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HARMONIC MAPS INTO SURFACES WITH
TWO-DIMENSIONAL CONE METRICS

Mauro Rabelo *®

1. Introduction

The study of harmonic maps into spaces with singularities has not suffi-
ciently been considered. In [1] Gromov and Schoen developped the theory of
harmonic maps into certain singular spaces of nonpositive curvature. Another
contribuition was given by Leite in [3], where she proved the existence of har-
monic mappings with respect to some degenerate metrics.

Let (X,2z) and (S,w) be closed Riemann surfaces of the same genus
p > 2, where z and w are local complex coordinates, with z = z 4 iy. If
ds? = p*(w)|dw|® is a smooth Riemannian metric of nonpositive curvature,
then in any homotopy class o of degree one mappings from ¥ into S, there

exists a map v € C*(X, §) that minimizes the Dirichlet energy
Bw)= [ 20*(u)(u.f" + fusl*)dady.

Moreover, it was proved in [4] that » is a (harmonic) diffeomorphism. In [3]

Leite considered the same problem for a singular metric
ds* = |n| = |h(w)||dw/?,

where 7 is a holomorphic quadratic differential in S. Approximating || by

smooth negative curvature metrics she proved that the corresponding harmonic
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diffeomorphisms subconverge uniformly to a surjective, energy minimizing map
in a homotopy class of maps with finite energy.

Let C denote the set of cone points, i.e., C = {q € S 7(g) = 0}, and P the
preimage of such points, P = u~!(C), and denote by

& = |h(u)|u,i,dz?

the holomorphic Hopf differential of u. Recall that if ¢ # 0 then through any
p € I there passes a leaf of the foliation by negative real trajectories ¢ (i.e.,
maximal smooth curves v along which #(7',7') <0, [5]). The main purpose of
this paper is to study the singular set P and other properties of the map u.

We assume that u € C°(X,S) is a map as constructed by Leite in [3]. In
particular, u is uniformly approximated by orientation preserving diffeomor-
phisms and the associated Hopf differential ¢ is holomorphic. Moreover, u is
mL“ - Holder continuous where m is the maximal order of a zero of 7. Thus we
prove in Theorem 1 (section 3) that if ¢ # 0 then for any q € C the singular
set u"!{q} is an isolated point or a union of arcs contained in the negative real
trajectories of ¢. Moreover, outside the singular set, u : Z\P — S\C is a diffeo-
morphism. Also in the last section we show that u is the unique minimizer map
in its homotopy class a. When P is a finite set of points, we prove in Theorem 1
that if u is injective then it is the Teichmiiller map (H'— orientation preserving
homeomorphism with constant dilatation).

A weaker version of the last statement was already obtained in [3], where
Leite assumed the additional condition that « has dilatation bounded away from
one.

Our study of the set P was based on some recent results on the vanishing
order and the local behavior of harmonic maps into singular spaces which are
due to Gromov and Schoen [1]. We use that a neighbourhood of any ¢ € P is
metrically a cone with cone angle (m + 2)r, where m is the vanishing order of
1. In particular, it can be isometrically embedded as a geometric cone X C R3
with a singularity at its vertex. We then prove that whenever u € HY(Z,X)is

energy minimizing, the preimage of the cone point can be written locally as a
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graph over the negative real line of the Hopf differential ¢ around any point p
with @(p) # 0. These remarks are contained in Lemmas 1,2 and Proposition 1
in section 2.

The author take the opportunity to thank Prof. R. Schoen for proposing
the problem while he was visiting Stanford University in 1991. He also thanks

E. Kuwert for helpful conversations and suggestions.

2. The Local Structure of The Singular Set

Let D ={z=z+4+14y € C: |z| < 1} and let X C R¥ be a two- dimensional
cone with vertex 0 € RY. We assume that the generating curve X N S¥~1is a
(piecewise) smooth, simply closed curve of length £ > 2, so that X (with the

induced inner metric) is a realization of the cone metric
ds® = p?| 21| dz|?,

where z € C,p = £/2r > 1. In particular, X has nonpositive curvature in the
sense of [1]. Let U € H'(D,X) ={V € HY(D,R¥): V(z) € X a.e} be a local

minimizer for the standard Dirichlet energy
1 2 2
B(U) = 5 [ (U + U, )dedy

in H'(D, X). It is shown in [1] that if U has bounded image, then it is locally
Lipschitz continuous. We begin with the study of the set P = U~'{0} in the

infinitesimal level.

