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On Representing an Interval Graph Using the Minimum

Number of Interval Lengths

M. R. Cerioli∗ F. de S. Oliveira J. L. Szwarcfiter∗

Abstract

The interval count problem is that of determining the smallest num-
ber of interval lengths required to represent an interval model of a given
interval graph or interval order. Despite the large number of studies
about interval graphs and interval orders, few results on the interval
count problem exist in fact. We provide a short survey about the
interval count and related problems.

1 Introduction

The interest in interval graphs and orders comes from both their central
role in many applications and purely theoretical questions [9, 11, 17]. They
potentially arise in applications for which there are events associated to time
intervals corresponding to the duration of the events. Among such applica-
tions, as discussed in [15], there are those related to planning, scheduling,
archeology, temporal reasoning, medical diagnosis, and circuit design. Fur-
thermore, there are applications not related directly to duration of events in
the fields of genetics, physical mapping of DNA and behavioral psychology.

An order (X,≺) is a transitive and irreflexive binary relation ≺ on X.
An interval model is a family of closed intervals of the real line. A graph G
is an interval graph if there exists an interval model R = {Iv | v ∈ V (G)}
such that for all distinct x, y ∈ V (G), Ix ∩ Iy �= ∅ if and only if xy ∈ E(G).
An order P = (X,≺) is an interval order if there exists an interval model
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R = {Ix | x ∈ X} such that x ≺ y if and only if Ix precedes (is entirely
to the left of) Iy. In these cases, R is an interval model of G (resp. P ).
Besides, we say that G (resp. P ) is the graph (resp. order) corresponding
to R.

For some given graph G (resp. order P ), we consider the problem of
computing the smallest number IC(G) (resp. IC(P )) of interval lengths
for an interval model of G (resp. P ), named in both cases the interval

count problem [9, 14]. The interval count problem was suggested by Ronald
Graham (cf. [14]). There are graphs having arbitrary interval count values.
For instance, let G1 be a graph having a single vertex u1. For all k ≥ 2, let
Gk be three disjoint copies of Gk−1 plus a universal vertex uk. It is easy to
show that IC(Gk) = k.

Very intuitive statements made regarding the interval count problem
were proven not to hold afterwards. Graham, for instance, stated a conjec-
ture that the interval count of a graph decreases by at most one unit when
exactly one vertex is removed (cf. [14]). Intuitively speaking, if a graph has
an interval model requiring at least k different interval lengths, the opera-
tion of removing one interval from this model (or, equivalently, a vertex of
this graph) seems not to result in a graph which has an interval model using
k − 2 or less different interval lengths. This conjecture was proven to hold
only for certain interval graphs, as we discuss in the next sections.

Since the interval count problem is defined only for interval graphs (resp.
orders), it is assumed that the graphs (resp. orders) have an associated
interval model when this problem is considered. Denoting by IC(R) the
number of distinct lengths of a given interval model R, for a given order P
we can write:

IC(P ) = min{IC(R) | R is an interval model of P}

and, similarly, given a graph G:

IC(G) = min{IC(R) | R is an interval model of G}

When there exists an interval model R which is an interval model of both
an order P and a graph G, we say that P agrees with G. Note that an inter-
val order agrees with a unique interval graph, but the converse is false: an
interval graph G may have exponentially many interval orders agreeing with
G (namely, those obtained from each transitive orientation of the comple-
ment of G). Using this relation of agreement, we can formulate the interval
count of graphs in such a way as to make it explicit its relationship to the
interval count of orders. Given a graph G, we have:
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IC(G) = min{IC(P ) | P agrees with G}

It is clear and well known that an interval graph or an interval order has
an interval model in which all interval extreme points are integer numbers.
Recently, we [3] considered the question of how the interval count of a graph
(order) is affected when the interval models are assumed to have distinct
integer extreme points. We showed that it is in fact invariant under such
an assumption. Therefore, previous results on interval count problem, to be
presented on the following sections, do not consider such an assumption.

Denote the left and right extreme points of an interval I by ℓ(I) and r(I),
respectively. When an interval model of an interval graph (resp. interval
order) is clear in the context, for convenience we may use the concepts of
vertex (resp. element) and its corresponding interval interchangeably. A
unit interval graph is an interval graph which admits an interval model
whose intervals have unitary length. A K1,r graph is the complete bipartite
graph in which the cardinalities of the sets forming the bipartition are 1 and
r. A (1 + 3) order is one isomorphic to the order ({a, b, c, d},≺) such that
b ≺ c ≺ d and a is incomparable to b, c, and d. A proper interval graph

is an interval graph which admits an interval model for which there are no
intervals Ix and Iy such that ℓ(Ix) < ℓ(Iy) < r(Iy) < r(Ix).

