

A THEOREM OF REILLY FOR THE LINEARIZED OPERATOR OF r^{th} MEAN CURVATURE AND APPLICATIONS TO STABILITY

H. Alencar M. do Carmo H. Rosenberg D

In this note, we describe an estimate for the first eigenvalue of the linearized operator of the r^{th} mean curvature of immersed closed hypersurfaces of \mathbf{R}^{m+1} and \mathbf{H}^{m+1} ; we apply this to conclude that the stable closed hypersurfaces of \mathbf{R}^{m+1} , of constant curvature H_{r+1} are the round spheres.

Reilly's Theorem: Let M^n be a closed submanifold of \mathbb{R}^{m+1} and let H_1 , λ_1 be the mean curvature and first eigenvalue of the Laplacian of M respectively. R. Reilly proved [R1]:

$$\frac{\lambda_1}{n} \le \frac{1}{\operatorname{Vol}(M)} \int_M H_1^2 \tag{1}$$

and equality occurs precisely when M is minimally immersed in a sphere of \mathbb{R}^{m+1} . Hence when n=m, equality means M is a sphere.

Reilly's theorem extends easily to immersions in the unit sphere S^{m+1} by applying (1) to the immersion $M \to S^{m+1} \subset \mathbf{R}^{m+2}$:

$$\frac{\lambda_1}{n} - 1 \le \frac{1}{\operatorname{Vol}(M)} \int_M H_1^2. \tag{2}$$

For immersions of M^m in H^{m+1} , the situation is more subtle. E. Heintze obtained some results [H] and the best result was obtained by A. El Soufi and S. Ilias [S-I]:

$$\frac{\lambda_1}{n} + 1 \le \frac{1}{\operatorname{Vol}(M)} \int_M H_1^2, m \ge 2,\tag{3}$$

and equality occurs precisely when M is minimally immersed in a geodesic sphere of radius arch $\sqrt{\frac{m}{\lambda_1}}$.

We pursue the study of $\lambda_1 = \lambda_1(L_r)$, where L_r is the linearised operator of $S_{r+1} = \binom{m}{r+1} \operatorname{H}_{r+1}$ arising from normal variations of an immersed hypersurface M^m in \mathbb{R}^{m+1} . Here S_r is the r^{th} symmetric function of the eigenvalues of the shape operator A. Details concerning L_r can be found in [R2], [A-C-C], and [Ro]. Briefly, $L_r(f) = \operatorname{div}(T_r \nabla f)$, where T_r is the r'th Newton transformation arising from A:

$$T_0 = I, T_r = S_r I - A T_{r-1} (\operatorname{so} L_0 = \triangle).$$

Our Theorem: In \mathbb{R}^{m+1} we are able to generalize Reilly's result in the best possible way:

$$\lambda_1^{L_r} \int_M \mathbf{H}_r \le C(r) \int_M \mathbf{H}_{r+1}^2, \tag{4}$$

where M is an immersed closed hypersurface in \mathbf{R}^{m+1} with $\mathbf{H}_{r+1} > 0$ and $C(r) = (m-r) \binom{m}{r}$. Equality holds precisely when M is a sphere.

We also prove that if M extends to an isometric immersion of $\Omega^{m+1} \to \mathbb{R}^{m+1}$, $\partial \Omega = M$, then

$$\lambda_1^{L_{ au}} \leq rac{C(r)}{(m+1)^2} \cdot rac{V(M)}{V(\Omega)^2} \int_M \mathbf{H_r}$$

and equality holds precisaly when M is a sphere.

Using this we prove such an immersion is r-stable if and only if M is a sphere. Here stability means M is a critical point of the functional $\int_M \mathbf{H_r} + b\bar{V}(M)$ and the second derivative of this functional at M is non negative. Here b is a suitable constant and $\bar{V}(M)$ is the (algebraic) volume bounded by M. This generalizes the theorems of Barbosa do Carmo [B-C] (stability of a constant mean curvature immersion means M is a sphere) and the theorem of Alencar, do Carmo and Colares [A-C-C] (for scalar curvature).

In \mathbf{H}^{m+1} we obtain an extrinsic upper bound for $\lambda_1^{L_r}$ but it is not the best possible. Consequently our result does not yield stability here. The stability problem has been solved for scalar curvature in S^{m+1} [A-C-C] but this is not known in \mathbf{H}^{m+1} .

The techniques we use are properties of the operator L_r (when it is elliptic, formulae for L_r of particular functions), integral geometry, and inequalities involving the mean curvatures. Details will appear elsewhere.

References

- [A-C-C] Alencar, H., do Carmo, M. and Colares, A.G., Stable hypersurfaces with constant scalar curvature, To appear Math. Z., 1993,
- [B-C] Barbosa, L. and do Carmo, M., Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), 339-353.
- [H] Heintze, E., Extrinsic Upper Bounds for λ_1 , Math. Ann. 28 (1988), 389-402.
- [R1] Reilly, R., On the first eigenvalues of the Laplacian for compact submanifolds, of Euclidean space, Comment. Math. Helv. 52 (1977), 525-533.
- [R2] Reilly, R., Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom. 8 (1973), 465-477.
- [Ro] Rosenberg, H., Hypersurfaces of Constant Curvature in Space Forms, To appear Bull. Sc. Math. 1993.
- [S-I] El Soufi, A. and Ilias, S., Une inegalite du type "Reilly" pour les sousvarietes de l'espace hyperbolique, Comm. Math. Helv., 67 (1992), 167-181.

H. Alencar

Universidade Federal de Alagoas

Departamento de Matemática

57080 Maceió, AL, Brasil

M. do Carmo

IMPA

Estrada Dona Castorina, 110

22460 Rio de Janeiro, RJ, Brasil

(B+C) Harbone Lecture to Senson M., Makhing of hypergrafero, upth constants

H. Rosenberg

Department de Mathematiques

Université Paris VII

2 Place Jussieu

72251 Paris, Cedex 05, France