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THE MAXIMUM PRICIPLE AT NON-FLAT
POINTS FOR ZERO SCALAR CURVATURE
HYPERSURFACES IN R*.

Maria Luiza Leite *®

A hypersurface in R* with scalar curvature identically zero (scalar-flat hyper-
surface) is locally parametrized as the graph z4 = u(z1, z3, z3) of a C* function

whose derivatives u; and u;; verify the equation

(1+ u12)(uzzu33 — u;a) +(1+ uzz)(“lluiﬂ - ufa) +
+(1 + u3®)(u11u22 — ud,) + 2[uruz(urauas — v1zuss) + (1)

+urus(ui2us — U13taz) + vsus(UaUsy — ugatyy)] = 0.

This quadratic second order partial differential equation is known to be non-
elliptic, in contrast to the equations for constant mean curvature and for positive
scalar curvature. The elliptic ones satisfy maximum principles, from which
many geometrical results have been derived (see [1],(2],[4],(7] and [9], among
several authors).

We know from Differential Geometry that flat graphs in R* are particu-
lar examples of scalar-flat hypersurfaces. The corresponding flat solutions, e.g.
functions depending on only one variable, vanish each quadratic term on equa-
tion (1), since their Hessian matrices have rank at most 1.

Our main result is that ellipticity of (1) fails precisely for flat solutions. We
also prove that Hopf’s Maximum Principle can be applied to the linearized equa-
tion for a convex family of non-flat solutions (theorem 1.1). Non-flat solutions
are described in Section 3.

The geometric version of theorem 1.1 is the content of theorem 2.1, according

to which two scalar-flat hypersurfaces tangent at a non-flat point either intersect
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or coincide locally, provided their spherical images have same orientation with

respect to the upward normal.

1. Ellipticity

Recall from (8, p.150] that a non-linear PDE, written in the form G(Du, D?u) =
0, is elliptic with respect to a function z at a point x if the matrix [0G/8u;;] is

positive definite, when the values z;(x) and 2;;(x) are inserted.

Theorem 1.1 The equation (1), or the equation obtained from (1) by multiply-
ing it by —1, is elliptic for a solution u at a critical point x if and only if the
Hessian matriz [u;;(x)] has rank > 1. Moreover, it is convez the set of functions

z for which (1) is elliptic at x, with Dz(x) = 0.
Lemma 1.1 Let us consider the second symmetric function
F(A) = ApAy — Afz + Ay Asz — A'f3 + Az Ass — AZ;,

of a 3 x 3 real symmetric matriz A = [A;;] and let us denote by [0F/OA] the
symmetric matriz of derivatives [0F |9 A;;].

i) If F(A) =0, then rank A = 0,1 or 3, but never 2.

ii) If F(A) =0, then [0F/8A] is singular if and only if rank A < 1.

iii) If F(A) = 0 and rank A =3, then [0F/OA] is positive (or negative)

iv) The matrices for which [0F/8A| is positive definite form a convez set V.

Proof: We know that F(A) = A;A; 4+ AjA3 + A2A3. If F(A) = 0 and one of
the eigenvalues, say Ay, is zero, then A;A3 = 0 also, and rank A is at most 1.
Otherwise, all eigenvalues of A are different from zero and rank A = 3, so (1)
is proved.

Differentiation of F'(A) gives us 0F/0 A1, = Ayy + Ass, OF /0 A1, = — Ay, etc.,

Ele]

[0F/0A] = (trA)I — A.
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The characteristic polynomial of A annihilates A, therefore
A® — (trA)A? + F(A)A — (detA)I = 0.
If F(A) =0, it follows that
[0F/0A] x A? = (trA)A? — A® = —(detA)I

When rank A <1, A has two eigenvalues zero, say A, and ),, hence [0F/0A)|
is singular, for it has two eigenvalues equal to A3 and the third one equal to
zero.

Let us suppose that rank A = 3. In this case A has an inverse so that
[0F/0A] = —(detA) x A=? is positive (or negative) definite, depending on
det A < 0 (or detA > 0), which proves ii) in the other direction and also iii).
We observe that (trA)I — A is a linear function of A. Given A;, A, € V, one
has that

[OF/BA](sAy + (1 — s)Az) = s[0F/0A,] + (1 — s) [0F/9A,)]

is a segment between positive matrices, as s € [0, 1]. Besides, the set of positive

matrices is convex, since
< (P14 (1= 8)P2)(€),€ >= s < Py(€),& > +(1 — 5) < Py(¢),¢ >,

which is positive for all { # 0, as Py and P, are positive matrices. Thus iv) is

proved.

Proof of Theorem 1.1: Let u be a solution of (1) written as G(Du, D?u) = 0.

At a critical point x, one has that
[6G/6ui;] (x) = [0F/0A] (D?u(x)),

since G(0,A) = F(A), with F as in Lemma 1.1.