Lemma 1. Let U € H[ (R? X) be a homogeneous degree one minimizing
map. Then ¢ = |U,|* — |U,|* — 2i < U,,U, >=a € C* and there ezists z, € S
with az? > 0, such that U is independent of the direction iz, and U-{0} = Riz,

Proof. Since dU is homogeneous of degree zero, ¢ = a € C by Liouville’s
theorem. Now by [1], proposition 3.1, we have U = J o V where V : C — R™

is a homogeneous degree one harmonic map and J : R™ — X is an isometric,
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totally geodesic embedding. Since the vertex of X is singular, we must have
m = 1 (if m = 2, then J would have to map an euclidean circle of radius
p > 0 to a p-distance circle in X of the same length). Therefore there exist
z, € §',p > 0 such that V(z) = p < 2,2, >. It follows that U is invariant in
the direction iz,. Now j¢(w,w) = |[dU - w|> — }|dU|*|w|* —i < dU - w,dU - iw >
, 50 that a2z = ¢(2o, 2,) = —¢(i2,,12,) = |dU|* > 0. Moreover we have that the

curve U(tz,) = J(put) is a minimizing geodesic with speed |dU - z,|> = |¢|. O

Let now U € H'(D, X) be an energy minimizing map. We want to study
the set P = U~'{0} in the neighbourhood of a point z, € D at which the Hopf
differential does not vanish. As this is a local problem and as the energy is
conformally invariant, we may assume that z € D is a natural parameter for ¢,
ie.

\Uz® = |Uy)* — 26 < U, U, >=1. (1)

Following [1],we introduce the notation (for z, € D,0 < o < 1 — |2,|)

Blze0) = [ (Ul + 10, )dady,

o(20)

Ioo)= [ E(U(E), Ulso))de,

cE(2,,0)
I(z,,0) °
Also for A > 0, z, € D with U(z,) = 0 and |z,| < 1/2 we define

ord(z,,0) =

Vst D (0) = X, Usa(2) = %U(z‘, 585,

Lemma 2. LetU € H'(D, X) be an energy minimizing map with z € D a nat-
ural parameter for ¢ and d, = diam U(D) < oo. IfU(z) =0, |z| < 1/2, \; | 0
then the sequence Uy, x; contains a subsequence that converges locally uniformly
and locally in H' to a homogeneous degree one, nonconstant minimizing map

U.: C — X with U7'{0} = iR. Proof. Let |2,]| <1/2, 0 < 0 < 1/2. We
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begin by deriving upper and lower bounds for the quantities E(z,, ), I(z,,)
and the Lipschitz constant of U. We clearly have from (1) that

E(z,,0) > ma?.

Also ord(z,, o) is nondecreasing in o and converges to ord(z,) € [I,00) as o | 0,
because U is Lipschitz continuous (see [1], p. 41). Setting o = ord(2,), we infer
as in [1] that o=1722J(z,, o) is a nondecreasing function (there is no error term

because we work in the standard metric). Now for ¢ small we have

142

0E(z,,0) mod S g21-a) TP
I(zo,0) ~ I(20,0) ~ I(2,p)

for fixed p > 0. By taking o small enough we conclude that o = 1. Therefore,

2a > ord(z,,0) =

if o € (0,1), we have

7 < liminf M—
=0 rlord(z,,1)
I(z,,0) " I(z5,1/2) <K,
o3 T (1/2p —

= limjnf {Z27)
r—0 r3

IA

with K depending only on d,. Thus
wod < I(20,0) < Ko®. (2)
Using the subharmonicity of d*(U(-), U(z,)) it now follows that
dU(z,)| < K,

E(z,,0) < Ko? for o € (0,1/4).

