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Orientations of graphs

Zoltán Szigeti

Abstract

We provide here a short survey on orientations of graphs. We con-
centrate on problems with connectivity properties.

1 Introduction

Mr. Orient, the Mayor of the city called ”The Edges”, having wanted to

make the main street a one way street, unfortunately made a mistake by

ordering the ”one way” sign and received 100 signs, as many as the number

of streets in the city. To be justified, he decides to use all the signs, i.e.

to make all the streets of the city one way. Having finished his plan, he

realizes that it does not enable him to go home. He thus goes back to work

while keeping in mind that he must be able, from the City Hall, to reach any

point of the city. After one moment of reflexion, he realizes that he must

be able, from any point of the city, to reach all the others. Being proud of

himself, he presents his project to his assistant, a well-balanced man, who

reminds him that during summer, some streets of the city may be blocked

by floods, they thus try to conceive a plan where blocking any street does

not make a district inaccessible. But they are still not satisfied; examining

their plan, they see that there are far too many paths from the downtown

to the shopping center and not enough in the other direction. They try an

ultimate improvement: to place the ”one way” signs so that the orientation

of the streets be well-balanced.
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Since then, the city was renamed ”The Arcs”.

2 Definitions

Given an undirected graph G = (V,E) and X ⊂ V, dG(X) denotes the

number of edges of G entering X and iG(X) denotes the number of edges

of G in X. The local-edge-connectivity, λG(u, v), in G from u to v is

defined to be the maximum number of edge-disjoint paths from u to v in G.

The graph G is said to be k-edge-connected if λG(u, v) ≥ k ∀u, v ∈ V . By

Menger’s theorem [12], the maximum number of edge-disjoint paths from

u to v is equal to the minimum cardinality of a cut separating u and v,

that is λG(u, v) = min{dG(X) : v ∈ X,u /∈ X}. Consequently, G is k-edge-

connected if and only if dG(X) ≥ k ∀ ∅ 6= X ⊂ V.

Given a directed graph D = (V,A) and X ⊂ V, d−
D
(X) denotes the

in-degree of X, that is the number of arcs of D entering X and d+
D
(X)

denotes the out-degree of X, that is the number of arcs of D leaving X.

The local-arc-connectivity, λD(u, v), in D from u to v is defined to be

the maximum number of arc-disjoint paths from u to v in D. The graph D

is said to be root-connected at s, where s is a given vertex if λD(s, v) ≥

1 ∀v ∈ V − s, and it is k-root-connected at s if λD(s, v) ≥ k ∀v ∈ V − s.

We say that D is strongly connected if λD(u, v) ≥ 1 ∀(u, v) ∈ V × V,

and it is k-arc-connected if λD(u, v) ≥ k ∀(u, v) ∈ V × V. By Menger’s

theorem [12], the maximum number of arc-disjoint paths from u to v is

equal to the minimum in-degree of a vertex set containg v but not u, that is

λD(u, v) = min{d−
D
(X) : v ∈ X,u /∈ X}. Consequently, D is root-connected

at s if and only if d−
D
(X) ≥ 1 ∀ ∅ 6= X ⊆ V − s, D is k-root-connected at s

if and only if d−
D
(X) ≥ k ∀ ∅ 6= X ⊆ V − s, D is strongly connected if and

only if d−
D
(X) ≥ 1 ∀ ∅ 6= X ⊂ V and D is k-arc-connected if and only if

d−
D
(X) ≥ k ∀ ∅ 6= X ⊂ V.
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3 Warming up

In this section we are given an undirected graph G and we want to find an

orientation of G that satisfies one of the above defined connectivity proper-

ties.

The first property to be considered is root-connectivity. The following

result is an easy exercice.

Theorem 3.1. Given an undirected graph G and a vertex s of G, there

exists a root-connected orientation of G at s if and only if G is connected.

Indeed, such an orientation exists if and only if there exists an orientation

of G containing an s-arborescence. This is equivalent to the existence of a

spanning tree of G, that is to the connectivity of G.