A direct application of Lemma 1.1 gives us that [0G/8u;;] (x), or [8(—G)/0uij] (x),
evaluated at (Du(x), D?u(x)), is positive definite if and only if [u;j(x)] has rank
> 1.
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To prove the second statemeit of Theorem 1.1, suppose that the equation
(1) is elliptic with respect to the functions z and Z at a point where their
gradients vanish. That is, the matrices [0G/8u;;] evaluated at (0, D?z(x)) and
(0,D?Z(x)) are positive definite. It follows from part (iv) of Lemma 1.1 that
the equation (1) is elliptic at x with respect to the function sz + (1 — s)Z,
Vs € [0,1], so the theorem is proved.

Remark 1.1 As pointed out by the referee, the ellipticity argument (first part of
theorem 1.1) can be generalized, in a simple way, to hypersurfaces in R**!, n >
3, of zero scalar curvature, whose Gauss Kronecker curvature never vanishes.
Indeed, the ellipticity matrix of the linearized equation at a critical point x is
again (¢rA)I— A, where A = [u;;(x)]. Denoting by Ay, ..., A, the eigenvalues of
A, one has that (A; + Az + ...+ A,)? = A2 + A2 + ... + A2, since F(A) = 0. On
the other hand, the Gauss-Kronecker curvature condition means that detA # 0,
thus (trA)2 > /\? > 0,Vj, yielding that the eigenvalues trA — A; are all positive

when ¢rA > 0, and negative otherwise, which proves ellipticity.

Let us point out that theorems 1.1 and 2.1 have been generalized in [3] to
hypersurfaces in R™*! with zero k-th curvature function, for any k < n, under
the hypothesis that the Gauss map has rank > k — 1. Symmetry results are also

derived there.

2. The Tangency Principle for Scalar-flat Hypersurfaces

Let us recall the geometry of a graph. The scalar curvature of a Riemannian
manifold is an average of curvatures on orthogonal planar sections, thus flat
manifolds are scalar-flat.

In the case of a hypersurface in R*, the equation of Gauss yields that
the curvature of a section with orthonormal basis {X,Y} is K(X A Y) =
II(X, X)II(Y,Y) - II(X,Y)II(X,Y), where II is the second quadratic form
associated to the normal map differential. As a consequence, the hypersurface

scalar curvature is the second symmetric function of IT and a point p is flat if
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and only if rank I, < 1. The eigenvalues k;, k; and k3 of IT are the principal
curvatures of the hypersurface and the determinant k,koks its Gauss-Kronecker
curvature. With respect to the basis {X; = (e;,u;),i = 1,2,3} of a graph, the
matrix of II is a positive multiple of the Hessian matrix [u;;], therefore the
rank, the nullity of the second symmetric function and the determinant sign of

II(x,u(x)) and of [u;;(x)] are equally verified.

Theorem 2.1 Let My and M, be scalar-flat hypersurfaces in R* tangent at a
non-flat point p and equally oriented at p with normal (0,0,0,1). Suppose that
the Gauss-Kronecker curvatures of My and M, at p, which are different from
zero as p 1s non-flat, have the same sign. Then it can not happen that one
hypersurface is above the other near the tangengy point, unless they coincide in

a neighborhood of p.

Proof: We may assume that both Gauss-Kronecker curvatures at p are nega-
tive, by performing a reflection of the hypersurfaces around their tangent space
at p if necessary. We parametrize M; and M, as (0,0,0,0) € R*, so we get
two elliptic solutions u and w of the equation (1) such that u(0) = w(0) and
Du(0) = Dw(0) = 0. By continuity, we assume that the Hessian determinants
of u and w are negative in a neighborhood of 0.

The mean value theorem in the integral form implies that the following
pointwise equation holds (compare with [9]):

dG

1
0 = G(Du, D*u) — G(Dw, D?w) = / [E
0

(Do, Dzv')] dt,

where v* = tu + (1 — t)w. Clearly Dv! = tDu + (1 — t)Dw and Dt = tD%u +
(1 — t)D*w, thus implying that the above integrand is equal to

S 6G t 2t S 6G t 218
kgl B—M(Dv ,D%v )’Uk + "%1 aT”(D‘U , Dy )‘U,'j,

where v = u — w. After integration we arrive at a linear EDP for v of the form

3 3
Z brvr + Z CijVij; = 0, (2)
k=1

i,j=1
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where ¢;; = [} ;uc (Dv*, D?v*)dt. The coefficients b and c;; of equation (2) are
clearly continuous.

If v < w near 0, then the difference v attains the maximum value 0 at the
interior point 0, so v£(0) = 0 and [v;;(0)] is negative semi-definite. It follows
from Theorem 1.1 that (1) is elliptic with respect to v, at the point 0, for all
t € [0,1], so ¢;;(0) is positive definite. A continuity argument shows that the
linear equation (2) is uniformly elliptic near 0, so Hopf’s Maximum Principle can
be applied (see [8]). Thus, the solution v can not attain an interior maximum,

unlesss it is constant equal to zero. That is, M, can not be above M; near p,

unless they coincide.

3. Non-flat solutions

a) u(x) = 2y/|Ix|| =1, |[|x|| > 1. This graph is the upperhalf of a rotational

hypersurface with axis of revolution in the vertical direction and profile given
by a parabola ([5]).

b) u(x) = log [cosz(le)/(cos T cos :vz)] y XE (5 F)%(—5 F) X (—=,x). This
function is decomposed as a sum g(z;) + h(zz) + I(z3) (see [6]).
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