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ON THE STRUCTURE OF THE FOCAL LOCUS OF
A COMPLEX CURVE.

Sebastiao Carneiro de Almeida *®

0. Introduction

The aim of this paper is to understand the geometry of the focal locus of a
complex analytic curve in complex euclidean 2-space C?. If X : £ — C?isa

non-singular analytic curve, the focal locus of I is the set

Fs={X+p(X)¢: X €L,{ € N\X}

1 is the positive

where N;X is the unit normal sphere bundle of ¥ and A = p~
eigenvalue associated to the second fundamental form A€, This eigenvalue A is
independent of the choice of ¢ at X. When Vp # 0, the focal locus is the union
Fy =F3UYX* of a 3-di_mensional manifold and a “singular set”. In section 1 we
conduct a systematic investigation of the geometry of F* and proved, among

other things, the following result.

Theorem 0.1 The focal locus of a non-singular analytic curve T in C? is away
from its singular set a strictly convez scalar flat 3-dimensional hypersurface of
R,

In section 2 we take a look at the CR-structure on F'. In section 3 we suppose
locally F given as a graph of a real-valued function f over a domain 2 C R®.

We observe that the function f must satisfy the equation

trace(8i; + fifi)(f9) =0 £

*Supported by CNPq and Universidade Federal do Ceara


http://doi.org/10.21711/231766361993/rmc42
https://orcid.org/0000-0002-7233-0039

6 S. C. DE ALMEIDA

where V f = (fi, f2, fs) is the gradient of f and (f%) is the inverse of the Hessian
(fij) of £. This is equivalent to following partial differential equation

(f—zm - alf“)(v-f: Vf) + (1+ | Vf |2)a,2 = 01 detf" ?é 0

Here o; denotes the j** elementary symmetric function of the eigenvalues
of fu. = (fij). We may think of this as a transform, i.e., from a complex
analytic curve we construct its focal locus that in turn produce a solution of
(*)- It follows from the Alexandroff - Fenchel - Jessen theorem, (See[1]), that
a solution f of (*) on a bounded domain with smooth boundary is completely
determined by the values of f and V f on the boundary. The non-singular focal

locus F of a complex curve is unique in the following sense.

Theorem 0.2 Let M be a compact hypersurface of R* with boundary OM C F
such that

i) M is strictly convez with scalar curvature kpr = 0
i1) The normal vectors of M and F on OM are the same.

Then M C F.

The author would like to thank Professor H.B. Lawson for his remarks and

suggestions.

1. The geometry of the focal locus

In this section we analyse the geometric structure on the focal locus of a non-
singular analytic curve ¥ in C2.

Let £ C C? be a non-singular holomorphic curve. We will denote by
<,> the standard inner product on C? and by J : C? — C? the multiplication
by /—1. We set if z € C?,

lg] =2zt



STRUCTURE OF THE FOCAL LOCUS 7

Let V be the Riemannian conection on C2?. The second fundamental form

of ¥ is defined by

BV,W = (va)N (l.l)

for V,W € TxX = tangent space of & at X. Here ( )V denotes projection
"onto Nx¥ = normal space of ¥ at X. Given a normal vector {x € NxX we
define A¢: TxY — TxX by

AYV) = ~(Vve)” (1.2)
where ¢ is an arbitrary vector field in C? with the property that ¢ is normal to

T in a neighborhood of X and ()7 denotes projection onto TxE.

Remark 1 The N(X)-valued bilinear form B is symmetric and also complez
bilinear, i.e., Byyw = JByyw = Bygw. (See Lawson [2]). A and B are related
by

< BV,W,f >=< AE(V), W > (1.3)

In particular A¢ is self-adjoint. The eigenvalues +A\(X,€) of A¢ are independent
of the choice of £ at X, and if B # 0, they vanish only at isolated points. In

this paper we will avoid those points.

