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Even pairs in planar Berge graphs

Cláudia L. Sales Rudini M. Sampaio

Abstract

An even pair in a graph is a pair of vertices such that every induced
path between them has even length. It is known that deciding the ex-
istence of an even pair in a graph is co-NP-complete [3]. In 1990, Reed
conjectured that this problem is polynomial time solvable for perfect
graphs [22]. In 2005, Chudnovsky et al. obtained an O(n9) time al-
gorithm to recognize perfect graphs [4]. As a direct consequence, they
obtained an O(n11) time algorithm to decide if a perfect graph con-
tains an even pair, proving Reed’s conjecure. Even when restricted to
planar perfect graphs, this was also the best known algorithm. In this
paper, we characterize even pairs in planar perfect graphs. Our char-
acterization leads to an O(n3) time algorithm to decide the existence
of an even pair (and to find it if it exists) in this class.

1 Introduction

We say that a simple graph is Berge if it contains no odd hole and no odd

anti-hole, where a hole is a chordless cycle with at least four vertices and

an anti-hole is the complementary graph of a hole. Claude Berge called a

graph G perfect if, for every induced subgraph H of G, the clique number of

H is equal to its chromatic number [2]. Berge also conjectured that a graph

is perfect if and only if it is a Berge graph. This conjecture is called the

Strong Perfect Graph Conjecture and it was proved in 2006 by Chudnovsky,

Robertson, Seymour and Thomas [5]. In 2009, Chudnovsky and Seymour
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presented a shorter proof of the Strong Perfect Graph Theorem (removing

about 50 pages) using the concept of even pair [6].

An even pair in a graph is a pair of non-adjacent vertices such that every

induced path between them has even length. Even pairs were introduced as a

tool to characterize minimal imperfect graphs [21] as well as to color perfect

graphs, since the set of perfect graphs is closed under even pair contractions

[12].

We say that a graph is perfectly contractile if, for every induced subgraph,

there is a sequence of even pair contractions that produces a complete graph.

In that case, the size of the complete graph is the clique number and the

chromatic number of the original graph.

Everett and Reed [11] conjectured that a graph is perfectly contractile if

and only if it contains no odd hole, no anti-hole and no odd stretcher, where

an odd stretcher is a graph with two triangles and three vertex disjoint

induced paths joining them, each path having odd length (for example,

C6). Everett-Reed’s conjecture was proved true for several graph classes.

For example, planar graphs [19], claw-free graphs [17], bull-free graphs [8],

diamond-free graphs [23] and special square-free graphs [18]. A general

overview on this results can be found in [10].

Unfortunately, deciding the existence of an even pair in a general graph is

co-NP-complete [3]. Also, up to now, there is no polynomial time algorithm

to find even pairs in perfectly contractile graphs. In 2006, for example,

Figueiredo, Maffray and Maciel proved that every bull-reducible Berge graph

or its complement contains an even pair [9], but they do not provide a

polynomial time algorithm to find it.

In 1990, Reed conjectured that deciding the existence of an even pair is

polynomial time solvable when restricted to the class of Berge graphs [22].

In 2005, Chudnovsky et al. [4] obtained an O(n9) time algorithm to decide

if a graph is Berge. This result proves Reed’s conjecture, since the following

procedure can be used to decide if a pair of non-adjacent vertices {x, y} is

an even pair in a Berge graph: include a new vertex z and two new edges

xz and yz. It is not hard to see that this new graph is Berge if and only if
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{x, y} is an even pair in the original Berge graph. This leads to an O(n11)

time algorithm to find even pairs in Berge graphs.

In [16], Hsu obtained an O(n3) time algorithm to decide if a planar

graph is Berge. One could say that the algorithm briefly described above,

using this time Hsu’s algorithm, would generate an O(n5) time algorithm

to find even pairs in planar Berge graphs. However, it would not work since

including the new vertex and its adjacencies would eventually destroy the

planarity of the original graph.

In this paper, we use Hsu’s recognition algorithm to obtain an O(n3) time

algorithm to find even pairs in planar Berge graphs, proving the following

theorem:

Theorem 1.1. Given a planar Berge graph G, deciding the existence of an

even pair in G is O(n3) time solvable. If G contains an even pair, we can

find one in O(n3) time.

Our algorithm is presented in Section 4. To prove Theorem 1.1, we first

characterize planar Berge graphs that contain even pairs. In Section 2, we

introduce the main ideas of Hsu’s algorithms for decomposing planar Berge

graphs, as well its terminology [16].

It is interesting to notice that Linhares Sales, Maffray and Reed [19]

proved that every planar Berge graph with no odd stretcher is perfectly

contractile. For such graphs, it is not difficult to find an even pair (see

section 4.5.1 of [1] for an informal discussion). If the graph is drawn in the

plane and every face is a triangle, then, according to Hsu’s decomposition

tree for planar Berge graphs, the graph is a comparability graph and we can

find an even pair in polynomial time [7]. If there is a nontriangular face,

then they proved that this face contains an even pair at distance two.

However, for planar Berge graphs with odd stretchers, it is not too clear

how even pairs can be found quickly. For example, Figure 1 shows a planar

Berge graph with only one even pair, represented in black. It is easy to

see that this pair remains the unique if we increase the middle part of this

graph.
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Figure 1: Planar Berge graph with odd stretchers and one even pair (in
black)

In another paper, Linhares Sales, Maffray and Reed [20] obtained a poly-

nomial time algorithm to recognize planar strict quasi-parity graphs (planar

graphs such that every induced subgraph is complete or contains an even

pair). However, they also do not provide an algorithm to find an even pair.