Summing up, we have uniform local Lipschitz and uniform local energy
bounds for the sequence U; = U,; ;. After selection of a subsequence, U; will
converge locally uniformly and weaky in H! to a map U. : R> —» X, and
(2) gives that U, is not constant. The argument of [1] proposition 3.3 carries
over word by word to show that U. is locally minimizing and that the energies
converge. Also one obtains that U. is homogeneous of degree one. Now the con-

vergence of the energies implies that dU; — dU, pointwise almost everywhere,
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and therefore the quadratic differential associated to U, is identically equal to
dz?. Then we conclude from lemma 1 that U-1{0} = iR. a

Let now U be as in lemma 2. For any z € D, € (0,7/2) let Ca(z) C R?
be the cone of opening angle a around the y-direction through z,
€ — =]
In -yl
Let Qe(z) = {( € C: |¢ —z| < ¢ |n—y| < €}. We claim that for any
a € (0,7/2), there exists an € > 0 such that forall z € D, |z| <1/4, z€ P =
U~-'{0}, we have

Cou(z)={(=¢+inecC: < tg a}.

PNQu2) C Culz) 3)
If this were not true, we could find a sequence z; € D, |z:| < 1/4, U(z) =0
and a sequence z; € P, \; = |z, — z| — 0, such that z; ¢ Ca(z). Consid-
ering the blowup sequence U,; », we infer from lemma 2 that after selection of
a subsequence U, converges to a limit map U, with U {0} = iR. How-
ever U,‘.,,\_.(/\l‘_(z; - z)) = ,\l‘U(z:) = 0 and :\1:(3: — z;) € Cq4(0). By uniform
convergence, this gives a contradiction.
Condition (3) shows that any point 2z, € P has a neighbourhood Qe(2,), such
that P N Qc(2,) can be written as a graph over a closed subset of the vertical
line through z,, and additionally that

|z — z,|

sup{ rz=z+1y € P\{z,}, [z~ 2| <p} >0 as p—0. (4)

|z — z,|

We can summarize these results as follows:

Proposition 1. Let U € H'(D, X) be energy minimizing, P = U-1{0}. As-
sume that z, € P is a point at which the Hopf differential @ does not vanish.
Let ¢ = £ +1in be a natural parameter for ¢ at z,, so that ¢(20) = 0 and ¢ = d(2.
In a neighbourhood of z,, P can be described as a graph ¢ = f(n) over a subset
€ of the line £ = 0. Moreover, the local Lipschitz constant of the graph function

1s zero, i.e.
lim (1) = F()l _ o

= —
i N W
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Remark: The same statement holds if X is a nonpositively curved surface with

an isolated singularity, at which the tangent cone is of the type described above.

3. Global Consequences

We are now going to discuss the consequences of the above analysis in the
situation mentioned in the introduction.

Let (Z,2), (S,w) be closed Riemann surfaces of the same genus p > 2 and
let a be a homotopy class of degree one mappings from ¥ to S. Throughout this
section we assume that u € C°(X,S) is a map as constructed by Leite in 3],
which minimizes the energy with respect to the singular metric |n] associated to
a holomorphic quadratic differential 5 = h(w)dw?, in a homotopy class of maps
with finite energy. In particular we assume that u has the following properties

proved in [3]:

Proposition 2.

(i) u is uniformly approzimated by orientation preserving diffeomorphisms

(hence it is surjective);

(i) IfC ={g € S:n(q) =0}, P =u"}(C), thenu:T\P — S\C s a smooth

harmonic map with nonnegative jacobian;
(ii) ¢ = |h(u)|u,it,dz? is a holomorphic quadratic differential.
With those assumptions for the map u we are able to state the main result
of this paper.
Theorem 1. For u as in proposition 2, the following statements hold:

(i) If $ = 0 then u is a biholomorphic map;

(11) If  # 0 then :
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(a) For any q € C, u~'{q} is a single point or it is a compact and
simply connected union of arcs contained in the negative real trajectories

of ¢;
(b) u: Z\P — S\C is a diffeomorphism;

(111) If u is injective then it is the Teichmiiller map.

Proof. The proof of this theorem will be given in several steps. First of all we
observe that in a natural parameter, in a neighbourhood of a zero of order m,
7 has the form
n= (mTH)zwmdwz.

Thus a neighbourhood of any point ¢ € C can be isometrically embedded as a
cone in R2 over a curve in §? with length (m +2)r. Composing this embedding
with u we obtain a map U to which the results of section 1 can be applied.