Given a normal vector field ¢ of unit lenght at X on ¥ we asociate to ¢ the
eigendirection of A¢ with positive eigenvalue A. There are two eigenvectors of
unit length on this “eingen-line”, v¢ and —ve. We denote by ¢, the unit normal
vector cost + (J€)sint. It follows from the above remark that the eigenvalues
of A% do not depend on t. They are given by A and —\ and the eigenline
correponding to —A is determined by Juvg,. An easy computation shows that
tvg, = vecos(t/2) + Juesin(t/2). From now on we will choose the sign of vg so

that

Remark 2
ve, = e, 1=+/—1 (1.4)
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Definition 1.1 The focal locus of ¥ is the set
Fe={X+p(X)¢ : X € 3,6 € NI}
where
p(X) = 1/A(X)

In order to determine the structure of the focal locus we will consider the

mapping [: £ x S' — Fy C C? given by

I(X,t) = X + p(X)e'vx (1.5)

where v is a unit normal vector field on X.

One can prove easily that at (X,t)eX x S we have

Ly, ALJv, ALDO/OE = 2p(vy,.p)ve A Juy, A Ty, (1.6)

This proves the following lemma.

Lemma 1.1 The mapping l: £ x S* — C? given by (1.5) is an immersion at
(X,t)eX x St if and only if

<Vp,v,, >#0 (1.7)

From now on we will assume that ¥ contains no critical points of p. In

particular |Vp| # 0 and we can define the vector fields v;, v, on I by
Juy = vy = Vp/|Vp| (1.8)
Remark 3 The vector field v in (1.5) may be chosen in such a way that

v, = vy. This vector field is obviously unique. With this notation we have

the following result
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Lemma 1.2 The focal locus of ¥ is the union FUZX" of a 3-dimensional man-

ifold F and a “singular set £*”. Moreover

F={X+p(X)e'vy : X € 2,0 <t <2}

T ={X+p(X)x:X e}

where v is the unique unit normal vector field on ¥ such that v, = v;.

Proof: A point X*'€ Fy may be written as X* = [(X,t) for some
X € X and t € [0,27). We observe now that

< Vp,v,, >= |Vplsin(t/2)

The result follows by applying Lemma 1.1

Over F*? we define a field of orthonormal frames X*ey, e,, e3, e4 such that for
X* =X+ p(X)¢ € F we have

€1 =JU5

ez =¢

-, (1.9)
€4 = V¢

The vector field e4 is obviously normal to F3 at X*. Welet wy ,1 < A <4,
be the dual conframe of e4. To e4 we also associate the conection 1-forms wsp

given by

4
dey = Z waBe€p . (1,10)
B=1

The Cartan structure equations are

dwa =Y wap Awp (1.11)
B

deB=ZwAc/\wcg, wyp +wpgs =0 (112)
C
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Let T'(F) and T*(F) be respectivily the tangent and cotangent bundle of F.
The second fundamental form II of F is a section on T*(F') ® T'(F') whose

components with respect to the given orthonormal frame e4 are

3
II = (hij), wia =) hijw;

i=1

We have the following result

Lemma 1.3 At the point X* = X + p(X)éx € F we have

=IVel*/2 (Jve)p —vep
(ve-p®)II = -2 0 (1.13)
0

Proof: We are going to use the moving frame method. For this we consider

the distinguished orthonormal frame field v4 on ¥ obtained by making

vy, = Juy = Vp/|Vp|,vs = v,vs = Jv (1.14)

where v is the unique normal vector field such that v, = v,
We then associate to v its dual conframe 64,1 < A < 4 and denote by 845

the 1-forms on ¥ given by

4
dvA = Z oAB’UB (1.15)

B=1

We recall that the focal locus is given by the mapping [ : £ x S! — C? where

I(X,t) = X + pe'tvg (1.16)

Taking the differencial of (1.16) gives

dl = dX + dpe™tvs + pdte’tv, + pedus

By construction

P931 = ply; = -6,
{ P932 = P914 =0, (1'17)

Therefore
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dl = (1 — e"*)81vy + (1 + €*)8,v; + dpe™tvs + pe’t[dt + 034)vs
Then
dl = 2[—sin(t/2)6; + cos(t/2)8a)es + dpes + pldt + Oaa)es (1.18)
It follows that

‘"wy = dp = |Vplb, (1.19)
l*w;; = p[dt + 934]

