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ISOMETRIC IMMERSIONS AND THE
GENERALIZED LAPLACE AND SINH-GORDON
EQUATIONS

Marcos Dajczer® Ruy Tojeiro®

We consider isometric immersions f: M? — QN ¢ # & with codimension
P =N —n > 2 of a connected n-dimensional Riemannian manifold of con-
stant sectional curvature ¢ into a complete and simply connected Riemannian
manifold of constant sectional curvature &. The study of the case ¢ < & goes
back to E. Cartan ([Ca], [Mo,]) who showed that p = n — 1 is the lowest
possible codimension for which case the normal bundle must be flat. Moreover,
if M7 is simply connected, there exist line of curvature coordinates (principal

coordinates) u = (uy,...,u,) such that

ds® = zn:v;(u) du}, where ivf(u) =1/(¢—c).
i=1 i=1

When ¢ > ¢, a large set of (at least local) isometric immersions as above
can be constructed in any codimension by composing umbilical inclusions of
M7 into Q%! with local isometric immersions of Q2! into QY. In fact, for
codimension p < n — 2, it was shown recently in [D-T] that f must always be
such a composition if restricted to any connected component of the open and
dense subset of points where some regularity conditions are satisfied.

The above result does not -hold in codimension p = n — 1. But for that
case Moore ([Mo,]) has shown that at each point the second fundamental form
either has the structure corresponding to a composition (weak-umbilical) or the
immersion must have flat normal bundle. Based on that fact we obtain the
following correspondence between isometric immersions FiM® - Q-Lids

which are nowhere compositions and solutions of a system of PDEs called by
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us the Generalized Laplace equations for ¢ = 0 and for ¢ # 0 the Generalized

Elliptic Sinh-Gordon equations.

Theorem . Let the functions v = (vy,...,v,) and h = (hy;), 1 <i# j <n,
be a solution on an open and simply connected subset U C R™ of the following

completely integrable system of PDEs

8 + o\ Bu; 1¥ ..o\ Bh;
i) & —"'- = hjv;, i) ﬁ'% + X; €iejhiju; = 0, i) EL hikhu;,

0 ) 3 ﬂ‘ + ﬁ’- + Xk haihi; + cviv; =0,
I
'U) E:%L + EJ + Zk Ekhtkth = O

where i#j;ék, ee=—lande;=1forj>2

with v; # 0 everywhere and ¥; e;v}(u®) = 1/(¢ — c) < 0 at some point u° €
U. Then there exists an immersion f:U — Q! with induced metric ds? =

;v du? of constant sectional curvature ¢ which is nowhere a composition.
Conversely, any isometric immersion f: M — Q! ¢ > &, which is nowhere
a composition, gives rise to a solution of the above system verifying Y€l =

1/(¢ — c) everywhere.

For n = 2 and taking v = 1/4/c — &(cosh ¢,sinh ¢), the above system re-

duces to the following differential equation which justifies our names.

A¢+cc - cosh ¢ sinh ¢ = 0.
—c

The above theorem holds similarly for ¢ < & if we just take ; = 1 and delete
the reference on not being a composition. This is due to Aminov ([Am,],
[Am,]) when & = 0. In this case and for n = 2, system (I) reduces to either
the Wave or the Sine-Gordon equation.

System (I) for €; = 1 was extensively studied by Bianchi (see [Bi] p. 239)
but only from an intrinsic point of view. He considers what he calls a nth-
orthogonal system of Guichard-Darbouz, which is an orthogonal system of co-
ordinates ds? = Y%, v} du?, which satisfies a quadratic condition 7, v? =

i=1"Yj
constant, and has constant sectional curvature c. Then, if the h;; are defined
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by 1), equations iii) and iv express the curvature assumption while equation 11)
turns out to be equivalent to the quadratic condition. Finally, equation v) is a
consequence of the quadratic condition and the other equations (cf. Theorem
Lin [B-T]). Among many other things, Bianchi proved that any real analytic
solution of (I) is completely determined by n(n — 1) arbitrary real analytic
functions in one variable and n nonzero constants.