Step 1. For any q € C the set P, = u='{q} is connected and can not contain
a closed curve that is homotopically nontrivial in X.

These are consequences of the fact that u is uniformly approximated by
orientation preserving diffeomorphisms.

Step 2. If $ =0 then u is a biholomorphic map.

We start by proving that u is injective. Assume that for some q € S,

card u'{q} > 1. Let
U:D,(0)cC—oXCR?®, U=Jouoz},

where z is a local parameter and J is an isometric embedding of a neighbourhood
of g as a cone in R®. Then U € H!(D,, X) is energy minimizing and from step
1 we have u=1{0} N 8D,(0) # 0 for all p € (0,r), if r is small enough. Also U

is a conformal map, i.e.
Uel* — 10y — 2 < U, Uy >=0.

Now from [1],proposition 3.3, we infer that U has a homogeneous degree o

approximating map U. : D — X which is not constant, for some a € [1,0).
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As any rescaled map U, ,(z) = iU(,\z) is conformally parametrized and U. is
approximated locally in H! by such maps, we infer that U, is also conformal.
Introducing polar coordinates z = re'

locally Lipschitz ) that

on D, we compute (recall that U. is

Ud(rz) = r2U.(2).

Then
oUu, «
B = o)
and also ’
1o, 8U. v 8U. 8U.
25§10+ =<Ungg >= 3 < 3 155 >=0-

As U, is not constant we conclude that U7?{0} = {0}. On the other hand, if

A is small enough we have that for any rescaled map U, ,, and for any r € (0, 1),
U510} N 9D,(0) #0.

As U, is the uniform limit of such a blowup sequence, we obtain a contradiction.
This proves that u is a homeomorphism. But the jacobian of u is nonnegative
on 2 = X\P, so that u is holomorphic on Q and thus it is holomorphic on ¥
because P is a finite set. This proves the first statement of the theorem.

From now on we assume that ¢ # 0, so that the trajectory structure of ¢ is
available.

Step 3. Let 2, € P be a point with ¢(2,) # 0. Then one of the following

alternatives holds:
(a) z, is an isolated point of P;

(b) near z,,P is an interval in the negative real trajectory of ¢ through z.,

containing 2z, as an interior or as an end point.

Suppose that the first alternative fails. Let { = ¢ + 19 € [—¢, €] X [—¢, €] be
a natural parameter around z,, so that in the domain Q. of ¢ we have a graph

representation

f:g_)Ra EC[_E!E]:£=f(7’)
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of P (according to section 1). Taking € small enough we may assume that
|f(n)| < 5 forn € . Now if for some 0 < 7y <72 < e we havern; € € (i = 1,2),
then it follows by the connectivity of P that [71,m2] N € = 0, because otherwise
the decompositon Q; = (71, 72) X (—¢,€), Q2 = T\Q; disconnects P. Assuming
that z, is an accumulation point from above (i.e. 7 > 0), we see that we can
assume [0,€] C €. But then from section 1 (Proposition 1) we conclude that
f'(n) = 0 on [0, €], so that f|pq = 0. If necessary we repeat the argument for
negative 7, so that the statement is proved.

Step 4. P cannot contain a closed loop and Q = L\ P is connected .

We have already excluded homotopically nontrivial loops in P. But the
metric |¢| does not admit contractible closed geodesics (see [5]),s0 that the
claim follows from step 3.

Step 5. w: Z\P — S\C is a diffeomorphism.

On @ = E\P, u is a smooth solution of the harmonic map equation
Lo
h(u)u,; + Eh (v)u uz =0,
where n = h(w)dw?. This implies that
¢1 = h(u)uldz® ¢, = h(u)uldz?

are holomorphic quadratic differentials on 2. As the jacobian Ju is nonnegative,

ie. |uz|> < |u,|?, we conclude that

g=2
é1
has a holomorphic extension to Q with |g| < 1. (¢; = 0 is not possible because
then u would have to be constant).
Now a zero z of the jacobian must also be a zero of the Hopf differential,
because otherwise |g(z)| = 1, which implies that |g| = 1 (actually g = constant)
on {2, by the maximum principle (here we use that  is connected). But then the

jacobian would vanish identically, which contradicts the fact that u is surjective.
Thus {z € @ : Ju(z) = 0} is a finite set.
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We proceed to show that u|q is injective. If this were not the case, i.e.
card u'{q} > 1 for some q € S\C, then we could use the connectivity of
u~'{q} as in step 2 to conclude that any z € u”'{q} is an accumulation point
of u='{g}, so that the zeroes of Ju are not isolated. The proof is finished
by the argument of Heinz [2] which says that a univalent harmonic map has
. nonvanishing jacobian.

