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On weighted clique graphs

Flavia Bonomo∗ Jayme L. Szwarcfiter

Abstract

Let K(G) be the clique graph of a graph G. A m-weighting of
K(G) consists on giving to each m-size subset of its vertices a weight
equal to the size of the intersection of the m corresponding cliques of
G. The 2-weighted clique graph was previously considered by McKee.
In this work we obtain a characterization of weighted clique graphs
similar to Roberts and Spencer’s characterization for clique graphs.

Some graph classes can be naturally defined in terms of their weigh-
ted clique graphs, for example clique-Helly graphs and their generaliza-
tions, and diamond-free graphs. The main contribution of this work is
to characterize several graph classes by means of their weighted clique
graph: hereditary clique-Helly graphs, split graphs, chordal graphs,
UV graphs, interval graphs, proper interval graphs, trees, and block
graphs.

1 Introduction

A complete set is a set of pairwise adjacent vertices. A clique is a complete

set that is maximal under inclusion. We will denote by M1, . . . ,Mp the

cliques of G, and by CG(v) the set of cliques containing the vertex v in G.

Consider a finite family of non-empty sets. The intersection graph of

this family is obtained by representing each set by a vertex, two vertices

being connected by an edge if and only if the corresponding sets intersect.

The clique graph K(G) of G is the intersection graph of the cliques of

G.
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Let A be a class of graphs. The notation K(A) means the class of clique

graphs of the graphs in A, that is, B = K(A) if and only if for each G in

A, K(G) belongs to B and for each H in B, there exists G in A such that

K(G) = H.

Given a graph G, the set of its cliques can be computed in O(mnp)

time [31], where n, m and p are the number of vertices, edges and cliques of

G, respectively. So, the clique graphK(G) can be computed in O(mnp+np2)

time. Note that the number of cliques of a graph with n vertices can grow

exponentially on n, so this time complexity is not necessarily polynomial in

the size of G. In fact, deciding if the clique graph of a given graph G is a

complete graph is a co-NP-complete problem [20].

The converse problem is also not easy to solve. Clique graphs have been

characterized by Roberts and Spencer in [27], but the problem of deciding

if a graph is a clique graph is NP-complete [1].

A family F of subsets of a set S is separating when for every pair of

different elements x, y in S, there is a subset in F that contains x and does

not contain y or, equivalently, when for each x in S, the intersection of all

the subsets in F containing x is {x}.

A family of subsets of a set satisfies the Helly property when every sub-

family of it consisting of pairwise intersecting subsets has a common element.

A graph is clique-Helly when its cliques satisfy the Helly property.

Clique-Helly graphs are clique graphs [15]. In that case, given a graph

H, the problem of building a graph G such that K(G) = H can be solved

with the same time complexity as buildingK(H). Nevertheless, the problem

of deciding if the clique graph of a given graph G is clique-Helly is NP-hard

[6].

Given a graph H, a weighting of H of size m, or m-weighting of H,

consists on giving a weight w to every complete set of H of size m. A full

weighting of H consists on giving a weight w to every complete set of H.

A weighting of K(G) of size m, or m-weighting of K(G), consists on

defining the weight w for a subset of its vertices {Mi1 , . . . , Mim} as w(Mi1 ,

. . . , Mim) = |Mi1 ∩ . . . ∩Mim |. (In the right-hand side, we are considering
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Mi1 , . . . ,Mim as cliques of G.) We will denote by Kw
m1,...,mℓ

(G) the clique

graph of G with weightings of sizes m1, . . . ,mℓ. Note that w should be

non-decreasing with respect to inclusion relationship. Also by definition of

K(G), if 2 is one of the sizes considered, then w(Mi,Mj) > 0 for every edge

MiMj of K(G).

Weighted clique graphs with weightings restricted to size 2 were con-

sidered in [21, 22], and in [12, 13, 14, 23, 24], in the context of chordal

graphs.