For the proof of the above result first we show the existence of principal co-
ordinates for a Riemannian manifold M isometrically immersed into O with
flat normal bundle and vanishing index of relative nullity. Here and through-
out this paper, O denotes a geodesically complete and simply connected N-
dimensional manifold with a metric of constant sectional curvature ¢ whose
signature is either Riemannian or Lorentzian. Making use of the principal co-
ordinates, we then establish a correspondence between isometric immersions
g: M? — OY of arbitrary codimension with flat normal bundle and vanishing
index of relative nullity and the solutions of a certain completely integrable sys-
tem of PDEs. This allows us to characterize the solutions which correspond to
immersions whose images lie in an umbilical hypersurface Q¥ ! of OY. By the
use of two results we can now establish a correspondence between isometric im-
mersions with flat normal bundle of arbitrary codimension f: M? — QY ¢ # ¢
which are not compositions if ¢ > ¢ and a new completely integrable system of
PDEs which reduces to system (I) when the codimension is n — 1.

We say that a solution of system (I) is stationary with respect to u; if it does
not depend on the variable u;. The solution is called [-stationary if it is station-
ary with respect to ! of the coordinates (u,... ,un). The purpose of our next
result is to geometrically characterize the isometric immersions corresponding to
l-stationary solutions as certain types of multi-rotational submanifolds of con-
stant sectional curvature whose profiles satisfy the c-helix property. Isometric
immersions f: M* — R?""! ¢ < 0, associated to 1-stationary solutions of sys-
tem (I) (here €, = 1), were first studied in [Am,]. Recently, (n — 1)-stationary
solutions of system (I) have been classified (for ¢ < 0 and € = 1) by Rabelo
and Tenenblat ([R-T]) and (for ¢ > 0 and ¢ = —1) Campos ([Cam]) who also
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provided explicit parametrizations for some cases.

Let f:U C Q™ — OY be an isometric immersion. That f satisfies the
c-helix property in the direction of w € O(’,v implies, geometrically, that any
geodesic a: I C R — QT is mapped by f onto a c-helix in the direction of w.

This means that & = f o a verifies along I that
(@" + ca,w) =0.

Multi-rotational submanifolds have been introduced in [D-N] and its defi-

nition relies on the warped product representations
Tﬁ:No Xy N1 Xog vo0 Xoy N[ — Qév

of @Y, where the submanifolds Ny, ..., N; through a point # € QY are orthog-
onal, being Nj totally geodesic and the N;, 1 < j < I, totally umbilical with
orthogonal mean curvature vectors —ay, ..., —a;in Op D QY at #. The warping
functions o;: No — R are given by

A
In the above and the sequel, when we write in C Op we mean that O, = RN
if ¢=0and Op = OY*!if ¢ £ 0.

Denote by G; the isometry group of N; suitably embedded as a rotational
subgroup into the isometry group of the ambient space QY. Let fo: V — N, be
an isometric immersi-on and set p; = ;0 fo. By the multi-rotational submanifold
determined by 1 with profile f, we mean the (G; X ... X Gj)-equivariant

isometric immersion f:V x,, Ni X,, ... X, N = Q¥ given by

f(mov—xly reey zl) = ¢(f0(m0)l T1yeney 1:[).
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Theorem Let f: M* — Q¥*™!, ¢ # &, be an isometric immersion associated
to an l-stationary solution of system (I). Then f is locally a multi-rotational

submanifold
2n-1
V X, 91 Ripg o vio Ky S = Q™ 78 - N Ry By g 165 Kgy Sl

where Sy,...,5 are circles in Q¥ with curvature vectors —a,,...,—a; in
Oo D Q™! respectively, and the profile fo:V C Q' — N, satisfies the c-
heliz property with respect to ay,...,a; and is nowhere a composition whenever
¢ > ¢. Conversely, any multi-rotational submanifold as above is associated to

an l-stationary solution of system (I).

For the proof or the understanding of the above result we have to solve
several problems of independent interest. First we provide a nice parametric
description for any isometric immersion f:U C Q™ — OY which satisfies the
c-helix property where no assumption on the normal bundle is made. Then we
characterize multi-rotational submanifolds of constant sectional curvature and
flat normal bundle.

Submanifolds corresponding to (n—1)-stationary solutions are multi-rotational
submanifolds with flat normal bundle and constant sectional curvature of space
forms having curves as profiles. In this case, we are able to provide a complete
parametric description based on the fact that curves satisfying the c-helix prop-
erty can be completely described in a parametric form. This extends results in

[R-T] and [Cam)).
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