

ON THE STRUCTURE OF THE FOCAL LOCUS OF A COMPLEX CURVE.

Sebastião Carneiro de Almeida *10

0. Introduction

The aim of this paper is to understand the geometry of the focal locus of a complex analytic curve in complex euclidean 2-space C^2 . If $X: \Sigma \to C^2$ is a non-singular analytic curve, the focal locus of Σ is the set

$$F_{\Sigma} = \{X + \rho(X)\xi : X \in \Sigma, \xi \in N_1\Sigma\}$$

where $N_1\Sigma$ is the unit normal sphere bundle of Σ and $\lambda=\rho^{-1}$ is the positive eigenvalue associated to the second fundamental form A^{ξ} . This eigenvalue λ is independent of the choice of ξ at X. When $\nabla \rho \neq 0$, the focal locus is the union $F_{\Sigma}=F^3\cup\Sigma^*$ of a 3-dimensional manifold and a "singular set". In section 1 we conduct a systematic investigation of the geometry of F^3 and proved, among other things, the following result.

Theorem 0.1 The focal locus of a non-singular analytic curve Σ in C^2 is away from its singular set a strictly convex scalar flat 3-dimensional hypersurface of R^4 .

In section 2 we take a look at the CR-structure on F. In section 3 we suppose locally F given as a graph of a real-valued function f over a domain $\Omega \subset R^3$. We observe that the function f must satisfy the equation

$$\operatorname{trace}(\delta_{ij} + f_i f_j)(f^{ij}) = 0 \tag{*}$$

^{*}Supported by CNPq and Universidade Federal do Ceará

where $\nabla f = (f_1, f_2, f_3)$ is the gradient of f and (f^{ij}) is the inverse of the Hessian (f_{ij}) of f. This is equivalent to following partial differential equation

$$(f_{**}^2 - \sigma_1 f_{**})(\nabla f, \nabla f) + (1 + |\nabla f|^2)\sigma_2 = 0, \ \det f_{**} \neq 0$$

Here σ_j denotes the j^{th} elementary symmetric function of the eigenvalues of $f_{**} \equiv (f_{ij})$. We may think of this as a transform, i.e., from a complex analytic curve we construct its focal locus that in turn produce a solution of (*). It follows from the Alexandroff - Fenchel - Jessen theorem, (See[1]), that a solution f of (*) on a bounded domain with smooth boundary is completely determined by the values of f and ∇f on the boundary. The non-singular focal locus F of a complex curve is unique in the following sense.

Theorem 0.2 Let M be a compact hypersurface of R^4 with boundary $\partial M \subset F$ such that

- i) M is strictly convex with scalar curvature $\kappa_M \equiv 0$
- ii) The normal vectors of M and F on ∂M are the same.

Then $M \subset F$.

The author would like to thank Professor H.B. Lawson for his remarks and suggestions.

1. The geometry of the focal locus

In this section we analyse the geometric structure on the focal locus of a non-singular analytic curve Σ in C^2 .

Let $\Sigma \subset C^2$ be a non-singular holomorphic curve. We will denote by <,> the standard inner product on C^2 and by $J:C^2\to C^2$ the multiplication by $\sqrt{-1}$. We set if $z\in C^2$,

$$|z| = \langle z, z \rangle^{1/2}$$

Let ∇ be the Riemannian conection on C^2 . The second fundamental form of Σ is defined by

$$B_{V,W} \equiv (\nabla_V W)^N \tag{1.1}$$

for $V,W\in T_X\Sigma\equiv$ tangent space of Σ at X. Here $(\quad)^N$ denotes projection onto $N_X\Sigma\equiv$ normal space of Σ at X. Given a normal vector $\xi_X\in N_X\Sigma$ we define $A^{\xi}:T_X\Sigma\to T_X\Sigma$ by

$$A^{\xi}(V) = -(\nabla_V \xi)^T \tag{1.2}$$

where ξ is an arbitrary vector field in C^2 with the property that ξ is normal to Σ in a neighborhood of X and $()^T$ denotes projection onto $T_X\Sigma$.