The organization of this paper is at follows. In Section 2, we introduce

some definitions and results related to clique graphs. In Section 3, we give a

characterization of weighted clique graphs similar to Roberts and Spencer’s

characterization for clique graphs. One of the contributions of this work is

to characterize several classical and well known graph classes by means of

their weighted clique graph, and is given in Section 4. We prove a charac-

terization of hereditary clique-Helly graphs in terms of Kw
3 and show that

Kw
1,2 is not sufficient to characterize neither hereditary clique-Helly graphs

nor clique-Helly graphs. For chordal graphs and their subclass UV graphs,

we obtain a characterization by means of Kw
2,3. We show furthermore that

Kw
1,2 is not sufficient to characterize UV graphs. We describe also a charac-

terization of interval graphs in terms of Kw
2,3 and of proper interval graphs

in terms of Kw
1,2. Besides, we prove that {Kw

1 ,K
w
2 } is not sufficient to char-

acterize proper interval graphs. For split graphs, we give a characterization

by means of Kw
1,2, and prove that {Kw

1 ,K
w
2 } is not sufficient to characterize

split graphs. Finally, we characterize trees in terms of Kw
1 and block graphs

in terms of Kw
2 , and show that this last class cannot be characterized by

means of their 1-weighted clique graph.

2 Preliminaries

We shall consider finite, simple, loopless, undirected graphs. Let G be a

graph. Denote by V (G) its vertex set and by E(G) its edge set. Given a

vertex v of G, denote by NG(v) the set of neighbors of v in G and by NG[v]
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the set NG(v)∪{v}. A vertex v of G is called universal if NG[v] = V (G). A

diamond is the graph Kw
4 − {e}, where e is an edge of the complete graph

on four vertices Kw
4 . A claw is the complete bipartite graph Kw

1,3. If H is

a graph, a graph G is called H-free if G does not contain H as an induced

subgraph.

A stable set in a graph is a set of pairwise non-adjacent vertices.

A graph is a split graph if its vertices can be partitioned into a clique

and a stable set. A graph is a star if it has a universal vertex. In that case,

the universal vertex is called the center of the star.

A graph G is an interval graph if G is the intersection graph of a finite

family of intervals of the real line, and it is an proper interval graph if it is

the intersection graph of a finite family of intervals of the real line, all of

the same length. Proper interval graphs are exactly the claw-free interval

graphs [28].

Theorem 2.1 (Fulkerson and Gross, 1965 [8]). A graph G is an interval

graph if and only if its cliques can be linearly ordered such that, for each

vertex vi of G, the cliques containing vi are consecutive.

Such an ordering is called a canonical ordering for the cliques.

Theorem 2.2 (Roberts, 1969 [28]). A graph G is a proper interval graph if

and only if its vertices can be linearly ordered such that, for each clique Mj

of G, the vertices contained in Mj are consecutive.

Such an ordering is called a canonical ordering for the vertices.

A graph G is a tree if it is connected and contains no cycle. A graph is

chordal if it contains no chordless cycle of length at least 4. Equivalently, a

graph is chordal if it is the intersection graph of subtrees of a tree [4, 9, 33].

A graph is a UV graph if it is the intersection graph of paths of a tree.

A graph is a block graph if each maximal 2-connected subgraph is a

complete subgraph. Equivalently, a graph is a block graph if it is chordal

and diamond-free.
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Class A K(A) Reference

Block Block [16]
Clique-Helly Clique-Helly [7]
Chordal Dually Chordal [3, 11, 30]
Dually Chordal Chordal ∩ Clique-Helly [3, 11]
Hereditary clique-Helly Hereditary clique-Helly [26]
Interval Proper interval [17]
Proper interval Proper interval [17]
Diamond-free Diamond-free [5]
Split Stars
Trees Block [16]
Triangle-free Linear domino [25]
Linear domino Triangle-free [5]
UV Dually Chordal [30]

Table 1: Clique graphs of some graph classes

A graph G is domino if all its vertices belong to at most two cliques.

If, in addition, each of its edges belongs to at most one clique, then G is a

linear domino graph. Linear domino graphs coincide with {claw,diamond}-

free graphs [18].

