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CONSTANT CURVATURE MODELS IN
SUB-RIEMANNIAN GEOMETRY

E. Falbel ® J.M. Veloso® J.A. Verderesi

1. Introduction

This is an announcement of results which will appear in complete form in [FVV].

A sub-riemannian manifold is a differential manifold together with a smooth
distribution of planes which carries a metric. We define a canonical connection
on a sub-riemannian manifold analogous to the Levi-Civita connection for rie-
mannian manifolds. We state a classification theorem of sub-riemannian mani-
folds of constant sectional curvature and vanishing torsion in dimension 3. The

higher dimensional classification is completed in [FVV].

2. Adapted Connections and Curvature

Definition 2.1. A Sub-Riemann manifold is a triple (M, D, g) where M is a
manifold, D is a smooth distribution on M and g is a smoothly varying quadratic
form defined on D. We will say in this case that M is a sub-riemannian manifold

of codimension k if D is of codimension k.

We will concentrate in this work in the case of sub-riemannian manifolds of
codimension 1. Let M be of dimension m+1.

The G-structure associated to (M, D, g) is given by the set of 1-forms

Il

6’ A8 with A # 0 real 1)
g’ = ajﬂj +v'0  where (a;—) € O(m) (
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Geometrically 8, 6" is a basis of coframes satisfying 6(X;) = 0, 67(X;) = 5;7'
with 1 < 7,7 < m where X; is an orthonormal basis of D.

Observe that, in general, there exists an antissymetric matrix (h;;) such that
df = hi;0' NG+ hi6' NG

Although we could carry on with the theory without restrictive hypothesis, we

will further restrict to the simplest case.

Definition 2.2. (M, D, g) is said to be non-degenerate if det(h;;) # 0.
As (hi;) is antissymetric, we have that in the non-degenerate case m = 2n is
even. Furthermore, to show that the definition does not depend on the section

of the G-structure, we choose another one as in (1). Then we see that

hi = %h,‘j'a};a{ ) (2)
hy %\(2}1,']'/1}] + )\h,'l)a;t = %“

where 3 X\;0° = dA.
It is clear now that the condition det(h;;) # 0 is invariant. In fact it is
equivalent to the condition that 8 A (df)" # 0 for a section 6. In this case the

G-structure can be reduced to a remarkably simple one.

Proposition 2.1. The G-structure associated to a Sub-Riemannian manifold

can be reduced to a Z, x O(2n)-structure in the non-degenerate case.

Proof: We will impose the condition det(h;;) = 1. Using the transformations
(2) we see that this fixes the section § modulo a sign. With this particular
choice of the section, the second equation in (2) becomes hy = (2h;v7 + h)aj.
Again, in the non-degenerate case we can choose v’ uniquely such that hy = 0,

reducing the G-structure (1) to, ignoring the Zz term

0’ 0

il igi i

0° = aj6’ where (a}) € O(2n) (3)
dfd = h,‘jG' N with (h;j = —hj,' and det(h;j) = 1)

In particular, if the distribution is orientable then it has an O(2n)-structure.
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Let the Sub-Riemannian manifold (M, D, g) be given, and consider the
associated O(2n)-structure (3). We will construct connection forms and torsion
forms. We begin by considering the intrinsically defined tautological forms over

the bundle (3) which we denote by the same letters 6,6

Theorem 2.1. There ezists unique forms w;: and satisfying the equation

d9i:9jAw;:+0Ari
with conditions i) wi = ~w] and i) S A G = 0.

Proof: Let L:J;- and 7 be any forms satisfying the first equation. If wj- and ¢

also satisfy the equation, then
07 A (W) — @) +6A(rf—7) =0
From Cartan’s lemma we have
P ot = ai g 4 big
wj —wj = ajf” + b
g Aedan

-7 =b,0

with af, = ai;- We will choose a§k,b§ such that the conditions in the theorem

be satisfied for w;'-, ¢, To verify conditions ii) we must have
0=3rA =3 7FA6+3 T 5o g
If we write 7 = 7/6*, then
S S (R4 A =0

and using Cartan’s lemma again 7+ bl = a} with aj, = a¥. On the other hand

if i) is satisfied, and writing @ = @0 + wif
(@ + @ + aly + ad)6% + (5 + ] + b + b)Y = 0
We get two equations

oy =g i J_ =t _ =j
wj+w,-+aj+ai—\rj—r,~=0
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@ + g, + a‘j‘k +af,=0
; . Figsd
The first equation, recalling that aj is symmetric, has solution a} = —%T'— -
o+ i i : ;
“)2—5& therefore b is determined. The second equation can be solved using the

permutation trick, as in Riemannian geometry. O
The curvature forms are defined by
tU=dul + wj A w,’;
We can state now the following theorem, see [FVV]