Remark 1 The $N(\Sigma)$ -valued bilinear form B is symmetric and also complex bilinear, i.e., $B_{JV,W} = JB_{V,JW} = B_{V,JW}$. (See Lawson [2]). A and B are related by

$$\langle B_{V,W}, \xi \rangle = \langle A_{\xi}(V), W \rangle$$
 (1.3)

In particular A^{ξ} is self-adjoint. The eigenvalues $\pm \lambda(X, \xi)$ of A^{ξ} are independent of the choice of ξ at X, and if $B \neq 0$, they vanish only at isolated points. In this paper we will avoid those points.

Given a normal vector field ξ of unit length at X on Σ we associate to ξ the eigendirection of A^{ξ} with positive eigenvalue λ . There are two eigenvectors of unit length on this "eingen-line", v_{ξ} and $-v_{\xi}$. We denote by ξ_t the unit normal vector $\xi cost + (J\xi)sint$. It follows from the above remark that the eigenvalues of A^{ξ_t} do not depend on t. They are given by λ and $-\lambda$ and the eigenline corresponding to $-\lambda$ is determined by Jv_{ξ_t} . An easy computation shows that $\pm v_{\xi_t} = v_{\xi} cos(t/2) + Jv_{\xi} sin(t/2)$. From now on we will choose the sign of v_{ξ} so that

Remark 2

$$v_{\xi_t} = e^{it/2}v_{\xi}, \quad i = \sqrt{-1} \tag{1.4}$$

Definition 1.1 The focal locus of Σ is the set

$$F_{\Sigma} \equiv \{X + \rho(X)\xi : X \in \Sigma, \xi \in N_1\Sigma\}$$

where

$$\rho(X) \equiv 1/\lambda(X)$$

In order to determine the structure of the focal locus we will consider the mapping $l: \Sigma \times S^1 \to F_\Sigma \subset C^2$ given by

$$l(X,t) = X + \rho(X)e^{it}\nu_X \tag{1.5}$$

where ν is a unit normal vector field on Σ .

One can prove easily that at $(X, t) \in \Sigma \times S^1$ we have

$$l_* v_{\nu} \wedge l_* J v_{\nu} \wedge l_* \partial / \partial t = 2\rho(v_{\nu_t}, \rho) \nu_t \wedge J v_{\nu_t} \wedge J \nu_t$$
 (1.6)

This proves the following lemma.

Lemma 1.1 The mapping $l: \Sigma \times S^1 \to C^2$ given by (1.5) is an immersion at $(X,t)\epsilon\Sigma \times S^1$ if and only if

$$<\nabla \rho, v_{\nu_t}> \neq 0 \tag{1.7}$$

From now on we will assume that Σ contains no critical points of ρ . In particular $|\nabla \rho| \neq 0$ and we can define the vector fields v_1, v_2 on Σ by

$$Jv_1 = v_2 = \nabla \rho / |\nabla \rho| \tag{1.8}$$

Remark 3 The vector field ν in (1.5) may be chosen in such a way that $v_{\nu} = v_1$. This vector field is obviously unique. With this notation we have the following result

Lemma 1.2 The focal locus of Σ is the union $F \cup \Sigma^*$ of a 3-dimensional manifold F and a "singular set Σ^* ". Moreover

$$F = \{X + \rho(X)e^{it}\nu_X : X \in \Sigma, 0 < t < 2\pi\}$$

$$\Sigma^* = \{X + \rho(X)\nu_X : X \in \Sigma\}$$

where ν is the unique unit normal vector field on Σ such that $v_{\nu} = v_1$.

Proof: A point $X^* \in F_{\Sigma}$ may be written as $X^* = l(X,t)$ for some $X \in \Sigma$ and $t \in [0, 2\pi)$. We observe now that

$$<
abla
ho, v_{
u_t}> = |
abla
ho|\sin(t/2)$$

The result follows by applying Lemma 1.1

Over F^3 we define a field of orthonormal frames X^*e_1, e_2, e_3, e_4 such that for $X^* = X + \rho(X)\xi \in F$ we have

$$\begin{cases}
e_1 = Jv_{\xi} \\
e_2 = \xi \\
e_3 = J\xi \\
e_4 = v_{\xi}
\end{cases} (1.9)$$