A graph G is dually chordal if it admits a spanning tree T such that, for

every edge vw of G, the vertices of the v—w path in T induce a complete

subgraph in G [3, 30]. In that case, T is called a canonical spanning tree of

G.

A graph is hereditary clique-Helly when H is clique-Helly for every in-

duced subgraph H of G.

Clique graphs of many graph classes have been characterized. The known

results involving the graph classes that will be considered in this paper are

summarized in Table 1.

3 Characterization of weighted clique graphs

The characterization of clique graphs is as follows.

Theorem 3.1 (Roberts and Spencer, 1971 [27]). A graph H is a clique
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graph if and only if there is a collection F of complete sets of H such that

every edge of H is contained in some complete set of F, and F satisfies the

Helly property.

A similar characterization for 2-weighted clique graphs was presented in

[21, 27]. We can extend this characterization to weighted graphs.

Theorem 3.2. Let H be a graph, provided with weightings w of sizes m1,

. . . ,mℓ. Then there exists a graph G such that H = Kw
m1,...,mℓ

(G) if and

only if there is a collection F of complete sets of H, not necessarily pairwise

distinct, such that:

(a) every edge of H is contained in some complete set of F,

(b) F satisfies the Helly property,

(c) F is separating,

(d) for every 1 ≤ j ≤ ℓ, each complete set Mi1 , . . . ,Mimj
of H is contained

in exactly w(Mi1 , . . . ,Mimj
) complete sets of F.

It would be interesting to analyze the computational complexity of de-

ciding if a weighted graph is a weighted clique graph. For 1-weightings, the

result is negative.

Theorem 3.3. The problem of deciding if a 1-weighted graph is a 1-weighted

clique graph is NP-complete.

It remains as an open question to analyze the problem for other weighting

sizes.

4 Characterization of classical graph classes by me-

ans of the weighted clique operator

Some graph classes can be naturally defined in terms of their weighted clique

graphs. This is the case of clique-Helly graphs and their generalizations. A

family of subsets of a set satisfies the (p, q, r)-Helly property when every

subfamily of it in which every collection of p members have q elements in

common, has a total intersection of at least r elements. A graph is (p, q, r)-

clique-Helly when its cliques satisfy the (p, q, r)-Helly property [6].
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Proposition 4.1. Let G be a graph. Then G is clique-Helly if and only if

Kw
3,...,ω(K(G))(G) satisfies w(Mi1 , . . . ,Miℓ) > 0 for every complete set Mi1 , . . . ,

Miℓ of K(G).

Proposition 4.2. Let G be a graph. Then G is (p, q, r)-clique-Helly if

and only if Kw
3,...,ω(K(G))(G) satisfies that every complete set in which all its

subsets of size p have weight at least q, has weight at least r.

By the results in [7] shown in Table 1, we have the following corollary.

Corollary 4.3. Let if H be graph and w a full weighting of H that is

strictly positive over every complete set of H. If there is a graph G such

that H = Kw
3,...,ω(H)(G), then H is clique-Helly.

Diamond-free graphs have also a natural characterization in terms of

their weighted clique graph. It is proved in [5] that a graph is diamond-free

if and only each edge belongs to exactly one clique. This property can be

restated as follows.

Proposition 4.4. Let G be a graph. Then G is diamond-free if and only if

Kw
2 (G) satisfies w(Mi,Mj) = 1 for every edge MiMj of K(G).

In particular, by the results in [5] shown in Table 1, we have the following

corollary, that was also pointed out in [21].

Corollary 4.5. Let H be a graph and w a 2-weighting of H. If w(vi, vj) = 1

for every vivj in E(H), then there exists some graph G such that H =

Kw
2 (G) if and only if H is diamond-free.