Theorem 2.2. The curvature forms are given by

’ 1 _. . 2
I, = SRy 07 A 0" + Wy, 6" A6 + hig6' A T8 — hyf' AT

with the conditions R, = —Rf, Ri, = —Ri,, Ri, + Ri,, + R, = 0,
lV,:, = —Wi’j and W,:, + Wi + W,"l =0.

An important observation from this theorem is that the vanishing of torsion
implies the vanishing of the curvature tensor Wy,.

In computations, we use a section of the the G-structure, that is, a mov-
ing frame which we write by the same letters as the tautological forms ©T =
(6%,...,6°") and 7T = (r1,...,7%"). The structure equation is written also as
dO=—-wAO-—-7A0. If O =gO is a new moving frame, then

/

gdg™! + gwg™!
T = gr

3. Constant Curvature in dimension 3

Let M be a manifold of dimension 3 with a metric distribution. The adapted
bundle is
g =19
il igi i
6" = aj¢’ where (a}) € O(2)
dd = AP —62 N6
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Theorem 3.1 gives a connection form w} = w and torsion forms 7!, 72 such that

dor = PAw +0AT!
di? = —'ANw +6AT?

with 71 A 6 + 72 A 62 = 0. The curvature forms are
M=0=0!=do
QA =drl -7’ Aw
P =dr’ -1 Aw

we write then

D=Q=RO'A*+W,0"NO+W,02A6

The metric defined by 6,676 is called an adapted metric to the contact
form 6 on M. We will now make the computations for three examples of constant

curvature. See [CH].

1) Consider the sphere S® = {(z1,y1,22,¥2) € R* | 22 + 32 + 22 + 42 = 1}.

Define then
01 = Eldyl — yld:cl + (lizdyz = yzd:ﬂz
0* = zydzy — zydzy + yidys — yody
0 = =zdy; — yadey + yrdz, — zody,

Let the distribution D be defined by the form 6. The metric induced in this
distribution by the standard metric in R* defines a metric distribution. We

consider 8, 6% as an orthonormal coframe and verify that
df = 26" A §?

and cyclic permutations. We conclude that w = 26 and 7! = 72 = 0. Also
IT = 46 A 62, therefore R = 4 and W, = W, = 0.

2) Let S be a compact orientable surface of genus different from 1. We suppose,
furthermore, that a metric is given in S of curvature K. Let M denote the three
dimensinal manifold of orthonormal coframes over S. Let 6!, §?

gt = —62A8
dg> = 6'AG
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Also df = —K6' A 6%, Suppose now that K = -1. Let D be the distribution on
M defined by 6. The metric defined on D by the basis of forms has connection
w=—0and ' = 72 = 0. We have Il = K6 A 6?, therefore R = —1 and
W'=Ww?=0.

3) Let H = {(z,y,u,v) € R* | 22 + y®> — v = 0} be the Heisenberg group. We
define the metric distribution imposing that the distribution is generated by the

orthonormal vector fields X;, X5.

)
il B
42 =T gy Z 5 + LR
X =22

The dual coframe satisfies

* = dz
62 = dy
0 = du/2—ydz+ zdy

Therefore df = 26 A §2. We compute then w = 7! = 72 = 0.

We can state now the following theorem of local classification for three di-
mensional metric distribution. A classification of higher dimensional metric
distributions of null torsion and constant curvature is more involveld because it

depends on the form h;; and it is given in [FVV].

Theorem 3.1. Suppose M and M' are two three dimensional metric distribu-
tions with null torsion and the same constant sectional curvature, then they are

locally equivalent.

Observe that this proves that the three dimensional examples presented
above are, locally, the only ones of constant curvature and vanishing torsion.
The simply connected forms are given by S®, H and the universal cover of the
unit bundle over the Poincaré disc with distribution and metric given as in the

examples above.

Remark: As for 2-dimensional surfaces, a metric distribution in a manifold of
dimension 3, defines a CR-structure. Conversely, a CR-structure defines a class

of conformally related metrics on a distribution.
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