The vector field e_4 is obviously normal to F^3 at X^* . We let ω_A , $1 \le A \le 4$, be the dual conframe of e_A . To e_A we also associate the conection 1-forms ω_{AB} given by

$$de_A = \sum_{B=1}^4 \omega_{AB} e_B \qquad (1.10)$$

The Cartan structure equations are

$$d\omega_A = \sum_B \omega_{AB} \wedge \omega_B \tag{1.11}$$

$$d\omega_{AB} = \sum_{C} \omega_{AC} \wedge \omega_{CB}, \quad \omega_{AB} + \omega_{BA} = 0$$
 (1.12)

Let T(F) and $T^*(F)$ be respectively the tangent and cotangent bundle of F. The second fundamental form II of F is a section on $T^*(F) \otimes T(F)$ whose components with respect to the given orthonormal frame e_A are

$$II=(h_{ij}), \quad \omega_{i4}=\sum_{j=1}^3 h_{ij}\omega_j$$

We have the following result

Lemma 1.3 At the point $X^* = X + \rho(X)\xi_X \in F$ we have

$$(v_{\xi}.\rho^{2})II = \begin{bmatrix} -|\nabla\rho|^{2}/2 & (Jv_{\xi}).\rho & -v_{\xi}.\rho \\ -2 & 0 \\ 0 & 0 \end{bmatrix}$$
 (1.13)

Proof: We are going to use the moving frame method. For this we consider the distinguished orthonormal frame field v_A on Σ obtained by making

$$v_2 = Jv_1 = \nabla \rho / |\nabla \rho|, v_3 = \nu, v_4 = J\nu$$
 (1.14)

where u is the unique normal vector field such that $v_{
u} = v_1$

We then associate to v_A its dual conframe θ_A , $1 \le A \le 4$ and denote by θ_{AB} the 1-forms on Σ given by

$$dv_A = \sum_{B=1}^4 \theta_{AB} v_B \tag{1.15}$$

We recall that the focal locus is given by the mapping $l: \Sigma \times S^1 \to C^2$ where

$$l(X,t) = X + \rho e^{it} v_3 \tag{1.16}$$

Taking the differencial of (1.16) gives

$$dl = dX + d\rho e^{it}v_3 + \rho dt e^{it}v_4 + \rho e^{it} dv_3$$

By construction

$$\begin{cases}
\rho\theta_{31} = \rho\theta_{42} = -\theta_1 \\
\rho\theta_{32} = \rho\theta_{14} = \theta_2
\end{cases}$$
(1.17)

Therefore

$$dl = (1 - e^{it})\theta_1 v_1 + (1 + e^{it})\theta_2 v_2 + d\rho e^{it} v_3 + \rho e^{it} [dt + \theta_{34}] v_4$$

Then

$$dl = 2[-\sin(t/2)\theta_1 + \cos(t/2)\theta_2]e_1 + d\rho e_2 + \rho[dt + \theta_{34}]e_3$$
 (1.18)

It follows that

$$\begin{cases} l^*\omega_1 = 2[-\sin(t/2)\theta_1 + \cos(t/2)\theta_2] \\ l^*\omega_2 = d\rho = |\nabla\rho|\theta_2 \\ l^*\omega_3 = \rho[dt + \theta_{34}] \end{cases}$$
(1.19)

In the following we are going to compute $l^*\omega_{j4}$, j=1,2,3. We have

$$l^*\omega_{14} = \langle dJv_{\nu_t}, v_{\nu_t} \rangle = \langle de^{it/2}Jv_{\nu}, e^{it/2}v_{\nu} \rangle$$

$$= \langle e^{it/2}[dJv_{\nu} - 2^{-1}dtv_{\nu}], e^{it/2}v_{\nu} \rangle$$

$$= \theta_{21} - 2^{-1}dt \qquad (1.20)$$

$$egin{aligned} l^*\omega_{24} &= < d
u_t, v_{
u_t}^-> = \left\langle de^{it}
u, e^{it/2}v_
u
ight
angle \ &= \left\langle e^{it}[d
u + dtJ
u], e^{it/2}v_
u
ight
angle \ &= \left\langle e^{it/2}d
u, v_
u
ight
angle \end{aligned}$$

$$=\cos(t/2)\theta_{31}+\sin(t/2)\theta_{41}$$

$$= -\rho^{-1}[\cos(t/2)\theta_1 + \sin(t/2)\theta_2] \tag{1.21}$$

Similary we obtain

$$l^*\omega_{34} = -\rho^{-1}[-\sin(t/2)\theta_1 + \cos(t/2)\theta_2]$$
 (1.22)