Their algorithm uses a graph theoretical characterization of minimal planar

non-strict quasi-parity graphs.

The proof of Theorem 1.1 which leads to our O(n3) polynomial time

algorithm is presented in Section 3.

2 Decomposing planar Berge graphs

In this section, we briefly describe Hsu’s decomposition for planar graphs.

Hsu’s decomposition tree can be obtained in O(n3) time and it is used to

decide if a planar graph is perfect.

Given a planar graph G = (V,E), Hsu [16] decomposes G looking for

cutsets of G with at most four vertices that satisfies some conditions. By

applying these conditions, we can classify the cutsets into seven types: I,

IIa, IIb, IIc, IIIa, IIIb and IV, where cutsets of type I have only one vertex,

cutsets of type IIa, IIb and IIc have two vertices, cutsets of type IIIa and IIIb

have three vertices and cutsets of type IV have four vertices. These cutsets

are called Hsu-cutsets and are explained below. A cutset with k+ 1 vertices

is applied only if all cutsets with at most k vertices were found (k = 1, 2, 3).

By applying successively these cutsets, Hsu obtains a decomposition tree

T such that the root is G and the nodes of T are obtained from induced
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subgraphs of G (usually the connected components of a cutset) by adding

new vertices and edges in order to keep the parity path properties of the

original graph.

Roughly speaking, the decomposition tree can be described as follows:

for each node H of T , if H does not have an appropriate cutset, then H is

leaf of T . For otherwise, let Q be a Hsu-cutset of H. Every child of H in

T is a connected component of H − Q together with Q and possibly with

at most three new vertices and edges. Such new vertices are called artificial

vertices.

More especifically, let A1, . . . , Ak be the connected components of H−Q.

For i = 1, . . . , k, the children of H will be the graphs Bi which are subgraphs

of H induced by the vertices of V (Ai) ∪ Q and eventually completed with

news edges and artificial vertices.

A Hsu-cutset Q should satisfy one of following conditions:

• Type I: Q is only one vertex. The i-th child of H is Bi.

• Type IIa: Q = {a, b} where ab is an edge. The i-th child of H is Bi.

• Type IIb: Q = {a, b} where ab is not an edge and there is an induced

even {a, b}-path in H. The i-th child of H is Bi with an artificial

vertex e1 and edges e1a and e1b.

• Type IIc: Q = {a, b} where ab is not an edge and there is an induced

odd {a, b}-path in H. The i-th child of H is Bi with two artificial

vertices e1 and e2 and edges e1a, e2b and e1e2.

• Type IIIa: Q = {a, b, c} where Q is a 3-clique. The i-th child of H is

Bi.

• Type IIIb: Q = {a, b, c}, where ab is an edge, ac is not an edge and

there is an induced even {a, c}-path avoiding {b} and an induced odd

{b, c}-path avoiding {a} in each Bi. The i-th child of H is Bi with

an artificial vertex e1 with edges e1a and e1c and possibly a second

artificial vertex e2 with edges e2b and e1e2 if bc is not an edge.

• Type IV: Q = {a, b, c, d}, where Q induces a C4 (a cycle with four

vertices) with edges ab, bc, cd, da and there is an induced even {a, c}-
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path avoiding {b, d} and an induced odd {b, d}-path avoiding {a, c} in

each Bi. The i-th child of H is Bi with two artificial vertices e1 and

e2 with edges e1a, e1b, e1c, e1e2, e2a, e2c and e2d.

A cutset can be only applied if none of the children of H is isomorphic

to H (this isomorphism is easy to check [16]). We say that a graph is k-

inseparable if there is no Hsu-cutset with at most k vertices. Therefore, the

leaves of T are the 4-inseparable nodes.

Hsu [16] proved that a planar graph G is perfect if and only if every leaf

of T belongs to C ∪ L ∪ S ∪ {K3,K4}, where C, L and S are graph classes

defined below:

• Class C: planar comparability graphs containing an independent sub-

set of C4-vertices whose deletion produces a bipartite graph, where a

C4-vertex is a vertex whose neighborhood induces a C4;

• Class L: planar line-graphs of bipartite graphs where every vertex

has degree 2, 3 or 4 and belongs to exactly two edge-disjoint maximal

cliques; and

• Class S: graphs S1, S2 or S3 of Figure 2, and any of the five non-

isomorphic graphs obtained from S1 by replacing one or more of the

edges e, f, g by a chordless path of length three.

Figure 2: Graphs S1, S2 and S3 of class S

Theorem below from Hsu [16] shows how we can find an even pair in a

leaf of class C or class L.
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Theorem 2.1 (Theorems 9.2 and 9.3 from [16]). Let G a graph of class

C and let J the set of independent C4-vertices whose deletion produces a

bipartite graph. Then every pair of vertices in G− J is an even pair or an

odd pair or an edge. Moreover, let G be a 3-inseparable graph of class L.

Then {x, y} is an even pair of G if and only if x and y have a common

neighbor of degree 2.

3 Characterizing even pairs in planar Berge
graphs

We start by proving the following lemma.

Lemma 3.1. Let G be a connected planar Berge graph and let T be its Hsu’s

decomposition tree. Suppose that T satisfies one of the following conditions:

• T contains a node H with cutset of type I, IIb, IIIb or IV; or

• T contains a leaf H ∈ S ∪ C; or

• T contains a leaf H ∈ L which contains a pair of non-artificial vertices

with a common neighbor of degree 2.