The next connectivity property is k-root-connectivity. For a partition

P = {V1, . . . , Vt} of V, E(P) denotes the set of edges of G between the

different members of P and |P| = t. Note that Theorem 3.2 generalizes

Theorem 3.1.

Theorem 3.2 (Frank). Given an undirected graph G = (V,E), a vertex s

of G and an integer k ≥ 1, there exists an orientation of G that is k-root-

connected at s if and only if

|E(P)| ≥ k(|P| − 1) for every partition P of V . (3.1)

By Menger’s theorem [12], such an orientation exists if and only if there

exists an orientation ~G of G such that d−
~G
(X) ≥ k ∀ ∅ 6= X ⊆ V − s. This

is equivalent, by Edmonds’theorem [3], to the existence of an orientation of

G containing k arc-disjoint s-arborescences. Trivially, such an orientation

exists if and only if there exist k edge-disjoint spanning trees in G. By

Nash-Williams’ theorem [13], this is equivalent to condition (3.1).

Now we continue with strong connectivity. The following result is due to

Robbins [15].
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Theorem 3.3 (Robbins). Given an undirected graph G, there exists a

strongly connected orientation of G if and only if G is 2-edge-connected.

Indeed, by Robbins’ theorem [15], an orientation ~G of G is strongly

connected if and only if ~G has a directed ear-decomposition that is ~G can

be constructed from a vertex by adding at each step a directed path whose

end-vertices belong to the graph constructed so far but the inner vertices do

not. This is equivalent to the existence of an ear-decomposition of G (the

undirected counterpart), and hence to the 2-edge-connectivity of G.

Let us finish this section with k-arc-connectivity. The following weak-

orientation theorem of Nash-Williams [14] generalizes Theorem 3.3.

Theorem 3.4 (Nash-Williams). Given an undirected graph G, there exists

a k-arc-connected orientation of G if and only if G is 2k-edge-connected.

To see the necessity of the condition let ~G be a k-arc-connected orienta-

tion of G. By Menger’s theorem [12], for any vertex set X, there are k arcs

entering X and k arcs leaving X in ~G, that is there are 2k edges entering

X in G, so by Menger’s theorem [12], G is 2k-edge-connected.

To see the sufficiency we may get a minimally 2k-edge-connected graph

G′ by deleting some edges of G. Then, by Mader’s theorem [11], there

exists a vertex s of degree 2k in G′. By Lovász’ theorem [10], there exists

a 2k-admissible complete splitting off, that is we can replace pairs of edges

incident to s by edges between the two other end-vertices to get a 2k-edge-

connected graph G′′ on the vertex set V − s. Then, by induction, there

exists a k-arc-connected orientation ~G′′ of G′′. By hooking up the arcs split

off before, ~G′′ provides an orientation ~G′ of G′. Since the in- and out-degree

of the vertex s will be k, ~G′ is k-arc-connected. By adding the deleted edges

with arbitrary orientations to ~G′, we get a k-arc-connected orientation ~G of

G.
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4 Degree constrained versions

We say that the vector m on V is the in-degree vector of D if m(v) =

d−
D
(v) ∀v ∈ V . We recall that d−

D
(X) is the in-degree function of D. Note

that

m(X) − iD(X) = d−
D
(X). (4.1)

Indeed, in the sum m(X) each arc of iD(X) and each arc entering X is

counted once.

By (4.1), the in-degree vector characterizes the in-degree function of D.

Moreover, as we have seen, the in-degree function characterizes the con-

nectivity properties of D. In other words, if we know only the underlying

undirected graph of D and the in-degree vector of D, then we know every-

thing on the connectivity properties of D.

The following result [8] characterizes graphs having an orientation with

a given in-degree vector.

Theorem 4.1 (Hakimi). Given an undirected graph G = (V,E) and a vector

m : V → Z+, there exists an orientation of G with in-degree vector m if and

only if

m(X) ≥ iG(X) ∀X ⊆ V, (4.2)

m(V ) = |E|. (4.3)

The necessity follows from (4.1). The sufficiency can be proved by taking

an arbitrary orientation of G and if its in-degree vector is not m, then by

repeating the following : reorient a path from a vertex whose in-degree is

too small to a vertex whose in-degree is too big.