We are now going to express the 1-forms ω_{j4} in terms of the dual coframe ω_j , j=1,2,3. It follows from (1.19),(1.21) and (1.22) that

$$2\rho\omega_{34} = -\omega_1\tag{1.23}$$

$$2\rho\omega_{24} = \cot(t/2)\omega_1 - 2(|\nabla\rho|\sin(t/2))^{-1}\omega_2 \tag{1.24}$$

To express ω_{14} in terms of the $\omega'_{j}s$, j=1,2,3, we first observe that

$$0 = l^* d\omega_4 = \sum l^* \omega_j \wedge l^* \omega_{j4}$$

$$= [\sin(t/2)\theta_1 - \cos(t/2)\theta_2] \wedge [2\theta_{12} - \theta_{34} + \rho^{-1}|\nabla\rho|\theta_1]$$

Since this is true for all $t, 0 < t < 2\pi$, it follows that

$$2\theta_{12} - \theta_{34} + \rho^{-1} |\nabla \rho| \theta_1 = 0 \tag{1.25}$$

This allow us to rewrite equation (1.20) as:

$$2\rho l^*\omega_{14} = |\nabla \rho|\theta_1 - \rho(\theta_{34} + dt) \tag{1.26}$$

Using equations (1.19) and (1.26) we obtain

$$2\rho\omega_{14} = \csc(t/2)[-2^{-1}|\nabla\rho|\omega_1 + \cos(t/2)\omega_2] - \omega_3 \tag{1.27}$$

At the given point $X^* = X + \rho(X)\xi_X \in F$ we write the unit normal vector ξ_X as $\xi_X = e^{it}\nu$ for some $t \in (0, 2\pi)$. Therefore $v_{\xi} = e^{it/2}v_{\nu}$. It follows that

$$<
abla
ho, v_{m{\xi}}> = v_{m{\xi}}.
ho = |
abla
ho| \sin(t/2)$$

$$<
abla
ho, Jv_{m{\xi}}>=Jv_{m{\xi}}.
ho=|
abla
ho|\cos(t/2)$$

Then

$$\begin{cases} 2\rho(v_{\xi}.\rho)\omega_{14} = -2^{-1}|\nabla\rho|^{2}\omega_{1} + (Jv_{\xi}.\rho)\omega_{2} - (v_{\xi}.\rho)\omega_{3} \\ 2\rho(v_{\xi}.\rho)\omega_{24} = (Jv_{\xi}.\rho)\omega_{1} - 2\omega_{2} \\ 2\rho\omega_{34} = -\omega_{1} \end{cases}$$

This proves the lemma.

We will now prove our main result.

Theorem 1.1 The focal locus of a non-singular analytic curve Σ in C^2 is away from its singular set a strictly convex scalar flat 3-dimensional hypersurface of R^4 .

Proof: Let $X^* = X + \rho(X)e^{it}\nu \in F = F_{\Sigma} - \Sigma^*$. The Gauss-Kronecker curvature K of F at X^* is given by the determinant of II. Therefore

$$K = (4\rho^3 v_{\nu_t} . \rho)^{-1}$$

$$=1/4\rho^3|\nabla\rho|{\rm sin}(t/2)$$

for all $t \in (0, 2\pi)$. This shows that F is strictly convex. From lemma 1.3 if follows that

$$\left\{egin{array}{l} {
m trace} II = -(4 + |
abla
ho|^2)/2v_{\xi}
ho^2 \ {
m trace} II^2 = (4 + |
abla
ho|^2)^2/4(v_{\xi}
ho^2)^2 \end{array}
ight.$$

where $\xi = e^{it}\nu$. The scalar curvature κ of F^3 is given by

$$\kappa = (\operatorname{trace} II)^2 - \operatorname{trace} II^2 = 0$$

This completes the proof of the theorem.

Remark 4 It follows from the above theorem that $H + \rho^2 [4 + |\nabla \rho|^2] K = 0$, where ∇ is the gradiente of Σ and H = traceII is the mean curvature of F.