Step 6. If u is injective then it is the Teichmiiller map.

Let g : B\P — C be the holomorphic function considered in step 5. Since
lg| < 1 and 7P is finite, g extends to all of ¥ and is therefore constant. Now

l9()) = 127

is the square of the dilatation of the map v and the Teichmiiller map is char-
acterized as being the unique homeomorphism with constant dilatation in its

homotopy class. This completes the proof of the theorem. O

4. Uniqueness

In this section we are going to prove that the map u, : ¥ — S, constructed in
section 2 is the unique minimizer in its homotopy class. Assume thatu, : ¥ — §
is another minimizer homotopic to u,. For any p € ¥ we can replace the curve
joining u,(p) to u;(p) by the unique constant speed geodesic homotopic to that

curve, with the same end points, thus obtaining a geodesic homotopy
u:[0,1] xZ — S, u(t,p)= uy(p)

connecting u, to u;. Let P, = uH{C}, O = Y\P; and let

Ou
Zy: Sy — TS, Zt(p) o a—tt(t,p)
denote the tangent field of the homotopy along u;. Observe that for any ) CC
§, there exists an € > 0 such that U|(t—ct+e)xn — S is a smooth map so that Z; is

well defined and smooth. Now recall from (1], Theorem 4.1, that for any Q C X,
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Eq(ue) is a continuous, convex function satisfying the differential inequality
d? 5
EEEn(Ut) > /n]Vd(uo,ul)I dzdy,

in the weak sense. As Eq(u,) is constant, we have that d(u,,u;) = L > 0. Now

let @ CC Q, then we have by a standard computation that

& \
0= = Bn(w) = 2/n |DZy(p)|*dzdy,

where D is the covariant derivative along u,. We obtain that Z, is parallel along

t¢|n,. In particular we have a parallel field Y, on S\C by setting

Yo(q) := Zo(ug'q) for g€ S\C
(recall that u, : Q, — S\C is a diffeomorphism) with ds?(Y,) = L. Also since
Y, is parallel then Y, rotates around the origin by the angle —mm < 0, i.e.,

index(Y,, q) = —%,

for any g € C which is a zero of 7 with order m.
Now observe that P, C Q, for any ¢ > 0, ¢ small enough (d(u,, ;) = Lt). Let
B(s) be a smooth arc in P,. It follows that

u,(B(s))=qeC

w(B(s)) C {q': dist(q,q') = Lt} = dB(q, Lt).
For any fixed s,, u(-,8(s,)) is a geodesic ray emanating from q. Therefore,
Z4y(B(s)) is proportional (with a constant factor) to the normal to 0B(q, Lt)
at the point u,(B(s)). As Z, is parallel along u, this proves that u¢(B(s)) has
to be constant. Thus for ¢ small enough, u, maps each component of P, to a
single point g(t) with dist (g(0),¢(t)) = Lt, and the curve q(t) is a geodesic ray
emanating from g(0).

Now assume {p;} C Q,, and p; converges to p, € P,. Let

q = U'o(Pi) =2 U'O(pa) = 4o,
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% = w(p:) = wi(p) = gl
Let %i(t) = u(p;), 0 < t < 1. It follows that 7i(t) converges to the geodesic
segment g(t), 0 < ¢t < 1. Thus if we take an euclidean coordinate background
metric, we must have that Y(g;) — ¢/(0)L . As this is true for any such sequence
{p:} we have shown that Y, has a continuous extension into the singular point
g: But this is not possible because index (Y, q) = —% < —1 (the argument
also works in the case where u] {q} degenerates to a point). It follows now

that Y, = 0, and thus u; = u, which means that U, is the unique minimizer in

its homotopy class.
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