Moreover, since diamond-free graphs are clique-Helly, we have that in

a fully weighted clique graph of a diamond-free graph, the weight of each

complete set of size at least two is exactly one. In [2], the authors establish

when a 1-weighted graph H is Kw
1 (G) for some diamond-free graph G, thus

completing the characterization of weighted clique graphs of diamond-free

graphs.
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Theorem 4.6 (Barrionuevo and Calvo, 2004 [2]). Let H be a graph and w

a 1-weighting of H. Then there exists some diamond-free graph G such that

H = Kw
1 (G) if and only if H is diamond-free and w(M) ≥ max{2, |CH(M)|}

for each M in V (H).

The result above can be obtained also as a corollary of Theorem 3.2.

Joining it with Proposition 4.4, we have the following Corollary.

Corollary 4.7. Let H be a graph and w be weightings of H of sizes 1 and

2, such that w(Mi,Mj) = 1 for each edge MiMj of H. Then there exists

a graph G such that H = Kw
1,2(G) if and only if H is diamond-free and

w(M) ≥ max{2, |CH (M)|} for each M in V (H).

It is clear that diamond-free graphs cannot be characterized by their 1-

weighted clique graph, since the diamond and two triangles sharing a vertex

have the same 1-weighted clique graph.

A connected graph G with at least two vertices is triangle-free if and

only if w(M) = 2 for each vertex M of Kw
1 (G). Indeed, the results in [25]

showed in Table 1 imply the following proposition.

Proposition 4.8. Let H be a graph and w a 1-weighting of H such that

w(M) = 2 for each vertex M of H. Then there exists a graph G such that

H = Kw
1 (G) if and only if H is linear domino.

Also linear domino graphs can be naturally defined in terms of their

weighted clique graph.

Proposition 4.9. Let G be a graph. Then G is linear domino if and only

if Kw
2 (G) is triangle-free and satisfies w(Mi,Mj) = 1 for every edge MiMj

of K(G).

In the remaining of this section, we will show characterizations of some

classical and widely studied graph classes in terms of their weighted clique

graphs. Many of them are subclasses of chordal and/or clique-Helly graphs.
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Figure 1: Two graphs G, G′ such that Kw
1,2(G) = Kw

1,2(G
′). The rightmost

one is hereditary clique-Helly, the leftmost one is not even clique-Helly. The
leftmost one is UV , the rightmost is not.

4.1 Hereditary clique-Helly graphs

A first characterization of hereditary clique-Helly graphs is the following.

Theorem 4.10. Let G be a graph. Then G is hereditary clique-Helly if and

only if Kw
2,3(G) satisfies w(Mi,Mj ,Mk) = min{w(Mi,Mj),

w(Mj ,Mk), w(Mi,Mk)}, for every 1 ≤ i < j < k ≤ |K(G)|.

Moreover, this property holds also for m-weightings, with m ≥ 3.

Theorem 4.11. [26, 32] Let G be an hereditary clique-Helly graph, and let

m ≥ 3. Then Kw
2,m(G) satisfies w(Mi1 , . . . ,Mim) = min{w(Mi,Mj) : i, j ∈

{i1, . . . , im}, i < j}, for every 1 ≤ i1 < . . . < im ≤ |K(G)|.

The examples in Figure 1 show that Kw
1,2 is not sufficient to characterize

neither hereditary clique-Helly graphs nor clique-Helly graphs. But we can

obtain a characterization of hereditary clique-Helly graphs in terms of Kw
3 .

Theorem 4.12. Let G be a graph. Then G is hereditary clique-Helly if and

only if Kw
3 (G) satisfies w(Mi,Mj ,Mk) ≥ min{w(Mi,Mj ,Mℓ),

w(Mj ,Mk,Mℓ), w(Mi,Mk,Mℓ)}, for every complete set Mi, Mj, Mk, Mℓ of

size four in K(G).

4.2 Trees and block graphs

The characterization of trees and block graphs are as follows.
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Figure 2: Two graphs G, G′ such that Kw
1 (G) = Kw

1 (G
′) and Kw

2 (G) =
Kw

2 (G
′). The leftmost one is split, the rightmost one is not. The rightmost

one is proper interval, the leftmost one is not.