For the omitted notations in this paper, refer to [1] for general graph
theory, [20] for general order theory, and [9, 11] for a specialized discussion
about interval graphs and interval orders.

2 Interval count one

The question of deciding whether IC(G) = 1 for an interval graph G is
equivalent to that of recognizing whether G is a unit interval graph. In fact,
given an interval model using only intervals of the same length, it is possible
to either compress or expand proportionally all intervals so that they are
transformed into unit intervals. The recognition problem of unit interval
graphs is well-known since the sixties [16] and can be solved by polynomial-
time algorithms, some of them being of linear time [5, 6, 7, 8, 10, 12, 16].
Moreover, unit interval graphs are characterized by a single finite forbidden
structure, as stated in Theorem 1 (firstly obtained by Roberts [16]).

Theorem 1 (Roberts [16]). If G is an interval graph, then G is a unit

interval graph if and only if G is K1,3-free.

Corollary 2 ([5, 6, 7, 8, 10, 12, 16]). If G is an interval graph, then G is a

unit interval graph if and only if G is a proper interval graph.
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Corollary 3 (Roberts [16]). If P is an interval order, then P is a unit

interval order if and only if P has no induced (1 + 3) order.

Therefore, characterizations for graphs and orders having interval count
one are well-solved questions. Moreover, note that Graham’s conjecture
holds trivially for all graphs having interval count one.

3 Interval count two

Skrien [18] characterized the class of graphs that can be represented by a
model in which each interval length is either 0 or 1. In spite of that, and fact
that deciding whether a graph or order has interval count one is a well-solved
problem, it is not known whether the complexity of deciding if IC(G) = 2
(resp. IC(P ) = 2) for a graph G (resp. order P ) is a polynomially-time
solvable problem.

Fishburn [9] investigated the topology of the models of orders in P2, the
class of orders having interval count equal to 2. Given an order P ∈ P2, it
is clear that there exist interval models of P having the smallest of the two
distinct interval lengths equal to one. The question was to determine the
set θ(P ) of admissible lengths for the greatest length. In other words, given
an interval order P = (X,≺), the problem is to determine the set:

θ(P ) = { α > 1 | there exists an interval model R = {Ix | x ∈ X} of
P having IC(R) = 2 such that |Ix| ∈ {1, α} for each x ∈ X}

As an example, if R is an interval model of the graph K1,t+2, t ≥ 1, and
P is the corresponding interval order to R, then θ(P ) = (t,∞). In a first
glance, θ(P ) seems to be continuous. Moreover, in a two-length interval
model, it seems to be possible to increase the longer lengths by some small
amount without affecting the interval count of the model, as it is possible in
the case of a K1,3’s model. Fishburn proved that, for some orders, such an
increase on the longer length has a limit. He presented examples of orders
P ∈ P2 such that θ(P ) = (1, k) for each k ≥ 2. Figure 1 presents such an
example for k = 2. Examples for k > 2 can be found in [9].

Trotter [19] conjectured that θ(P ) would be an open interval. However,
Fishburn also presented orders P ∈ P2 such that θ(P ) = (2−1/k, 2)∪(k,∞)
for each k ≥ 2, which means that surprisingly θ(P ) can be a discontinuous
set. Furthermore, he proved that for each k ≥ 2, there exists P ∈ P2 such
that θ(P ) is the union of k distinct open intervals.

Regarding Graham’s conjecture, all graphs having interval count two
trivially satisfy it. Furthermore, Leibowitz, Assmann, and Peck [14] char-
acterized another case for which the conjecture holds: if G is a graph such
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Figure 1: Example of order P having θ(P ) = (1, 2).

that IC(G \ x) = 1 for some vertex x of G, then IC(G) ≤ 2.

4 Arbitrary interval count

Like the complexity of deciding the existence of an interval model using two
interval lengths, currently it is not known whether deciding if the interval
count of graph is k, for an integer k > 1, is an NP-complete problem.

Obviously, IC(G) ≤ |V (G)| for any graph G, which consists in a trivial
upper bound on the interval count of a graph. A better upper bound can
be derived by the following observation. Let R be an interval model of
the graph G such that IC(R) = IC(G). Reading the maximal cliques of
G from left to right in R, note that there exists an interval I1 belonging
exclusively to the first maximal clique, or otherwise the first maximal clique
would be a subset of the second one. By a similar argumentation, there
exists an interval Iq belonging exclusively to the last maximal clique. Since
there is no reason to have I1 and Iq with distinct lengths, we have IC(G) ≤
|V (G)| − 1 for any graph G. In fact, it can be shown that if a graph G has
q maximal cliques, then IC(G) ≤ ⌊(q + 1)/2⌋. Since in general q ≤ |V (G)|,
then IC(G) ≤ ⌊(n+ 1)/2⌋ as well.