We mention that Theorem 4.1 has nice applications: Eulerian orientation

of an undirected graph (Euler), Eulerian orientation of a mixed graph (Ford-

Fulkerson), perfect matching in a bipartite graph (Hall, Frobenius), f -factor

in a bipartite graph (Ore, Tutte).

Now let us see the problems of Section 3 with degree constraint.
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Theorem 4.2 (Frank). Given an undirected graph G= (V,E) and a vector

m: V → Z+, there exists an orientation of G with in-degree vector m that is

(a) root-connected if and only if m(X) − iG(X) ≥ 1 ∀ ∅ 6= X ⊆ V − s

and m(V ) = |E|.

(b) k-root-connected if and only if m(X)− iG(X) ≥ k ∀ ∅ 6= X ⊆ V − s

and m(V ) = |E|.

(c) strongly connected if and only if m(X) − iG(X) ≥ 1 ∀ ∅ 6= X ⊂ V

and m(V ) = |E|.

(d) k-arc-connected if and only if m(X)− iG(X) ≥ k ∀ ∅ 6= X ⊂ V and

m(V ) = |E|.

Note that each of these conditions implies, by Theorem 4.1, that there

exists an orientation ~G of G with in-degree vector m and, by (4.1), ~G will

have the desired connectivity property for free.

5 Well-balanced orientation

To introduce well-balanced orientations, we start with an easy remark on

Eulerian orientations.

Claim 1. If G is an Eulerian graph then there exists an (Eulerian) ori-

entation ~G of G such that d−
~G
(v) − d+

~G
(v) = 0 ∀v ∈ V and λ ~G

(u, v) =
1
2
λG(u, v) ∀(u, v) ∈ V × V.

An orientation ~G of a graph G is called smooth if (5.1) is satisfied, it is

well-balanced if (5.2) is satisfied. If both conditions are satisfied then we

say that the orientation is best-balanced.

|d−
~G
(v) − d+

~G
(v)| ≤ 1 ∀v ∈ V, (5.1)

λ ~G
(u, v) ≥ ⌊

1

2
λG(u, v)⌋ ∀(u, v) ∈ V × V. (5.2)

The best we may hope for an arbitrary graph is to find a best-balanced

orientation. The strong orientation theorem of Nash-Williams [14] says that

this hope can be satisfied.
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Theorem 5.1 (Nash-Williams). Every graph G admits a best-balanced ori-

entation.

Note that of course the strong orientation theorem implies the weak

orientation theorem.

Let us denote by TG the set of odd degree vertices of G. A pairing of

TG (or of G) is a new edge set M on TG such that exactly one edge of M

is incident to each vertex of TG. Let us reformulate the strong orientation

theorem as follows.

Theorem 5.2 (Nash-Williams). There exists a pairing M of G and there

exists an eulerian orientation ~G+ ~M of G+M such that ~G is well-balanced.

In fact Nash-Williams proved the following stronger result called the

pairing theorem [14].

Theorem 5.3 (Nash-Williams). There exists a pairing M of G such that

for every eulerian orientation ~G+ ~M of G+M , ~G is well-balanced.

Let us continue with some generalizations of the strong orientation the-

orem.

Theorem 5.4 (Nash-Williams). For every subgraph H of a graph G, there

exists an orientation ~G of G such that ~G and ~G(H) are best-balanced orien-

tations of G and H.

In [9], we extended this result:

Theorem 5.5 (Király-Szigeti). For every partition {E1, . . . Ek} of E(G),

there exists an orientation ~G of G such that ~G and ~G(Ei) ∀i are best-balanced

orientations of the corresponding graphs.

We provided in [9] another extension of the strong orientation theorem.

We denote by ~G/X the directed graph obtained from ~G by contracting the

complement of X.
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Theorem 5.6 (Király-Szigeti). For every partition {V1, . . . Vk} of V (G),

there exists an orientation ~G of G such that ~G and ~G/V i ∀i, are best-balanced

orientations of the corresponding graphs.