Then G contains an even pair that can be found in O(n3) time.

Proof. It is easy to see that an even pair of non-artificial vertices in a node

H of T is also an even pair of G. If a node H has a cutset Q = {a} of type

I, then any pair {x, y} of vertices adjacent to a in different components of

H−Q is an even pair. It also follows directly from the definitions that, if H

has a cutset Q of type IIb, IIIb or IV, then H has an even pair of vertices

belonging to Q. So, suppose that T does not contain a Hsu-cutset of types

I, IIb, IIIb or IV.

Now let H be a leaf of T belonging to S. It follows from the definition of

class S (see Figure 2) that two non-adjacent vertices in a diamond of H form

an even pair. Such vertices are non-artificial, since Hsu’s artificial vertices

introduced by cutsets of type IIc have degree two.
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Now suppose that H belongs to C. Let J be the set of independent

C4-vertices of H whose deletion leaves the graph bipartite. If J is empty,

then H is a bipartite graph and, by Theorem 2.1, every pair of non-artificial

vertices at distance two is an even pair (clearly H contains a pair satisfying

this).

If J is not empty, let v ∈ J whose neighborhood is {a, b, c, d} with edges

ab, bc, cd and da. Clearly a, b, c, d 6∈ J . So, by Theorem 2.1, {a, c} and

{b, d} are even pairs.

This lemma leads us to introduce the notion of introversive graphs. A

graph is introversive if it is a non-complete connected planar Berge graph

which does not satisfy none of the conditions of Lemma 3.1. By consequence

of this definition, if G is an introversive graph, then G is not complete, every

cutset of its Hsu’s decomposition tree T is of type IIa, IIc or IIIa, every leaf

of T belongs to L∪ {K3,K4} and, if T ∈ L, any non-artificial vertex u of T

is such that N(u) ∪ {u} induces one of the graphs of Figure 3, where N(u)

is the set of neighbours of u.

Figure 3: Closed neighboorhood of a non-artificial vertex u of a L-leaf of T

Our main work is to identify an even pair of an introversive graph which

was separated by a cutset IIa, IIc or IIIa. Lemmas 3.2 and 3.3 below prove

an important result about this question. We postpone their proofs to Section

5.

Let H be an inner node of T and let Q be its cutset. Let x, y be non-

artificial vertices in different components of H −Q. Let HX and HY be the

children of H that contains x and y, respectively.

Let us introduce the following notation. We denote by P (a, b, c,D) the

set of all induced paths from a vertex a to a vertex b avoiding a vertex c in
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a graph D. Observe that, if P (a, b, c,D) is empty, then {c} is a cutset of D.

Lemma 3.2. Suppose that H is 1-inseparable, {x, y} is an even pair and

HX and HY do not contain even pairs. If Q is of type IIa, then all paths

in P (x, a, b,HX) and P (x, b, a,HX) have odd length. If Q is of type IIc,

then all paths in P (x, a, b,HX) and P (x, b, a,HX) have the same parity and

H −Q has exactly two components.

Now, let P (a, b, c, d, E) be the set of all induced paths from a vertex a to a

vertex b avoiding vertices {c, d} in a graph E. Observe that if P (a, b, c, d, E)

is empty, then {c, d} is a cutset of E.

Lemma 3.3. Suppose that H is 2-inseparable, {x, y} is an even pair and

HX and HY do not contain even pairs. If Q = {a, b, c} is of type IIIa, then

all paths in P (x, a, b, c,HX), P (x, b, a, c,HX) and P (x, c, a, b,HX) have odd

length.

With Lemmas 3.2 and 3.3, we have the key to deal with the case where

a cutset Q of H separates an even pair {x, y}. The main idea is to include a

new artificial vertex z, that we call Z-vertex, in each children Bi of H. The

goal is to identify both {x, z} and {z, y} as even or odd pairs in the children

of H and then conclude that {x, y} is an even pair of H.

Let H be a non-leaf node of T and let Q be its cutset. The inclusion of

the z-vertices will obey the following schema. If Q = {a, b} is of type IIa,

then we add an artificial Z-vertex z and join it to a and b. If Q = {a, b}
is of type IIc, then we add an artificial Z-vertex z and join it to a and the

Hsu-artificial neighbor of a. Finally, if Q = {a, b, c} is a cutset of type IIIa,

then we add an artificial Z-vertex z and join it to a, b and c.

From now on, we consider that T is Hsu’s decomposition tree of G with

Z-vertices. When we say that a leaf of T is of class L, for example, we

are considering this leaf without its Z-vertices. As an example, Figure 5

shows the even pair {x, y} of the graph of Figure 1 and shows how it can

be recovered from the leaves of T , by finding the even or odd pairs {x, z1},
{z1, z2}, {z2, z3}, {z3, z4}, {z4, z5} and {z5, y} in the children of H.
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Figure 4: The artificial Z-vertices z of cutsets IIa, IIc and IIIa

With the inclusion of Z-vertices, we expect to track even pairs {x, y}
that have been separated in the decomposition process. To do so, we have

to introduce the definition of H(x, y), Q(x, y) and Z(x, y).

Given vertices x, y of G, we define H(x, y) to be the minimal sequence

(H0, H1, . . . ,Hk) of leaves of T such that ∪ki=0V (Hi) contains every vertex in

a minimum path between x and y in G. We consider that H(x, y) is ordered,

that is, Hi is closer to x than Hi+1, and Hi+1 is closer to y than Hi. Let

Q(x, y) be the sequence (Q1, . . . , Qk) of cutsets such that Qi separates Hi

from Hi+1. Let Z(x, y) be the sequence (z1, . . . , zk) of Z-artificial vertices,

where zi is the Z-vertex introduced by Qi.