In the following we are going to compute I*w;s, j =1,2,3. We have

{ I*w; = 2[—sin(t/2)8; + cos(t/2)6,]

lMwiy =< dJ‘U,,”'UW >= <d€“/2JUW e;’g/zvv>
= <eit/2[djvu _ 2—1dt'U,,], ei!/zvu>

=03 —27'dt (1.20)
"Wy =< duy, vy, >= <de"‘u, ei‘/zvu>
= <e“[du + dtJv), ei'/zvu>
= <e"t/2du, u,,>
= cos(t/2)631 + sin(t/2)04

= —p~[cos(t/2)6; + sin(t/2)6,) (1.21)

Similary we obtain

l"waq = —p ™~ [—sin(t/2)6; + cos(t/2)6;] (1.22)
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We are now going to express the 1-forms wjs in terms of the dual coframe

wj, j=1,2,3. It follows from (1.19),(1.21) and (1.22) that

2pw3s = —wy (1.23)

2pwas = cotg(t/2)wr — 2(|Vplsin(¢/2))  w, (1.24)

To express wy4 in terms of the w;-.s, Jj =1,2,3, we first observe that

0= l*dw4 = Zl‘w, A l'w_.,-4

= [sm(t/2)01 - cos(t/2)62] A [2012 = 034 + p‘1|Vp|91]

Since this is true for all ¢,0 <t < 2w, it follows that

2012 = 034 + p~l|Vp|91 =0 (125)

This allow us to rewrite equation (1.20) as:

2pl*w14 = ]Vp|01 = P(034 + dt) (126)

Using equations (1.19) and (1.26) we obtain

2pwy4 = cosec(t/2)[—271|Vp|w; + cos(t/2)ws] — w3 (1.27)

At the given point X* = X + p(X)¢x € F we write the unit normal vector

€x as €x = e'*v for some ¢ € (0,27). Therefore v¢ = e*/?v,. It follows that

< Vp,vg >= ve.p = |Vplsin(t/2)

< Vp,Jug >= Jug.p = |Vp|cos(t/2)

Then
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2p(ve.p)waa = (Jvg.p)wy — 2w,

{ 2p(ve.p)wrs = =271 Vp|Pwy + (Jug.p)wz — (ve-p)ws
2pwzy = —wy

This proves the lemma.

“We will now prove our main result.

Theorem 1.1 The focal locus of a non-singular analytic curve £ in C? is away

from its singular set a strictly conver scalar flat 3-dimensional hypersurface of

R*.
Proof: Let X* = X+p(X)e"v € F = Fg—X*. The Gauss-Kronecker curvature

K of F at X* is given by the determinant of IJ. Therefore

K = (4p°vy.p)~"

= 1/4p*|Vplsin(t/2)

for all ¢ € (0,27). This shows that F is strictly convex. From lemma 1.3 if
follows that

tracelI = —(4 + |Vp|?)/2v¢p?
tracelI2 = (4 + |Vp|?)?/4(vep?)?

where ¢ = e*v. The scalar curvature & of F? is given by
k = (tracelI)? — tracelI* = 0
This completes the proof of the theorem.

Remark 4 It follows from the above theorem that H + p*[4 + |Vp|*]K = 0,

where V is the gradiente of ¥ and H = tracelI is the mean curvature of F.

Let Fy = F3U Z* be the focal locus of a non-singular analytic curve in C?.

On Fy there is a circle action ® : S! x Fy — Fy defined by
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#(s, (X, 1)) = U(X, 3 +1) (1.28)

where [ : £ x S! — Fy is the mappiné given by I(X,t) = X + pe'v. We may

think of p as a function on Fg. To make things clear we define p* : Fx — R by

o (I(X, 1)) = p(X) (1.29)
The function p* is constant on the orbit os a point p € Fg. Taking the differ-
ential of (1.29) and restricting p* to F' we get

I'dp* = dp = l"'w, (1.30)

The second equality follows from (1.19). Therefore

dp* = w, (1.31)

Equivalently

gradp™ = e, (1.32)

where gradp* denotes the gradient of F3. Since |gradp*| = 1 it follows that
the integral curves of grad p* are geodesics. The direction back to the complex

curve I is given by - gradp. We have the following theorem.