Since having interval count one has a simple characterization in terms
of forbidden induced subgraphs, a natural approach is to investigate char-
acterizations of graphs (resp. orders) of arbitrary interval count values by
forbidden induced subgraphs (resp. suborders) as well. Fishburn [9] showed
that the list of forbidden suborders to characterize the orders which have
interval count equal to k ≥ 2 is infinite. A similar result holds for graphs.

In contrast to the previous sections, Graham’s conjecture does not hold
for graphs having arbitrary interval count values. Leibowitz, Assmann,
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and Peck [14] presented examples of graphs having IC(G) > 2 for which
IC(G) = IC(G \ x) + 2 given a particular vertex x of G. Trotter [19] con-
jectures that the removal of a vertex may decrease the interval count by an
arbitrary large amount.

Fishburn [9] also considered extremal problems on the interval count of
an order, its number of elements, and its number of maximal antichains.
Given a graph G (resp. order P ), denote by q(G) (resp. q(P )) the number
of its maximal cliques (resp. maximal antichains). Consider the following
functions:

σ(k) = min{|X| | P = (X,≺) is an order and IC(P ) ≥ k}; and

ν(k, q) = min{|X| | P = (X,≺) is an order, q(P ) = q, IC(P ) ≥ k}

Obviously, σ(k) is equal to the minimum of ν(k, q) varying q over its
domain. Particularly, Fishburn showed that σ(k) = min{ν(k, q) | q ≥ 2k −
1}. The restriction q ≥ 2k−1 follows from the fact that the function ν(k, q)
is undefined for each k > ⌊(q + 1)/2⌋, i.e. IC(P ) < k for all k > ⌊(q + 1)/2⌋
and order P such that q(P ) = q. Besides he proved that ν(k, q) ≤ k+ q − 1
holds in general and calculated the exact value of the function ν(k, q) when
k and q are restricted to some specific values.

5 Restricting graphs and orders to subclasses

In this section we present results which come from the investigation of the
interval count problem restricted to certain subclasses of interval graphs and
interval orders.

A Pn is an induced path on n vertices. Let G be a graph and v ∈
V (G). The neighborhood of v is the set N(v) = {w | (v,w) ∈ E(G)}. The
substitution of v by the graph G′ is the graph H obtained from the disjoint
union (G \ v)∪G′ plus the edges uw such that u ∈ N(v) and w ∈ V (G′). In
such a case, we say that H is obtained from G by substituting v by G′.

A graph is a tree if it is connected and acyclic. A graph is threshold if
its vertex set can be partitioned into K ∪ I such that K is a clique, I is an
independent set and there exists an ordering v1, . . . , v|I| of the vertices of I
such that N(vi) ⊆ N(vi+1) for each 1 ≤ i < |I| (or, equivalently, there exists
an ordering u1, . . . , u|K| of the vertices ofK such that I∩N(ui) ⊆ I∩N(ui+1)
for each 1 ≤ i < |K|). A graph G is almost-K1,3-free if there exists v ∈ V (G)
such that G \ v is K1,3-free. A graph G is starlike-threshold if it can be
obtained from a threshold graph substituting each vertex of the independent
set by a corresponding clique. An interval graph is trivially perfect (TP) if
it is P4-free [11].
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A graph is generalized-threshold if it can be obtained from a threshold
graph by substituting each vertex of the independent set by a corresponding
unit-interval graph. An XFn

1 graph (n ≥ 0) consists of a path P of length
n+3 and a vertex that is adjacent to every vertex of P except its extremes [2].
Therefore, XF 0

1 is a K1,3, and XF 1
1 is a bull. For convenience, in this paper

we call the graph XFn
1 for each n ≥ 1 an extended-bull. The extended-bull

graph is depicted in Figure 2. A graph is extended-bull-free if it has no
extended-bull as an induced subgraph.

Figure 2: The extended-bull graph, for n ≥ 1.

Leibowitz [13] proved that the interval count of trees, threshold graphs
and almost-K1,3-free graphs is at most 2. Cerioli and Szwarcfiter [4] observed
that the starlike-threshold graphs also have interval count at most 2. Re-
cently, Cerioli, Oliveira and Szwarcfiter [3] extended the property of having
the interval count limited to 2 to generalized-threshold graphs. Further-
more, in [3], polynomial-time algorithms have been described to compute
the interval count of extended-bull-free graphs (and, in particular, trivially
perfect graphs). Such a class contains instances of graphs with arbitrary
interval count values.

To our knowledge, there are no other subclasses of interval graphs and
orders for which it is currently known how to compute their interval count
efficiently.

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
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