The existence and unicity of H(x, y) are guaranteed by the fact that G

is connected and the existence of another H ′(x, y) would imply that some

cutset separating two consecutives leaves of H(x, y) is not a cutset of G.

Figure 5 shows H(x, y) with six leaves (H0, H1, H2, H3, H4, H5) for the

graph of Figure 1. In this example, Z(x, y) = (z1, . . . , z5) and Q(x, y) =

(Q1, . . . , Q5) has five cutsets of types IIa, IIc, IIc, IIc and IIa, respectively,

where Qi = {ai, bi} for i = 1, . . . , 5.
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Figure 5: Introversive graph of Figure 1 and its leafs

Definition 3.4. An even pair {x, y} of an introversive graph G is strong

if there is no even pair {x′, y′} such that x′ ∈ {H0, . . . ,Hk} and y′ ∈
{H1, . . . ,Hk−1}, where H(x, y) = {H0, . . . ,Hk}.

Notice that, if G has an even pair, then G has a strong even pair. We will

look for strong even pairs using Z-vertices. The following three lemmas prove

important properties of strong even pairs. Their proofs use the following

claims whose proofs are in Section 5.

Claim 1. Let Q be a cutset of G that separates an even pair {x, y}. Suppose

that every path from x and y to any vertex of Q avoiding the others is odd.

If Q is of type IIIa, then there exists a vertex b of Q such that either {x, b}
or {y, b} is an edge or an odd pair. If Q = {a, b} is of type IIa, then the pairs

in one of the following four groups is an edge or an odd pair: (1) {x, a} and

{y, a}; (2) {x, b} and {y, b}; (3) {x, a} and {x, b}; or (4) {y, a} and {y, b}.

Claim 2. Let H be a leaf of T that, up to the Z-vertices, belongs to class L.

Let {a, b, c} be a triangle of H. If H does not contain an even pair of non-

artificial vertices, then, for every non-artificial vertex u of H, there exists

two paths with different parities in each set P (u, a, b, c,H), P (u, b, a, c,H)

and P (u, c, a, b,H).

Using these claims, Lemma 3.5 below proves that strong even pairs sat-

isfy an important property.
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Lemma 3.5. Let {x, y} be a strong even pair of G. Let H(x, y) = {H0, . . . ,

Hk} and Q(x, y) = {Q1, . . . , Qk} be as defined. If Q1 (resp. Qk) is of type

IIa or IIIa, then H0 (resp. Hk) has a vertex adjacent to every vertex of Q1

(resp. Qk).

Proof. If Q1 is of type IIIa, then, by Lemma 3.3 and Claim 2, H0 does not

belong to class L. Therefore, H0 is a K4, and we are done. If Q1 = {a, b} is

of type IIa, then, by Claim 1, (i) either {x, a} or {x, b} is an edge or an odd

pair; or (ii) {y, a} and {y, b} are edges or odd pairs.

Suppose that case (ii) is true. Let M be an induced odd path from y

to a avoiding b. Since {y, b} is an edge or an odd pair, the path M + (a, b)

from y to b cannot be an induced one. Hence there exists an edge joining a

vertex m′ of M to b. So, the induced path N = M [y,m′]+m′b is an induced

path from y to b avoiding a and consequently N is odd. Clearly, the path

N + (b, a) from y to a also cannot be an induced one. So, there exists an

edge joining N to a. Since M is induced, the only possibility is the edge

(m′, a). So, {x,m′} is an even pair. If k > 1, then we have a contradiction,

since {x, y} is a strong even pair. If k = 1, then Q1 = Qk and we are done,

since we found a vertex m′ adjacent to a and b in Hk (the same argument

follows for x and H1).

Now, suppose we have case (i). Let {x, a} be an edge or an odd pair.

Since H0, up to the Z-vertices, belongs to class L, then by Theorem 2.1,

(x, a) is an edge. Recall that {x, y} is a strong even pair. Therefore, by

Lemma 3.2, every path from x to b avoiding a is odd. Since H0 is 3-

inseparable, there are at least two vertex-disjoint induced paths U and V

from x to b avoiding a.

We have that a must see vertices r of U and s of V , for otherwise

U + xa + ab and V + xa + ab would induce an odd hole. By the required

neighborhood of graphs in Class L (Figure 3), b must be adjacent to r or

s. Therefore, either r or s is adjacent to every vertex of Q0. The same

arguments can be used to Qk.

Lemma 3.6 below shows that only the cutsets Q1 and Qk can be of type
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IIa or IIIa.

Lemma 3.6. Let {x, y} be a strong even pair of G such that H(x, y) =

{H0, . . . ,Hk} and Q(x, y) = {Q1, . . . ,

Qk}. Then every cutset in {Q2, . . . , Qk−1} is of type IIc.

Proof. By contradiction, suppose that there exists a cutset Qi (0 < i < k−1)

of type IIa or IIIa. By Claim 1, there exists a vertex b ∈ Qi such that {x, b}
or {y, b} is an odd pair. Without lost of generality, suppose that {x, b} is an

odd pair. By Lemmas 3.2 and 3.3, every induced path from x to a vertex

of Qi avoiding the others is odd. Since {x, b} is an odd pair, there is no

induced odd path from x to b containing another vertex of Qi. Therefore,

every induced path from x to b contains a neighbor b0 of b that does not

belong to Qi. If a neighbor b0 6∈ Qi of b is adjacent to another vertex of

Qi − {b}, then the only possibility for the neighborhoods of Figure 3 (recall

that Hi belongs to class L) is that Qi is of type IIa and, in this case, {b0, y}
is an even pair, contradicting the fact that {x, y} is a strong even pair.