Let $F_{\Sigma} = F^3 \cup \Sigma^*$ be the focal locus of a non-singular analytic curve in C^2 . On F_{Σ} there is a circle action $\Phi: S^1 \times F_{\Sigma} \to F_{\Sigma}$ defined by

$$\phi(s, l(X, t)) = l(X, s + t) \tag{1.28}$$

where $l: \Sigma \times S^1 \to F_{\Sigma}$ is the mapping given by $l(X,t) = X + \rho e^{it} \nu$. We may think of ρ as a function on F_{Σ} . To make things clear we define $\rho^*: F_{\Sigma} \to R$ by

$$\rho^*(l(X,t)) = \rho(X) \tag{1.29}$$

The function ρ^* is constant on the orbit os a point $p \in F_{\Sigma}$. Taking the differential of (1.29) and restricting ρ^* to F we get

$$l^*dp^* = dp = l^*\omega_2 \tag{1.30}$$

The second equality follows from (1.19). Therefore

$$d\rho^* = \omega_2 \tag{1.31}$$

Equivalently

$$\operatorname{grad} \rho^* = e_2 \tag{1.32}$$

where $\operatorname{grad} \rho^*$ denotes the gradient of F^3 . Since $|\operatorname{grad} \rho^*| = 1$ it follows that the integral curves of $\operatorname{grad} \rho^*$ are geodesics. The direction back to the complex curve Σ is given by - $\operatorname{grad} \rho$. We have the following theorem.

Theorem 1.2 On the focal locus of a complex curve Σ there is a circle action $\Phi: S^1 \times F_{\Sigma} \to F_{\Sigma}$ and a function $\rho^*: F_{\Sigma} \to R$ satisfying

- (a) ρ^* is constant on the orbit of a point $p \in F_{\Sigma}$
- (b) $|grad\rho^*/F| = 1$ on F
- (c) From a point $p \in F^3$ the direction back to the complex curve Σ is given by -grad ρ^*
- (d) On the orbit of a point $p \in F^3$ the tangent C-line field H given by $H_p = T_p F \cap J T_p F$, is completely determined by the value of grad ρ^* at p.

Proof: Equation (1.28) defines the circle action Φ . We have already verified conditions (a),(b),(c). To verify (d) we just observe that H is spanned by the vector fields e_2 , Je_2 and $e_2 = \operatorname{grad} \rho^*$.

Remark 5 The tangent C-line field $H \subset TF^3$ defines a CR-structure on the non-singular focal locus F^3 . In the next section we will take a look at this structure.

Example 1: Let $X: C - \{0\} \to C^2$ be the holomorphic curve given by $X(z) = (z, z^n), n \in N$. Since $dX = (1, nz^{n-1})dz$ it follows that z = x + iy are isothermal parameters for $\Sigma_0 = X(C - \{0\})$. The metric is given by $ds^2 = \mu^2 |dz|^2$ where $\mu^2 = 1 + n^2 |z|^{2(n-1)}, \mu > 0$. Its Gaussian curvature is obtained easily. It is given by

$$K = -2n^2(n-1)^2|z|^{2(n-2)}/\mu^6$$

Observe that Σ_0 is a non-singular holomorphic curve in C^2 . In this case the function ρ is given by

$$\rho = (-2/K)^{1/2} = |z|^{2-n} \mu^3/n(n-1)$$

An easy computation shows that $\nabla \rho = 0$ if and only if $z \in C_r$ where $C_r = \{z \in C; |z| = r\}$ and

$$r^{2(n-1)} = (n-2)/(2n-1)n^2$$

For $\Sigma = \Sigma_0 - X(C_r)$ we have that the distinguished unit normal vector field ν is given by

$$\mu|z|^n\nu=(n|z|^{2(n-1)}z,-z^n)$$

Therefore the focal locus of Σ is the union $F_{\Sigma} = F^3 \cup \Sigma^{\star}$ where

$$\Sigma^* = \{X +
ho(X)
u_X : X \in \Sigma\}$$

which we find
$$F^3 = \{X + \rho(X)e^{i\tau}\nu_X : X \in \Sigma \text{ and } \tau \in (0, 2\pi)\}$$

2. The CR-structure of the non-singular focal locus

We now recall (cf. [3],[5]) the definition of a CR submanifold of a complex m-dimensional Kaehlerian manifold \overline{M} . Let J be the almost complex structure of \overline{M} and M a real n-dimensional Riemannian manifold isometrically immersed in \overline{M} .