We mention that the last two results can be proved using the pairing

theorem, see [9].

6 Polyhedral aspects

In this section we consider the polyhedral aspects of k-arc-connected orien-

tations and then that of well-balanced orientations.

Let us define the following polyhedra:

P k
G := {m : RV : m(X) ≥ iG(X) + k ∀X ⊂ V,m(V ) = |E|}.

By Theorem 4.2, the integer points of P k
G
are exactly the in-degree vec-

tors of k-arc-connected orientations of G. Frank and Tardos [7] showed that

P k
G
is an integer polyhedra: the function p(X) = iG(X) + k if X 6= ∅, V and

0 otherwise is crossing supermodular so P k
G

is a base polyhedra and hence

P k
G
is an integer polyhedra. It follows that P k

G
is the convex hull of in-degree

vectors of k-arc-connected orientations of G. Frank [6] showed that the min-

imum cost k-arc-connected orientation problem can be solved in polynomial

time.

Let us define now the following polyhedra:

Pw
G := {m : RV : m(X) ≥ iG(X) +RG(X) ∀X ⊂ V,m(V ) = |E|},

where RG(X) = max{⌊1
2
λG(u, v)⌋ : u ∈ X, v ∈ V −X}.

It is easy to see that the integer points of Pw
G

are exactly the in-degree

vectors of well-balanced orientations of G. In [2], we gave an example that

shows that Pw
G

is not an integer polyhedra in general. In the same paper we

have also shown that the minimum cost well-balanced orientation problem

is NP-complete.
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7 k-vertex-connected orientations

A directed graph D = (V,A) with |V | > k is k-vertex-connected if D−X

is strongly connected for all X ⊂ V with |X| = k − 1.

The following conjecture says that the natural necessary conditions to

have a k-vertex-connected orientation are sufficient.

Conjecture 1 (Frank, Thomassen). Given an undirected graph G = (V,E)

with |V | > k, there exists a k-vertex-connected orientation of G if and only

if G−X is (2k − 2|X|)-edge-connected for all X ⊆ V with |X| < k.

This conjecture is open even in the special case when k = 2. Let us

formulate this case.

Conjecture 2 (Frank, Thomassen). Given an undirected graph G = (V,E)

with |V | > 2, there exists a 2-vertex-connected orientation of G if and only

if G is 4-edge-connected and G− v is 2-edge-connected for all v ∈ V.

It is known that this is true for Eulerian graphs [1]:

Theorem 7.1 (Berg-Jordán). Given an Eulerian graph G = (V,E) with

|V | > 2, there exists a 2-vertex-connected (Eulerian) orientation of G if and

only if G− v is 2-edge-connected for all v ∈ V.

This last theorem can be generalized as follows and it can be proved by

the pairing theorem, see [9].

Theorem 7.2 (Király-Szigeti). Given an Eulerian graph G = (V,E) with

|V | > k + 1, there exists an Eulerian orientation ~G of G such that ~G − v

is k-arc-connected ∀ v ∈ V if and only if G− v is 2k-edge-connected for all

v ∈ V.
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well-balanced orientations, Discrete Optimization 5 (2008) 663-676.

[3] J. Edmonds, Edge-disjoint branchings, in: Combinatorial Algorithms

(B. Rustin, ed.), Acad. Press, New York, (1973), 91-96.



188 Z. Szigeti

[4] A. Frank, On disjoint trees and arborescences, in: Algebraic Methods

in Graph Theory, Colloquia Mathematica Soc. J. Bolyai, 25 (1978)

159-169. North-Holland.

[5] A. Frank, On the orientation of graphs, J. Combinatorial Theory, Ser.

B., 28, No. 3 (1980) 251-261.

[6] A. Frank, Applications of submodular functions, in: Surveys in Combi-

natorics, London Mathematical Society Lecture Note Series 187, Cam-

bridge Univ. Press, (Ed. K. Walker) 1993, 85-136.
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