As a consequence, every neighbor b0 6∈ Qi of b is non-adjacent to every

vertex of Qi − {b}. We have that one or two vertices satisfy this property

(see Figure 3). If there is only one, then this vertex is a cutset of type I,

separating b from other vertices of Hi.

So, let b1, b2 6∈ Qi be the neighbors of b which are non-adjacent to every

vertex of Qi − {b}. Clearly, (b1, b2) is an edge (see Figure 3) and {b1, b2} is

a cutset of type IIa which separates x from the vertices of Qi. Observe that

since {x, b} is an odd pair, then all the induced paths from x to b1 (resp. b2)

avoiding b2 (resp. b1) must be even. However, since {x, y} is a strong even

pair, then by Lemma 3.2 applied to the cutset {b1, b2} of type IIa, all these

induced paths must be odd. This contradiction completes the proof.

Lemma 3.7. Let Qi = {a, b} ∈ Q(x, y) be a cutset of type IIc that sepa-

rates a pair of vertices {x, y} of G. Suppose that all paths in P (x, a, b,G),

P (x, b, a,G), P (y, a, b,G) and P (y, b, a,G) have the same parity. Then

{x, y} is an even pair if and only if G−Qi has exactly two components.
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Proof. By Lemma 3.2, if {x, y} is an even pair, then G−Qi has exactly two

components. Conversely, suppose that G−Qi has exactly two components.

Since every induced path from x and y to a avoiding b and to b avoiding

a have the same parity, we have that an induced odd path from x to y, if

does exist, necessarily contains a and b. However, given the neighborhoods

of Figure 3, a has at most two non-artificial neighbors a1 and a2 in Hi, and

(a1, a2) is an edge. We have the same for a in Hi−1 and for b in Hi−1 and

Hi. So, every path from x to y containing a and b must contain two such

neighbors, say a1 and a2. Then, no such path is induced, since (a1, a2) is an

edge.

With Lemmas 3.5, 3.6 and 3.7, we have the main properties of strong

even pairs. We are now ready to prove Lemma 3.8 which, together with

Lemma 3.1, completes the neccessary theoretical foundation for the proof of

Theorem 1.1.

Lemma 3.8. An introversive graph G contains an even pair if and only if

it contains a pair (x, y) of vertices which satisfies the following conditions,

where Q(x, y) = (Q1, . . . , Qk) and Z(x, y) = (z1, . . . , zk):

a. (x, z1), (zk, y) and (zi, zi+1), for i = 1, . . . , k−1, are even pairs or odd

pairs; and

b. the number of odd pairs is even; and

c. If Q1 is of type IIa or IIIa, (x, z1) is an even pair and Q ⊆ N(x); and

d. If Qk is of type IIa or IIIa, (zk−1, y) is an even pair and Q ⊆ N(y);

and

e. Every cutset in {Q2, . . . , Qk−1} is of type IIc and generates exactly two

components.

Moreover, a pair (x, y) satisfying these conditions is always an even pair in

an introversive graph.
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Proof. Let G be an introversive graph. If G contains an even pair, then

G contains a strong even pair {x, y} which, by Lemmas 3.5, 3.6 and 3.7,

satisfies (c), (d) and (e). We have to prove that {x, y} satisfies (a) and (b).

Let i ∈ {1, . . . , k − 1}. By Lemma 3.2, all induced paths from x and y to

a vertex of Qi avoiding the others have the same parity (the same occurs

for Qi+1). In Hi, zi and zi+1 plays the role of x and y, respectively. Notice

that, by construction, all induced paths from zi to Qi in Hi have the same

parity and all induced paths from zi+1 to Qi+1 in Hi have the same parity.

Moreover, since {x, y} is an even pair, then all induced paths from zi to

zi+1 have the same parity. So, {zi, zi+1} is an even pair or an odd pair. By

similar arguments, {x, z1} and {zk, y} is an even pair or an odd pair. With

this, we have (a). Since {x, y} is a strong even pair, then there exists an

induced even path Lxy = Lxa0 +La0a1 + . . .+Lak−1ak +Laky from x to y,

where ai ∈ Qi and each subpath Laiai+1 is an induced path from ai to ai+1

that avoids every other vertex of Qi and Qi+1. If {zi, zi+1} is an even pair

(resp. odd pair), then Laiai+1 must have even (resp. odd) length. Since

Lxy has even length, then the number of odd subpaths Laiai+1 is even. So,

the number of odd pairs in {x, z0}, {zk−1, y} and {zi, zi+1}, 0 < i < k, is

even, proving (b).

Conversely, suppose now that we have a pair {x, y} that satisfies (a), (b),

(c), (d) and (e). If Q1 is of type IIa or IIIa, then, by (c), x is adjacent to

every vertex of Q1. So, there is no induced path from x to y with two vertices

of Q1. We have the same for Qk by (d). Given the allowed neighborhoods

of Figure 3, we have that the non-artificial neighbors of each vertex of Qi in

Hi and Qi+1 in Hi+1 must be one vertex or two vertices joined by an edge.

