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ON A CLASS OF CONFORMAL IMMERSIONS

K. Tenenblat® J. Vargas*

Let M? be a connected oriented two-dimensional Riemannian surface and

let X : M2 — R¥ be a conformal immersion. We denote by
g:M? - Gon

the generalized Gauss map, where G,y is the Grassmannian of oriented 2-
planes in R¥, and for each point p of M, g(p) is the oriented tangent plane of
the immersed surface X (M) at X(p).

The properties of the map g, related to the geometry of X (M) C RY and the
conformal structure, were studied by Hoffman and Osserman (1,2]. In particular,
they obtained necessary and sufficient conditions, in the generic case, for a given
map g to arrise as a Gauss map as above. Moreover, they showed (2] that if X is
not a minimal immersion, then X is determined uniquely by g, up to translation
and homothety in R,

In (3], E. Vargasta considered the following problem: Under what conditions
does there exist another conformal immersion X : M? - RY, such that the
generalized Gauss ma § of X differs from g by an orientation-reversing con-
gruence in G, y. In this case X and X are said to have the same Gauss map
and opposite orientation. For N — 3, necessary and sufficient conditions on
the principal curvatures of X, were obtained in (3], for the existence (at least
locally) of such an X, which is unique up to homothety and translation in R2.

These conditions are trivially satisfied by a rotation surface, a cyclic of Dupin
or a surface of constant mean curvature, with has no umbilic points.

In this paper, we obtain a six parameter family of complete surfaces im-

mersed in R® which admit a conformal immersion with the same Gauss map
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and opposite orientation (Theorem 1). This family is characterized by the so-
lutions of a third order nonlinear ordinary differential equation.
In order to state and prove our result we need to recall the following theorem

which was proved in [3].

Theorem A: Let X : M? — R2 be a conformal immersion without umbilic
points. Let (z,y) be local coordinates by lines of curvature and let A, p be the

principal curvatures.

(i) If there ezists X : M? — R® with the same Gauss map as X and opposite

R R

and X is unique up to homothety and translation in R3.

orientation then

(i) If M? is simply connected and equation (1) is satisfied then there ezists
a conformal smmersion X of M? in R® with the same Gauss map as X

and opposite orientation.

Equation (1) is trivially satisfied by a rotation surface, since the principal
curvatures depend only on the variable which parametrizes the generating plane
curve. For a Dupin sruface, one has A\, = p, = 0. Finally, another trivial
solution is given by surfaces of constant mean curvature (A + p)/2.

In order to provide a non trivial family of immersions which admit another
conformal immersion with the same Gauss map and opposite orientation, we
observe that basides equation (1) one needs to consider also the Gauss and
Codazzi equations. The following lemma studies the solutions of a nonlinear
third order ordinary differential equation which will be equivalent to the Gauss

equation.

Lemma: Consider the ordinary differential equation for f(€)

" ! a b)2
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where
N =gt _et—< pD=e*tied<anda+0,bcleR. (3)

Given initial conditions (&), f'(€) > 0 and f"(€0) € R, there exists a solution
f defined uniquely in some neighborhood I C R of &, which satisfies the initial

_conditions and it is strictly increasing. Moreover, if f(é) = —b/a, then I = R.

Proof: The existence of f follows from basic results on ordinary differential
systems. We only need to prove that if f({o) = —b/a then I = R.

Suppose f(£) is not defined for all ¢ € R, then there exists {; € R such that
lime_¢, f'(€) = 0. Suppose ¢; is the first ¢, for which such a limit holds.

We may suppose without loss of generality that § < €. Then it follows
from equation (2) that 1im£—~€{ f"(€) = 0. Moreover,

. " i b ! i 2
Jim 1) = ~ ey fim o0+ 6 (4
We claim that
Jim (af(6) + 7 > 0. (5)

In fact, otherwise this limit would be zero, i.e.

lim f(¢) = —b/a.

E—¢&
Now since the initial conditions are f(&) = —b/a and f'(é,) > 0, then it would
exist & € (o, &) for which f/(é;) = 0. This contradicts the fact that ¢ is the
first ¢ for which the derivative of f vanishes.