Theorem 1.2 On the focal locus of a complez curve ¥ there is a circle action

® : S! X Fg — Fg and a function p* : Fx — R satisfying
(a) p~ is constant on the orbit of a point p € Fy
(b) |gradp*/F|=1 on F

(c) From a point p € F3 the direction back to the complez curve X is given by
-grad p*

(d) On the orbit of a point p € F* the tangent C-line field H given by H, =
T, F NJT,F, is completely determined by the value of grad p* at p.
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Proof: Equation (1.28) defines the circle action . We have already verified
conditions (a),(b),(c). To verify (d) we just observe that H is spanned by the

vector fields e;, Je, and e; = gradp*.

Remark 5 The tangent C-line field H C TF? defines a CR-structure on the
non-singular focal locus F®. In the nezt section we will take a look at this

structure.

Example 1: Let X : C — {0} — C? be the holomorphic curve given by X(z) =
(2,2"),n € N. Since dX = (1,nz""!)dz it follows that z = & +1y are isothermal
parameters for X = X(C — {0}). The metric is given by ds? = p?|dz|* where
pt=14 n2|z|2("‘1)7,‘;‘1. > 0. Its Gaussian curvature is obtained easily. It is

given by
K= _2n2(n _ l)zlzlz(n—z)/ua
Observe that X is a non-singular holomorphic curve in C?. In this case the
function p is given by
p=(=2/K)"* = |z [n(n - 1)
An easy computation shows that Vp = 0 if and only if z € C, where
C.={z€C;|z|]=r} and
rn-1) = (n — 2)/(2n — 1)n?
For ¥ = Xy — X(C,) we have that the distinguished unit normal vector field v
is given by
n, __ 2(n-1) n
plel = (]2, %)

Therefore the focal locus of ¥ is the union Fy = F? U X* where

T ={X+pX)x:XeXx}
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F?={X +p(X)e"vx : X € T and 7 € (0,27)}

2. The CR-structure of the non-singular focal locus

We now recall (cf. [3],[5]) the definition of a CR submanifold of a complex
m-dimensional Kaehlerian manifold M. Let J be the almost complex structure

of M and M a real n-dimensional Riemannian manifold isometrically immersed
in M.

Definition 2.1 M is called a CR-submanifold of M if the holomorphic tangent
space to M at z, H,(M) = T,(M) N JT.(M), has constant complez dimension.
H(M) is called the holomorphic tangent bundle to M. The pair H(M) C T(M)
is called the CR-structure (Cauchy-Riemann structure) of M.

Remark 6 The distribution H : ¢ — H, satisfaes the following conditions:
(a) H is holomorphic, i.e., JH, = HVNx € M

(b) The complementary orthogonal distribution H : ¢ — H} C To(M) is
anti-invariant, i.e., JHX C To(M)* for each ¢ € M. If dimH; =
dimT.(M)* for any ¢ € M, then the C R Submanifold is called a generic
submanifold of M. When dimH}, dimH, # 0 for any ¢ € M then M is
said to be non trivial. It is clear that every real hypersurface of a Kaehler

manifold is a generic non trivial C R-submanifold.

Let Fg = F3UYX" be focal locus os a non-singular analytic curve in C2. The
tangent C-line field H is given by H, = T,F NJT,F,p € F. H, is the maximal
complex subspace of T,C? which is contained in T, F. The pair H C T F? defines
a C R-structure on the non singular focal locus F'.

Let Aut (F3) be the local automorphism group of C R-mappings, i.e., C*®
mappings f : F' — F such that df/H : H — H is complex linear. By a result
of Segre, [4], if the Levi form of F is non degenerate then Aut (F?) is finite
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dimensional. We then want to take a look at the Levi form of F3. For this
we let w be a 1-form on F2 such that Kern w = H. We then define the skew

symmetric tensor L by

L= dw/H (2-1)

This skew symmetric tensor is in fact given by L(V, W) = —w([V, W]) for V,W
in H. Note that w is determined up to multiplication by a positive function.