Definition 2.1 M is called a CR-submanifold of \overline{M} if the holomorphic tangent space to M at $x, H_x(M) = T_x(M) \cap JT_x(M)$, has constant complex dimension. H(M) is called the holomorphic tangent bundle to M. The pair $H(M) \subset T(M)$ is called the CR-structure (Cauchy-Riemann structure) of M.

Remark 6 The distribution $H: x \to H_x$ satisfaes the following conditions:

- (a) H is holomorphic, i.e., $JH_x = H_x \forall x \in M$
- (b) The complementary orthogonal distribution H[⊥]: x → H_x[⊥] ⊂ T_x(M) is anti-invariant, i.e., JH_x[⊥] ⊂ T_x(M)[⊥] for each x ∈ M. If dimH_x[⊥] = dimT_x(M)[⊥] for any x ∈ M, then the CR Submanifold is called a generic submanifold of M̄. When dimH_x[⊥], dimH_x ≠ 0 for any x ∈ M then M is said to be non trivial. It is clear that every real hypersurface of a Kaehler manifold is a generic non trivial CR-submanifold.

Let $F_{\Sigma} = F^3 \cup \Sigma^*$ be focal locus os a non-singular analytic curve in C^2 . The tangent C-line field H is given by $H_p = T_p F \cap J T_p F$, $p \in F$. H_p is the maximal complex subspace of $T_p C^2$ which is contained in $T_p F$. The pair $H \subset T F^3$ defines a CR-structure on the non singular focal locus F.

Let Aut (F^3) be the local automorphism group of CR-mappings, i.e., C^{∞} mappings $f: F \to F$ such that $df/H: H \to H$ is complex linear. By a result of Segre, [4], if the Levi form of F is non degenerate then Aut (F^3) is finite

dimensional. We then want to take a look at the Levi form of F^3 . For this we let ω be a 1-form on F^3 such that Kern $\omega \equiv H$. We then define the skew symmetric tensor L by

$$L \equiv d\omega/_{H} \tag{2.1}$$

This skew symmetric tensor is in fact given by $L(V, W) = -\omega([V, W])$ for V, W in H. Note that ω is determined up to multiplication by a positive function. We will choose this function so that

$$L(V, W) = \langle [V, W], e_1 \rangle$$
 (2.2)

where e_1 is the vector Jv_{ξ} translated to $X^* = X + \rho \xi \in F$. L is the so called Levi form of F. We prove the following result.

Theorem 2.1 The Levi form L defined on the non singular focal locus of a complex curve Σ in C^2 is non degenerate. In particular Aut (F^3) is finite dimensional.

Proof: Let L be the Levi form given by (2.2). We have to show that the associated hermitian form

$$h_L(V, W) = -L(JV, W) - iL(V, W)$$

is non degenerated. One can easily check that $h_L=a(\ ,\)$ where $a=L(\xi,J\xi)$ and $(\ ,\)$ is the standard hermitian form on C^2 . With the notation of lemma 1.3 it is sufficient to show that $L(\xi,J\xi)=L(e_2,e_3)\neq 0$. To prove the theorem we observe that

$$L(e_2,e_3) = <
abla_{e_2}e_3 -
abla_{e_3}e_2,e_1>$$

$$=<
abla_{e_2}Je_3-
abla_{e_3}Je_2,Je_1>$$

$$= < -\nabla_{e_2}e_2 - \nabla_{e_3}e_3, -e_4 >$$

$$= h_{22} + h_{33}$$

Using lemma 1.3 we see that $h_{22} \neq 0$ and $h_{33} = 0$. This completes the proof of the theorem.

3. Final coments

In section 1 we have seen how to construct a scalar flat hypersurface of R^4 from a non singular analytic curve Σ in C^2 . Suppose locally F given as a graph of a real-valued function f over a domain $\Omega \subset R^3$. Then locally

$$F=\{(x,f(x):x=(x_1,x_2,x_3)\in\Omega\}\equiv\Gamma_f$$

We may ask what equation $\epsilon(f)=0$ must the real function $f:\Omega\to R$ satisfy so that its graph has scalar curvature $\kappa\equiv 0$. We may as well think of this as a transform, i.e., from a complex analytic curve we construct its focal locus that in turn produce a solution of the equation $\epsilon(f)=0$.