Therefore, from (4) and (5) we get

lim f"(€) < 0.
E—ér

Hence, there exists € > 0, such that f(¢) < 0 for ¢ € J = ({4 —€,&1), i.e. f”

is strictly decreasing in this interval and therefore

f'(€)> lim f'(§) =0 for £€J.
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Hence f'(€) is strictly increasing for ¢ € J. Since lime~f,‘ f'(€é) = 0, it follows
that f'(&) < 0 for some ¢; € J. Now, f'(&) > 0 and f'(€éa) < 0 imply that
there exists €4 € (£, &) such that f/(¢4) = 0. This is a contradiction, since ¢;

was chosen so that for any ¢ € (£o,¢,), f' does not vanish.

Using the above lemma we can prove our main result.

Theorem 1: For each strictly increasing solution f(€) of (2) defined on I C R,
there ezists an immersion, determined up to rigid motions of R}, X : I xR —
R?®, which is complete if f(é0) = —b/a, has no umbilic points and it is foliated by
circular heliz curves. Moreover, there ezists a conformal immersion X with the
same Gauss map as X and opposite orientation. The immersion X is unique

up to homothety and translation in R3.

Proof: Let f(£) be a strictly increasing solution of (2) defined for ¢ € I C R.
We consider the quadratic forms defined for (z,y) € U C R?

I = E(z,y)dz? + G(z,y)dy?

I =e(z,y)de® + g(z,y)dy?

where
G g A5 (6)
e NG
e=(f+af +)E, g= S(~f'+af +5)G, (7)
6 =Tr—-Yy (8)

f' denotes the derivative with respect to ¢ and the functions are evaluated at
=z —y.

Since f is strictly increasing, the functions E and G are positive. We will
show that the above quadratic forms satisfy the Gauss and Codazzi equations
for a surface in R3.

We introduce the notation

MO =5 +af +8)  w==f+af+b) (9)
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Then
e=AE, g=uG, (10)

and the Codazzi equations reduce to

E 22X d G 2
B oraeg an Ry
‘Now, these equalities follow easily from (6) and (9).

The Gauss equation reduces to verifying

o2 ()
e\ ve ),"\VE).|
Substituting E, G, A, and p given by (6) and (9) and using the fact that D' =

—aN and N' = —aD, for D and N defined by (3), we obtain equation (2)
which is satisfied since by hypothesis f(¢) is a solution of (2).

It follows from the fundamental theorem for surfaces that there exists an
immersion X : I x R — R3, defined for (£,7), € € I, n =z +y € R, whose
first and second fundamental forms are given by (6) and (7). This immersion is
determined up to rigid motions of R3.

If f(0) = —b/a, then the lemma asserts that f is defined for all ¢ € R and
therefore the immersion X : R? — R? is complete.

In any case, the immersion has no umbilic points since the principal curva-

tures A and p satisfy the relation
A—p=f>0

We now show that the immersion is foliated by circular helix curves. Passing
through po = X (éo,70), we consider the curve a(n) = X(é,7), 7 € R. Then
o' = Xz + X,)(&,n), and similarly o’ and o are sums of second and third
order derivatives of X with respect to z and y, evaluated at (o,7n). Therefore,
o,a" and o" are linear combinations of X, X, and N, where the coefficients
depend on the first and second fundamental forms of X and its derivatives
evaluated at (£o,7). From (6) and (7) these fundamental forms depend only on

¢, and hence they are constant along a. We conclude that a is a circular helix
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curve since the curvature and torsion of a are constants which are determined

by &.

Finally, Theorem A concludes the last part of the proof of our theorem.

The reader should reffer to the paper of Dajczer and Vergasta, in this volume,
for the problem of conformal immersions of hypersurfaces M™ in R"*!, n > 3,

which have the same Gauss map.

References

[1] Hoffmann, D.; Osserman, R. — The geometry of the generalized Gauss map.
Mem. Amer. Math. Soc. 236, 1980.

[2] Hoffman, D.; Osserman, R. - The Gauss map of surfaces in R™. J. Differ-
~ ential Geometry 18 (1983), 733-754.

[3] Vergasta, E. - Conformal deformations preserving the Gauss map. Pac. J.
Math. 156 (1992), 359-369.

Departamento de Matematica FAMAF

Universidade de Brasilia Ciudad Universitaria
70910 Brasilia, DF, Brazil 5000 Cordoba, Argentina
e-mail: keti@mat.unb.br e-mail:ecord!atina! uunet!

smimaf.edu.ar!vargas