We will choose this function so that

L(V,W) =< [V, W], e, > (2.2)

where e; is the vector Jug translated to X* = X 4+ p€ € F. L is the so called
Levi form of F. We prove the following result.

Theorem 2.1 The Levi form L defined on the non singular focal locus of a
complez curve X in C? is non degenerate. In particular Aut (F®) is finite

dimensional.
Proof: Let L be the Levi form given by (2.2). We have to show that the
associated hermitian form

hi(V, W) = —L(JV, W) — iL(V, V)

is non degenerated. One can easily check that h, = a( , ) where
a=L(§ JE) and ( , ) is the standard hermitian form on C?. With the no-
tation of lemma 1.3 it is sufficient to show that L(¢,J¢) = L(ez, e3) #0. To

prove the theorem we observe that

L(ez, e3) =< Ve,ea — Ve e2,€1 >

=< V. Jez — V. Jez, Je; >

=< —Vezez - V,ae;,, —E
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= haz + has

Using lemma 1.3 we see that hy; # 0 and haz = 0. This completes the proof

of the theorem.

3. Final coments

In section 1 we have seen how to construct a scalar flat hypersurface of R* from
a non singular analytic curve }” in C?. Suppose locally F given as a graph of a

real-valued function f over a domain  C R3. Then locally

F={(z, f(z):z = (z1,25,73) € Q} =Ty

We may ask what equation €(f) = 0 must the real function f : @ — R
satisfy so that its graph has scalar curvature kK = 0. We may as well think of
this as a transform, i.e., from a complex analytic curve we construct its focal
locus that in turn produce a solution of the equation €(f) = 0.

In the induced metric the first and second fundamental forms are given by

I = Z(&,’j + fl’fj)d:l:.' ® dz; (3.1)

IH=-w- Z f,'_,'d:c,' ® d.‘l:j (3.2)

where Vf = (f1, f2, f3) is the gradient of f,(fi;) = f.. is the Hessian of f
and W? =1+ |Vf|>. A straightforward computation shows that the scalar

curvature & of Iy is given by

K =2W™4(f)

where

e(f) = (1 + |V )or + (fi. = o1 fu)(V £, V) (3-3)
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Here o; denotes the jt* elementary symmetric function of the eigenvalues of
fee = (fij). The eingenvalues ky, kg, ks of II relative to I are called the principal
curvatures. We recall from theorem 1.1 that I'; is strictly convex, i.e., the Gauss-
Kronecker curvature K is everywhere > 0. The reciprocals 1/k;,1/k;,1/ks are
called the radii of principal curvatures. They are the roots os the polynomial

equation

det[W (g:;)(f7) + Ma] = 0 (3.4)
where g;; = 8;;+ fif;, I is the 3 x 3 identity matrix and (f/) denotes the inverse
of the Hessian of f.

The first elementary symmetric function of ,%’,, 1=1,231s
1 1 1 K
PTy)=—+—+—=-—==0 :
1(T'y) wT R TR K (3.5)
This shows that the equation trace(&;; + f:f;)(f7) = 0 is equivalent to

e(f)=0, detfi.#0 (3.6)

It follows from a generalization of Alexandrofl-Fenchel-Jessen Theorem (See
Chern,[1]) that if f,f : @ — R are solutions of (3.6) in a boundded domain
with smooth boundary 8Q, and f = f,Vf = VFf in 0Q then f = f. This is
a consequence of the fact that the first elementary symmetric functions Py(T'y)
and Py(T'y) of their graphs coincide and their common boundary have the same
normal vectors. A more general uniqueness result may be stated in the following

way.

Theorem 3.1 Let M be a compact hypersurface of R* with boundary
OM C F® such that

i) M 1is strictly conver with scalar curvature kpyr =0

ii) The normal vectors of Mand F' on M are the same

Then M C F.



20 S. C. DE ALMEIDA

Proof: The manifolds F' and M are strictly convex and scalar flat. Therefore
Py (M) = Pi(F) = 0. This condition together with condition (ii) implies that
M C F(See Chern [1]).
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