In the induced metric the first and second fundamental forms are given by

$$I = \sum (\delta_{ij} + f_i f_j) dx_i \otimes dx_j \tag{3.1}$$

$$II = -W^{-1} \sum f_{ij} dx_i \otimes dx_j \tag{3.2}$$

where $\nabla f = (f_1, f_2, f_3)$ is the gradient of $f, (f_{ij}) \equiv f_{**}$ is the Hessian of f and $W^2 = 1 + |\nabla f|^2$. A straightforward computation shows that the scalar curvature κ of Γ_f is given by

$$\kappa = 2W^{-4}\epsilon(f)$$

where

$$\epsilon(f) = (1 + |\nabla f|^2)\sigma_2 + (f_{**}^2 - \sigma_1 f_{**})(\nabla f, \nabla f)$$
 (3.3)

Here σ_j denotes the j^{th} elementary symmetric function of the eigenvalues of $f_{**} \cong (f_{ij})$. The eingenvalues k_1, k_2, k_3 of II relative to I are called the principal curvatures. We recall from theorem 1.1 that Γ_f is strictly convex, i.e., the Gauss-Kronecker curvature K is everywhere > 0. The reciprocals $1/k_1, 1/k_2, 1/k_3$ are called the radii of principal curvatures. They are the roots os the polynomial equation

$$det[W(g_{ij})(f^{ij}) + \lambda I_3] = 0 (3.4)$$

where $g_{ij} = \delta_{ij} + f_i f_j$, I_3 is the 3×3 identity matrix and (f^{ij}) denotes the inverse of the Hessian of f.

The first elementary symmetric function of $\frac{1}{k_i}$, j=1,2,3 is

$$P_1(\Gamma_f) \equiv \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} = \frac{\kappa}{2K} = 0 \tag{3.5}$$

This shows that the equation $\operatorname{trace}(\delta_{ij} + f_i f_j)(f^{ij}) = 0$ is equivalent to

$$\epsilon(f) = 0, \quad \det f_{**} \neq 0 \tag{3.6}$$

It follows from a generalization of Alexandroff-Fenchel-Jessen Theorem (See Chern,[1]) that if $f, \overline{f}: \Omega \to R$ are solutions of (3.6) in a bounded domain with smooth boundary $\partial \Omega$, and $f = \overline{f}, \nabla f = \nabla \overline{f}$ in $\partial \Omega$ then $f \equiv \overline{f}$. This is a consequence of the fact that the first elementary symmetric functions $P_1(\Gamma_f)$ and $P_1(\Gamma_{\overline{f}})$ of their graphs coincide and their common boundary have the same normal vectors. A more general uniqueness result may be stated in the following way.

Theorem 3.1 Let M be a compact hypersurface of R^4 with boundary $\partial M \subset F^3$ such that

- i) M is strictly convex with scalar curvature $\kappa_M \equiv 0$
- ii) The normal vectors of M and F on ∂M are the same

Then $M \subset F$.

Proof: The manifolds F and M are strictly convex and scalar flat. Therefore $P_1(M) = P_1(F) = 0$. This condition together with condition (ii) implies that $M \subset F(\text{See Chern } [1])$.

References

- [1] S.S. Chern, Integral Formulas for Hypersurfaces in Euclidean Space and Their Applications to Uniqueness Theorems, Journal of Mathematics and Mechanics, Vol 8, No 6 (1959).
- [2] H.B Lawson, Jr. Lectures on Minimal Submanifolds, IMPA, Rio de Janeiro, 1973. Reprinted by Publish or Perish 1980.
- [3] R.O. Wells, Jr., The Cauchy-Riemann Equations and Differencial Geometry, Bulletim of The American Mathematical Society, Vol 6, No 2 (1982), 187-199.
- [4] B. Segre, Questioni geometriche legate colla teoria delles funzioni di due Variabili complesse, Rend. Sem. Mat. Roma 7 (1931), 59-107.
- [5] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian Manifolds. Progress in Mathematics, Vol 30, 1983.

Departamento de Matemática Universidade Federal do Ceará Campus do Pici 60.455-760 Fortaleza-Ce, Brazil