhjj == h,'jh,-k)v.-uk

i,5,k=1 i,k
We may assume that, at the point where we are doing the computation, the
second fundamental form of z is diagonalized, and that ky, k,, ..., k, are its
principal curvatures. Then we obtain
n n
Rice(V) = (n = 1)|V|* + Y k! + nH > kiv?
=1 i=1

from where we deduce that

Rice(V)

(n = DIV + 30k + nH /207 — Sniry |V

i=1

> {(n=1) - (HP}V

Observe that the lower bound for Rice(V) is of the form C|V)? where C is a
constant which is positive due to our hypothesis. Hence, by Myers theorem,
M is compact and we are back to the case already studied. This proves the
theorem.

We observe that in the case of dimensinn two the hypothesis in the last

theorem cover all possibilities and we have the following strong result.

Corollary 4.8 Let z : M? — S} be an immersion with constant mean curva-
ture of a complete, connected orientable Riemannian manifold M into the de

Sitter space, then z is stable.

5. Appendix

In this appendix we want to prove the formula for the second variation stated
in Proposition(3.4) for the case of normal variations X : M x (—e,e) — M of
a spacelike immersion z. We will use the notation and results of section(). For
each t € (—¢,¢€), X; is a spacelike immersion with mean curvature H; computed
with respect to the unit normal vector field N,. The fact that X is normal

means that
_0X

L

(0)=fN
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From (23) one can see that in order to compute the -second derivative of J,
it is sufficient to compute (0H,/8t)(0). To do this we need the following two

lemmas.

Lemma 5.1 gradf = Dw Ny|i=o

Proof. Consider a set of coordinates uy,...,u, in a neighborhood of p on M.
It follows that 0X/0u; at the point (uy,...,u,,t) is tangent to X,(M) and that
0X 0X| 0
au." 6t -

Consequently, if V; = gT'):- and W = % we have foreach 1 <i<n

DwV; = Dy,w (32)
Now the lemma is proved by the following chain of equalities
(DWNh ‘/l')lt:O = _<NhDW‘/|')|t=O
= "'(Nv DV.‘I'Vlt=0) :
—(N,Vi[fIN + f Dy;N)
(Vi)
Associated with each X, we have a second second fundamental form II and a

map B defined as in (16).

Il
&
=

Lemma 5.2 IfY and Z are vectors in T,M then
(&B)Y,Z) = (Dygrad(f), Z) + fUN,Y, N, 2) — f(A’Y,Z)  (33)

Proof. We will compute the value of the derivative of II in two different ways.
First we will use that JI(Y, Z) = (Dy N, Z) and, as before, we set W = §X/6t.
We may extend Y and Z to tangent vector fields on M (also called ¥ and Z)
such that [Y, W] = [Z, W] = 0 at the point p.

%II(Y,Z) = <DwDyN,Z)+(DyN,DWz)=
| <

DyDwN, Z) + (Dwy)N, W) +
QW,Y, N, Z) + (Dy N, Dz W)
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Setting t = 0, using Lemma 5.1, the expression of W and [Y, W], = 0 rewrite

this as:

11(Y,2) = (Dygrad(f),Z)+
fQ(N,Y,N,Z) + f(DyN,DzN) (34)

at

Observe that the last term is equal to f(BY,BZ) = f(B*Y,Z). Now we
start the second calculation observing that I1(Y, Z)=(BY,Z).

8 _ _
5 11(Y,Z2) = (Dw(BY),Z)+ (BY, Dy 2)

(&B)Y + B(D},Y),Z) + (BY, D, W)

(ai )Y, )+(B(DTW),Z)+f(BY,DZN)
(%B)Y,2) + f(B(N{ N), Z) + f(BY, DzN)
8

(
(
(
{

(&§B)Y,Z) +2f(BY, RZ) (35)

Using (34) and (35) one obtains the result. q.e.d.

Proposition 5.3 For normal variations
OH ;
—n—(0) = Af + f Rice(N) — f||B|]

Proof. Take a frame fied ey, ..., e, €nt1 = N adapted to the immersion z for

which X is a variation. Then it is clear that

ij B?e; e i (Be;, Be;) = Z k% = ||B|)? (36)
3" (Dugrad(f), ) = Af (37)

i=1

and, by definition,

RlCC(N) Z Q N €i, N el) = ZE 6n+an+1m+ll = ZRn+lxn+lx (38)

i=1 =1
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Observe that

aH Ok &
nor =2 = 2 (e (39)

i=1

Now we apply Lemma(5.2) and use equations (36), (37) and (38) to obtain the

assertion of the proposition. q.e.d.

To conclude, we observe that Theorem(3.4) follows from the above proposi-

tion.
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