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SEMI-PARALLEL SURFACES IN SPACE FORMS

Antonio Carlos Asperti

1. Introduction

Symmetric spaces are locally characterized by the condition VR = 0, where R is
the riemannian connection (extended to act on tensors) and R is the curvature
tensor of the space. The integrability condition of VR =0is R- R = 0, where
R is extended to act as a derivation on tensors. Spaces which satisfy the latter
condition are called semi-symmetric and were classified by Szabé [10,11].

In submamifold theory, the condition analogue to VR = 0 is Va = 0 (see
(2) below), where a is the second fundamental form of the submanifold, and
the condition analogue to R- R = 0is R-a = 0. Submanifolds - or isometric
immersions - satisfying the first condition are called parallel and have been
studied by Ferus [6], Backes and Reckziegel [2], and Takeuchi [12]. Submanifolds
satisfying the condition R-a = 0 are called semi-parallel and have been studied
in the past years by several authors, especially Deprez [3.4] and Lumiste [8,9].

In this communication I will briefly describe some results - Theorems 1, 2
and 3 below - on semi-parallel surfaces which are better detailed in a joint work
with Francesco Mercuri, see [1]. Here, as well in the above mentioned articles,

the ambient manifold is a space form.

2. Notation

Let M™ be a connected n-dimensional riemannian manifold and let @¥(c) be a
complete, simply connected N-dimensional riemannian manifold with constant
sectional curvature c. Given an isometric immersion f : M™ — QV(c), we

denote by V and R the riemannian connection of M and respective curvature, by
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a the second fundamental form of f, and by V+ and R the normal connection
and respective curvature. The immersion is said to be semi-parallel if for every

tangent vectors X,Y, Z we have:
R(./Y, Y)a = vaya = Vnya = V[x'y]a =0 (1)
where
(Vxa)(Y, 2) = Vi(a(Y, 2) - «(VxY, 2) — (Y, VxZ).  (2)
It follows from the classical equations of Gauss, Codazzi-Mainard ad Ricci that
condition (1) can be rewritten as:
RY(X,Y)(a(2,W)) = a( R(X, Y)Z,W)+ o(R(X,Y)W, Z). (3)

It is not difficult to see that if the immersion is semi-parallel then M is

semi-symmetric.

3. Semi-parallel surfaces

From now on we restrict to the case n = 2. Let {e;, e;} be a local orthonormal
frame tangent to a semi-parallel immersion f: M? — Q™ (c) and define a; ;=

afe;, ;). Then (3) becomes:
Rlan = —Rlazz = Kau, Rlalz = K(au - 0‘22), (4)

where K is the Gaussian curvature of M and R* := R'(ey,e,) is the normal
curvature operator. If R* # 0 then a;, and az; — a;; are linearly independent
and, in this case, the equations of Ricci and Gauss applied to (4) give:
[ler2||? = K, leii]]? = 4K —ec. (aii,a12) =0, i =1,2, (5)
|H|? =3K —¢, |l — aa|? = 4K, (a11,022) = 2K — ¢,
where H = (ay; + a2;)/2 is the mean curvature vector of the immersion. Then

by considerations on whether R* = 0 or R* # 0 somewhere, we can deduce:

Theorem 1 (/3]) Let f : M?> — QM(c) be a semi-parallel immersion. Then
there ezists an open and dense set U C M such that the connected components

of U are of the following types:
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e (i) Open parts of a umbilical Q*(K) in Q"(c), K > ¢;
o (i) Flat surfaces with R+ = 0;

e (iii) Isotropic immersions with R* # 0 and ||H||* = 3K —c.

. For the case N = 5, we have the following result which was proven by

Lumiste [9] in the case ¢ = 0.

Theorem 2 Let f : M% — Q%(c) be a semi-parallel immersion of a connected
surface. If R* # 0 somewhere, then f(M?) is an open piece of a Veronese

surface in some Q*(¢) totally umbilical in Q%(c), ¢ > 0.

The main point in the proof of Theorem 2 is to show that the Gaussian cur-
vature has to be constant. For this we choose an orthonormal frame (e1,...,es5)

in Q%(c) adapted to the immersion and in a way that:
es=H/V3K —c, es = (ay; — azz)/2\/f, €5 = au/\/I?.

This is always possible by (5) except when H = 0 or, equivalently, when
3K = ¢ > 0, but this case cau be studied separately (see Proposition 3.6 of [1]).
Next, manipulating the structure equations for the dual and connection forms
of the choosen frame, we arrive to the desiréd result when ¢ > 0. For the case
¢ < 0 we have also to use a classical result of Beltrami (see [5] p. 161) on the
differential parameters on a surface.

A beautiful theorem of Kuiper and Pohl [7] has as a consequence that a
tight immersion of the real projective space into RN is projectively equivalent
to a Veronese surface and its image is contained in some R® ¢ RY. We use
this result and the similarity between (5) and the normal data of the classical

Veronese surface in Euclidean space to obtain:

Theorem 3 Let f : M?> — RY be a semi-parallel immersion of a compact
connected surface with K = 0.Then x(M) < 7(f) < 3x(M). Moreover:
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o (i) If M is non orientable then f embeds M as a Veronese surface in some

4-sphere of RY ;

o (i) If M is orientable and f is tight, then f is totally umbilical.

Here x(M) is the Euler, characteristic of M, which is positive since K # 0,
and 7(f) is the total absolute curvature of f.

It would be interesting to extend (i) of Theorem 3 to the orientable case
as well. Also one can ask in what extent the restriction N = 5 is necessary in

Theorem 2.
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