In both cases, there is no induced path from x to y with two vertices of Qi

(such a path would not be induced), since, by (e), G − Qi has exactly two

components. So, every induced path from x to y contains exactly one vertex

from Qi, where i = 1, . . . , k. With this, we have by (a) that every induced

path from x to y have the same parity. Since the number of odd pairs is

even, then there is an induced even path from x to y. So, {x, y} is an even

pair.
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4 The algorithm

Let G be a planar Berge graph. At first, apply Hsu’s algorithm to obtain

the decomposition tree T of G. Hsu [16] showed that T can be obtained

in O(n3) time and we can check in the same time if the leaves of T are in

classes C, L, S or {K3,K4}.
Lemma 3.1 indicates the cases when it is easy to obtain an even pair.

If there is a leaf H of T in class C, Hsu [16] showed that we can find in

O(|V (H)|) time the set J of C4-vertices such that H − J is bipartite. By

Theorem 2.1, any pair of two distinct vertices x, y /∈ J at distance two is an

even pair. If there is a leaf H of T in class L with a degree two vertex u,

then N(u) is an even pair by Theorem 2.1. If there is a leaf H of T in class

S, then we find an even pair in any diamond of H. If T contains a node

whose cutset Q is of type I, IIb, IIIb or IV , then we have an even pair in

Q. If one of the cases above occurs, then we return the even pair found and

we stop the algorithm.

Now assume that no even pair was found in this first phase. Then G is

an introversive graph and we will look for even pairs and odd pairs in the

leaves of T .

Let us now introduce Z-vertices to T as already explained. First of

all, notice that Z-vertices cannot change the induced paths between non-

artificial vertices. We will construct a weighted graph W whose vertices are

all vertices of G and all Z-vertices included. We will join an edge between

two vertices r and s of W if and only if {r, s} is an even pair or an odd pair

in a leaf H of T . The weight of the edge (r, s) in W is 0 (resp. 1) if {r, s}
is an even pair (resp. odd pair) of H. We have to answer if this could be

done in O(n3) time.

By including Z-vertices, some leafs of T may not be of class L anymore.

Harary et al. [13] proved that a graph G is a line-graph of a bipartite graph

if and only if it does not contain odd holes, diamonds (K4−e) or claws (K1,3)

as induced subgraphs. Odd holes and claws do not appear with Z-vertices.

However, diamonds can emerge when we include a Z-vertex. It is easy to
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see that this happen only for cutsets of type IIa.

By Lemmas 3.5 and 3.6, we know that if a cutset Q = {a, b} of type IIa

separates a strong even pair {x, y}, then x or y (say x) is in a leaf H with Q

and there exists a vertex v in H adjacent to a and b such that {v, y} is also

an even pair. Consequentely, for each leaf H of T and for each Z-vertex z

of a IIa cutset Q = {a, b} in H, we check if z is in a diamond by looking for

a non-artificial vertex v in H that are neighbor of a and b. If there is such

a vertex v, we have that {z, v} is an even pair and we put it in W . We can

do this in O(n2) time, since we have at most O(n) Z-vertices.

For each leaf H of T , let Diam(H) be the set of Z-vertices that produces

diamonds in H. All important even pairs with vertices in Diam(H) was

already obtained, including the case when H is a K3 or a K4. So, remove

from each leaf H the set Diam(H) and delete all leafs isomorphic to K3 or

K4. With this, we have that every leaf of T is a line graph of a bipartie

graph, not necessarily in class L anymore. Theorem below from Hougardy

[15] shows us how we can obtain even pairs and odd pairs in line graphs of

bipartite graphs.

Theorem 4.1 (Hougardy [15]). Let {x, y} be a pair of vertices in a line-

graph G of a bipartite graph B. Then {x, y} is an even pair (resp. odd pair)

if and only if their corresponding edges x1x2 and y1y2, respectively, in B are

such that x1 and y1 are in a same partition (resp. different partitions) of B

and in different components of B − {x2, y2}.

Therefore, given a leaf H of T , a vertex x and a Z-vertex z of H, we can

apply Theorem 4.1 to decide if {z, x} is an even pair, an odd pair or none of

them, by analyzing the connectivity of B minus the two edges corresponding

to z and x, which takes O(|V (H)|) time, since B has at most O(|V (H)|)
edges. So, doing this for each H, x and z, this procedure runs in O(n3)

time, since we have O(|V (H)|2) such pairs {x, z} in H.

With this, we have constructed the weighted graph W . From Lemma

3.8, if there exists two non-artificial vertices {x, y} such that there is a path

with even length between them in W , then {x, y} is an even pair of G. If
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this does not happen, then G has no strong even pair and, consequently, G

has no even pair. We can do this using, for example, Floyd’s algorithm that

runs in O(n3) time.

Proof of the Main Theorem 1.1. If G is complete, then G has no even pairs.

If G satisfies Lemma 3.1, then we find an even pair of G in O(n3) time, as

explained. If G satisfies Lemma 3.8, then, if G contains an even pair, we

can find it in O(n3) time, as explained. If G has no even pair, then we can

also check this in O(n3) time, as explained before.

5 Technical proofs

As usual, by w.l.g, we mean without loss of generality.

5.1 Proof of Lemma 3.2

Proof of Lemma 3.2. Since {x, y} is an even pair, it is easy to see that all

paths in P (x, a, b,HX) have the same parity (if there is one even path and

one odd path, we would have an induced odd {x, y}-path through any path

in P (y, a, b,HY )). Similarly, all paths in P (x, b, a,HX) have the same parity.

If paths in P (x, a, b,HX) have even length (resp. odd length) and paths in

P (x, b, a,HX) have odd length (resp. even length), then {x, a} (resp. {x, b})
is an even pair. This is a contradiction, since HX has no even pair. So, all

paths in P (x, a, b,HX) and P (x, b, a,HX) have the same parity.