Theorem 4.13. Let G be a graph, |V (G)| > 1. Then G is a tree if and only

if Kw
1 (G) is a connected block graph such that w(Mi) = 2, 1 ≤ i ≤ |K(G)|.

Theorem 4.14. Let G be a connected graph. Then G is a block graph if

and only if Kw
2 (G) is a connected block graph such that w(Mi,Mj) = 1, for

every edge MiMj of K(G).

The same example used in the case of diamond-free graphs shows that

block graphs cannot be characterized by their 1-weighted clique graph.

4.3 Split graphs

A characterization of split graphs in terms of Kw
1,2 is the following.

Theorem 4.15. Let G be a graph. Then G is split and connected if and

only if Kw
1,2(G) is a star with center M1 and w(M1,Mj) = w(Mj) − 1,

2 ≤ j ≤ |K(G)|.

The examples in Figure 2 show that Kw
1 and Kw

2 are not sufficient to

characterize split graphs.

4.4 Interval graphs

For interval and proper interval graphs, we have the following characteriza-

tions.
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Theorem 4.16. Let G be a graph. Then G is an interval graph if and only

if Kw
2,3(G) admits a linear ordering M1, . . . ,Mp of its vertices such that for

every 1 ≤ i < j < k ≤ p, w(Mi,Mj ,Mk) = w(Mi,Mk).

Theorem 4.17. Let G be a graph. Then G is a proper interval graph

if and only if Kw
1,2(G) admits a linear ordering M1, . . . ,Mp of its vertices

such that for every triangle Mi,Mj ,Mk, 1 ≤ i < j < k ≤ p, w(Mj) =

w(Mi,Mj) + w(Mj ,Mk)− w(Mi,Mk).

The examples in Figure 2 show that Kw
1 and Kw

2 are not sufficient to

characterize proper interval graphs.

4.5 Chordal and UV graphs

It is a known result that clique graphs of chordal graphs are dually chordal

graphs. Moreover, it holds that, for a chordal graph G, there is some canon-

ical tree T of K(G) such that, for every vertex v of G, the subgraph of T

induced by CG(v) is a subtree. Such a tree is called a clique tree of G. Mc-

Kee proved [24] that those trees are exactly the maximum weight spanning

trees of Kw
2 (G). Also in the context of chordal graphs, 2-weighted clique

graphs where considered in [10, 12, 13, 14, 19, 23, 29].

Theorem 4.18. Let G be a connected graph. Then G is chordal if and

only if Kw
2,3(G) admits a spanning tree T such that for every three different

vertices Mi,Mj ,Mk of T , if Mj belongs to the path Mi—Mk in T , then

w(Mi,Mj ,Mk) = w(Mi,Mk).

Let G be a connected UV graph, and let (T,F) be a representation of

G as the intersection graph of a family of paths of a tree T , F being the

family of paths. By taking a tree T that minimizes the number of vertices

preserving the intersection relationship in the family of paths, we obtain

that V (T ) = C(G) and each path in F representing vertex v corresponds to

CG(v) [12]. That will be called a clique tree of the UV graph G.

Theorem 4.19. Let G be a connected graph. Then G is UV if and only

if Kw
2,3(G) admits a spanning tree T such that for every three different
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vertices Mi,Mj ,Mk of T , if Mj belongs to the path Mi—Mk in T , then

w(Mi,Mj ,Mk) = w(Mi,Mk), and for every M in T and Mi,Mj ,Mk in

NT (M), it holds w(Mi,Mj ,Mk) = 0.

The examples in Figure 1 show that Kw
1,2 is not sufficient to characterize

UV graphs.

References

[1] L. Alcón, L. Faria, C. de Figueiredo, and M. Gutierrez, The complexity

of clique graph recognition, Theor. Comput. Sci. 410 (2009), 2072–

2083.

[2] J. Barrionuevo and A. Calvo, Sobre grafos circulares y sin diamantes,

M.Sc. Thesis, Departamento de Computación, FCEyN, Universidad de

Buenos Aires, Buenos Aires, 2004 (in Spanish).
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