Suppose that Q is of type IIc and H − Q has a third component HZ .

So there is an induced odd {x, y}-path obtained by three subpaths: any

induced {x, a}-path in P (x, a, b,HX), any induced odd {a, b}-path in HZ

and any induced {b, y}-path in P (y, b, a,HY ). This is a contradiction, since

{x, y} is an even pair.

Suppose that Q is of type IIa and every path in P (x, a, b,HX) and

P (x, b, a,HX) have even length. Since {x, a} is not an even pair, then there

is an induced odd {x, a}-path in HX with b. Let LXB + (b, a) be such path

(LXB is an induced even {x, b}-path). Since {y, b} is not an even pair, then
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there is an induced odd {y, b}-path in HY with a. Let LY A + (a, b) be such

path (LY A is an induced even {y, a}-path). However, we have a contradic-

tion, since LXB + (a, b) + LY A is an induced odd {x, y}-path, but {x, y} is

an even pair.

5.2 Proof of Lemma 3.3

Proof of Lemma 3.3. At first, suppose that there is no path from x to a

avoiding b and c. So, since (b, c) is an edge, then {b, c} is a cutset of type

IIa separating x from y. From Lemma 3.2, we have that all paths from x to

b avoiding c and to c avoiding b have odd length. So, {x, a} is an even pair,

contradicting the fact that HX has no even pair. Therefore, P (x, a, b, c,HX)

is not empty and, with same arguments, P (x, b, a, c,HX), P (x, c, a, b,HX),

P (y, a, b, c,HY ), P (y, b, a, c,HY ) and P (y, c, a, b,HY ) are not empty.

Applying the same arguments of Lemma 3.2, all paths in P (x, a, b, c,

HX) and P (y, a, b, c,HY ) have the same parity, as well as all paths in

P (x, b, a, c,HX) and P (y, b, a, c,HY ), and all paths in P (x, c, a, b,HX) and

P (y, c, a, b,HY ).

W.l.g., we can consider three possibilities for the parities of paths in

P (x, a, b, c,HX), P (x, b, a, c,HX) and P (x, c, a, b,HX):

(i) paths in P (x, a, b, c,HX) are even; and paths in P (x, b, a, c,HX) and

P (x, c, a, b,

HX) are odd. We call this case even-odd-odd.

(ii) paths in P (x, a, b, c,HX) and P (x, b, a, c,HX) are even; and paths in

P (x, c, a, b,HX) are odd. We call this case even-even-odd.

(iii) paths in P (x, a, b, c,HX), P (x, b, a, c,HX) and P (x, c, a, b,HX) are

even. We call this case even-even-even.

(iv) paths in P (x, a, b, c,HX), P (x, b, a, c,HX) and P (x, c, a, b,HX) are

odd. We call this case odd-odd-odd.

In case even-odd-odd, we have a contradiction, since {x, a} and {y, a}
are even pairs in HX and HY (which do not have even pairs). In case

even-even-odd, since {x, a} and {y, b} are not even pairs, then there exists
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induced odd paths LXBA and LBAY from x to a through b and from y to b

through a, respectively. These paths share the edge (b, a). Again, we have

a contradiction, since LXBA + LBAY is an induced odd {x, y}-path.

So, suppose that we are in case even-even-even. Recall that {x, b} is

not an even pair and an induced path from x to b cannot contain a and c

together. So there exists an induced odd path from x to b through a (LXAB)

or through c (LXCB). W.l.g., assume that we have LXCB. Since {y, c} is not

an even pair, there exists an induced odd path LY AC from y to c through

a, such that a /∈ LY BC and b /∈ LY AC (an induced odd path LY BC from y

to c through b is impossible, since xLXCBLY BCy would be an induced odd

path from x to y.

Notice that {x, c} is not an even pair and then there exists an induced

odd path from x to c through a (LXAC) or through b (LXBC). First assume

that we have LXBC . Again, since {y, b} is not an even pair, there exists an

induced odd path from y to b through a (LY AB) or through c (LY CB). If we

have LY CB, then we have a contradiction, since xLXBCLY CBy is an induced

odd path from x to y. So, we have LY AB. Since {x, a} is not an even pair,

there exists an induced odd path from x to a through b (LXBA) or through

c (LXCA). Again we have a contradiction, since we obtain an induced odd

path from x to y, namely, xLXBALY ABy or xLXCALY ACy. Therefore, we

conclude that LXBC does not exist.

By consequence, we have LXAC . Again, since {y, a} is not an even pair,

there exists an induced odd path from y to a through b (LY BA) or through

c (LY CA). If we have LY CA, then xLXACLY CAy is an induced odd path

from x and y. By consequence, we have LY BA. Finally, since {x, a} is not

an even pair, then there exists an induced odd path from x to a through b

(LXBA) or through c (LXCA). If we have LXCA, then xLXCALY ACy is an

induced odd path from x to y. So, we have LXBA.

Up to now, we have proved the existence of the induced paths LXCB,

LY AC , LXAC , LY BA and LXBA. By combining these paths with paths

of P (y, b, a, c,HY ), P (x, c, a, b,HX), P (y, c, a, b,HY ), P (x, a, b, c,HX) and

P (y, a, b, c,HY ), respectively, we could obtain an induced odd path from x to



Even pairs in planar Berge graphs 155

y. It implies that a must see all paths in P (x, c, a, b,HX) and P (y, c, a, b,HY );

that b see all paths in P (x, a, b, c,HX) and P (y, a, b, c,

HY ); and that c see all paths in P (y, b, a, c,HY ).

Let PY B be an induced path from y to b avoiding a and c in HY . As

observed, there is a vertex u1 ∈ PY B, such that (c, u1) is an edge. Let PY C

be the induced path PY B[y, u1] + c from y to c avoiding a and b in HY .

Again, there is a vertex u2 ∈ PY C , such that (a, u2) is an edge. Clearly, we

also have that u2 ∈ PY B. Let PY A be the induced path PY C [y, u2] + a from

y to a avoiding b and c in HY . Finally, there is a vertex u3 ∈ PY A, such that

(b, u3) is an edge. Clearly, we also have that u3 ∈ PY B. But PY A[y, u3] + b

is induced path from b contained in PY B. Since PY B is induced, we have

that u1 = u2 = u3 (let us call them only by u). So, {a, b, c, u} induces a

K4. If y has paths from each vertex in {a, b, c, u} avoiding the others, then

{a, b, c, u, y} would be a K5 minor, contradicting the graph planarity.

So, {a, b, u}, {a, c, u} or {b, c, u} is a cutset of type IIIa separating y from

c, b and a, respectively. So, w.l.g, suppose that {a, b, u} is a cutset of type

IIIa separating y from c and, consequently, separating y from x. Since we

are dealing with the case even-even-even for {a, b, c}, then we have the case

even-even-odd for {a, b, u}. This case was also treated and again {x, a} or

{y, b} must be an even pair, contradicting the fact that HX and HY do not

have even pairs. This last contradiction shows us that the only possible case

is odd-odd-odd.

5.3 Proof of Claim 1

Proof of Claim 1. At first, suppose that Q of type IIIa. In the proof of

Lemma 3.3, we showed that, in case even-even-even, we have an even pair

with x or y and one vertex of Q. Using same arguments, we can prove that,

in case odd-odd-odd, we have an edge or an odd pair with x or y and one

vertex of Q.

Suppose now that Q is of type IIa. In the proof of Lemma 3.2, we proved

that, in case even-even, {x, a} or {y, b} (similarly {x, b} or {y, a}) is an even

pair. This fact implies that the pairs in one of following four groups is an
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even pair: {x, a} and {y, a}; {x, b} and {y, b}; {x, a} and {x, b}; or {y, a}
and {y, b}. Using same arguments in the case odd-odd, we can conclude that

at least one pair of the following four groups is an edge or an odd pair: {x, a}
and {y, a}; {x, b} and {y, b}; {x, a} and {x, b}; or {y, a} and {y, b}.

5.4 Proof of Claim 2

Proof of Claim 2. Let x be a non-artificial vertex of H that does not see

any vertex of {a, b, c}. Since H has no even pair, we have by Theorem 2.1

that the neighborhood of x induces a K2 ∪K2 or a K2 ∪K1 (see Figure 3).

Applying Menger’s theorem three times, we have that there exist vertex-

disjoint induced paths PA from x to a avoiding b and c; PB from x to b

avoiding a and c; and PC from x to c avoiding a and b. Let r, s and t be the

neighbors of x such that r ∈ PA, s ∈ PB and t ∈ PC , respectively. Suppose

w.l.g. that (s, t) is an edge, but (r, s) is not. So, PA or PB is not just an

edge, since (r, s) is not an edge (suppose w.l.g. that PA is not just an edge).

Now, assume by contradiction that PA and PB have the same parity.

Therefore, since H has no odd hole, there must be an edge joining a vertex

v 6= x of PA to a vertex w of PB. Since v /∈ PB, then we have by the

neighborhood restriction that a neighbor u of v must see w. Notice that

w 6= x, since PA is an induced path.

First suppose that w 6= b. Then there is two vertices p and q that are

neighbors of w in PB. Since {u, v, w} induces a triangle and PA and PB are

disjoint paths, we have by the neighborhood restriction that {w, p, q} must

also induce a triangle. Now, the edge (p, q) contradicts the fact that PB is

induced (see Figure 6).

Therefore w = b and we must examine two cases. If u = x, then the

diamond induced by {x, b, v, t} contradicts the required neighborhood for

x (u = x is adjacent to w = b). If u 6= x, then the graph induced by

{a, b, c, u, v, p} contradicts the required neighborhood for b.
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Figure 6: Graph used in the proof of Claim 2

6 Concluding remarks

In this paper, we obtained an O(n3) time algorithm to determine if a pla-

nar Berge graph contains an even pair (and to present one, if it is the

case). However, to the best of our knowledge, the problem of determine

if a planar non-Berge graph contains an even pair is still open. Bienstock

proved that the problem of decide if a general graph contains an even pair

is NP-Complete [3]. Unfortunately, this proof uses a non-planar graph in its

construction. We summarize the paper result and the corresponding prob-

lem left open in the diagram of Figure 7, where the efficient planarity test

algorithm is from [14].

The authors are indebted to anonymous referees for their valuable com-

ments and suggestions.

Figure 7: Recognition problems
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[1] J. L. R. Alfonśın and B. A. Reed, editors. Perfect graphs. Wiley-

Interscience Series in Discrete Mathematics and Optimization. John

Wiley & Sons Ltd., Chichester, 2001.

[2] C. Berge. Les problèmes de coloration en théorie des graphes. Publ.

Inst. Statist. Univ. Paris, 9:123–160, 1960.

[3] D. Bienstock. On the complexity of testing for odd holes and induced

odd paths. Discrete Math., 90(1):85–92, 1991.
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